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Local Clustering of L arge Graphs by Approximate
Fiedler Vectors [Extended Abstract]

Pekka Orponehand Satu Elisa Schaeffér

Laboratory for Theoretical Computer Science, P.O. Box 5400
FI-02015 TKK Helsinki University of Technology, Finland

Abstract We address the problem of determining the natural neighiomar of
a given node in a large nonunifom networ& in a way that uses only local com-
putations, i.e. without recourse to the full adjacency maif G. We view the
problem as that of computing potential values in a diffusiystem where node
1 is fixed at zero potential, and the potentials at the othees@de then induced
by the adjacency relation @¥. This point of view leads to a constrained spec-
tral clustering approach. We observe that a gradient mefitrodomputing the
respective Fiedler vector values at each node can be impteghén a local man-
ner, leading to our eventual algorithm. The algorithm idested experimentally
using two types of nonuniform networks: randomised “cavemeaphs” and a
scientific collaboration network.

1 Introduction

The recent interest in the analysis of natural network da#a2D] has given
rise to an array of fascinating algorithmic research iss@e® key task is that
of extracting naturatlustersof nodes in a network that have a relatively high
interconnectivity among themselves, and a relatively l@mnectivity to the
rest of the network. (Also called “communities” in, e.g. [18].) Most of the
existing literature on this topic considers the task of figdan idealglobal
clustering of a given graph. This is, however, infeasiblepbgsent techniques
in the case of really large networks such as the WWW. For lagg@/orks, an
effective clustering algorithm should scale at most liheawm the number of
nodesn, whereas global clustering methods typically scalendsg m or mn,
wherem is the number of edges. In the case of the WWW, whei@nd m
are currently in the order of several billions, such methar@squite inadequate.
The fastest global algorithms can currently deal with neks@ontaining up to
maybe a few millions of nodes [11,14,15]. An added complicatvith online
networks such as the WWW is that not all the nodes are diractgssible, and
the graph can only be explored “on demand”.

In many applications it would in fact be sufficient to know tredevant
cluster of a given source node, or maybe a group of nodes. &mranat papers,
such as [18,21] address also this more limited goal. E.gl&}), [a parameter-
free local clustering quality measure is optimised usingugated annealing; the
computational effort needed to obtain the cluster of a ge@urce node is quite
modest and — most importantly — independent of the total afizbe network,
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and the results seem to be quite robust with respect to iar&in the annealing
process.

One fascinating aspect of the clustering problem is that fitat even clear
how the notion of a “natural cluster” of nodes in a graph stidué defined. It
is usually apparent to the human eye what the “correct” aeastl“reasonable”
clustering of a given node neighbourhood is, but this ifdnits difficult to make
precise in a way that could be reliably automated. The dlingtejuality meas-
ure in [18] is robust, easily computable and gives good teshut is somewhat
heuristic. In the general literature, spectral and coraha#-based notions are
preferred on conceptual grounds [5,6,8,9,10,12,16,1if]Jake computationally
demanding. (See, however, [13] for a distributed algorifiemdecentralising
the computational load.) Also flow-based and other moreisiziapproaches
have been proposed; see [1,7] for overviews and comparisons

In [21] the clustering task is formulated, with the goal di@ént computa-
tion, as a problem of determining voltage levels in an eleaitcircuit with unit
resistances corresponding to the edges of the originalankiwhe source node
is fixed at a high potential and a randomly selected target abtbw potential;
an approximate solution to the Kirchhoff equations is cotegby an iteration
scheme, and the eventual cluster of the source node is deerewasist of those
nodes whose voltages are “close” to the high value. The Ipitigsthat the tar-
get node is accidentally selected from within the naturastelr of the source
node is decreased by repeating the experiment some smdlanwhtimes and
determining cluster membership by majority vote.

This electrical circuit analogue appears to have been figgested in [15],
where however the aim is to compute a global clustering ofvargnetwork
by considering all possible source-target pairs, and fehgair solving the
Kirchhoff equations exactly by explicitly inverting thertesponding Laplacian
matrix. (We note that since solutions of the Kirchhoff edpreé can be decom-
posed in terms of the eigenvectors of the circuit graph Laalg this method is
actually also a variant of the spectral partitioning tegaes.)

In Section 2, we present our local clustering algorithm, aluhimproves
on [15,21] by eliminating the need for arbitrary “target’des, and by making
the connection to spectral methods explicit. Section dudises our experiments
with the method. Section 4 summarises the work and addrelésstions for
further research.

2 Approximate computation of Fiedler vectors

We continue the analogue of representing cluster memlipevsiies as phys-
ical potentials, but eliminate the unnatural choice of mndtarget” nodes by
basing our model on diffusion in amboundedmedium rather than the elec-
trical closed-circuit model. Thus, given a graghand a source node we fix

1 at a constant potential level, which we choose to be zero,candider the
solution to the discrete Dirichlet problem ¢awith this single-node boundary
condition [2, p. 128]. For clustering purposes, we find areigctoru corres-
ponding to the smallest eigenvalue of the respective Dirichlet matrix, i.e. the
Laplacian matrix of7 with row and columni removed [2,3]. This eigenvectar
the (Dirichlet-)Fiedler vector of G, will now assign potential values(j) close



to O for nodesj that are within a densely interconnected neighbourhootief t
source nodé, and larger values for nodes that have sparser connectighs t
source. The method obviously generalises to starting fréarger set of source
nodes, if desired.

Since we wish to develop a local algorithm, and not deal withfull adja-
cency matrix of the network, we approach the computatioh@fiedler vector
u via minimising the Rayleigh quotient [2,3]:
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where the infimum is computed over vectorsatisfying the boundary condition
u(i) = 0 at the source node(s). (The notatign~ & is an abbreviation for
(7, k) € E.) Furthermore, since we are free to normalise our eventieallét
vector to any length we wish, we can constrain the mininosatd vectorsu
that satisfy, say|u|3 = n = |V|. Thus, the task becomes one of finding a
vectoru that satisfies:

u = argmin S(u(i)  u(k)® [u() =0, [ulf=n }. @
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We can solve this task approximately by reformulating thguiement that
|lul3 = n as a “soft constraint” with weight > 0, and minimising the ob-
jective function
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by gradient descent. Since the partial derivativeg bfive the simple form

of
du(j)
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the descent step can be computed locally at each node, basatbomation
about theu-estimates at the node itself and its neighbours:

U1 (j) = () +6- () alk) — (deg(j) —¢)-a(j)),  (5)

k~j

whereé > 0 is a parameter determining the speed of the descent.

Assuming that the natural cluster of nodis small compared to the size of
the full network, the normalisatiofiu||3 = n entails that most nodegin the
network will haveu(j) ~ 1. Thus the descent iterations (5) can be started from
an initial vectoru that hasig (i) = 0 for the source nodéanduy (k) = 1 for
all k # i. The estimates need then to be updated at time0 only for those
nodes;j that have neighbours ~ j such thati, (k) < 1.

Balancing the constraint weigltagainst the speed of gradient descént
naturally requires some care. We have obtained reasontdilie sesults with
the following heuristic: given an estimatefor the average degree of the nodes
in the network, set = 1/k andd = ¢/10. The gradient iterations (5) are then
continued until all the changes in theestimates are below = §/10. The



u(j) values are thresholded at 1, so that if the right hand sidejaéteon (5)
suggests a value greater than this, then a value of 1 is usled update instead.
Occasionally equation (5) may suggest also negatiestimates, but this we
have taken as an indication of a too rapid descent, and hatarted the run
with a smaller value of.

The eventual (approximate) Fiedler values thus reprekemtdgree of mem-
bership of each nodg in the cluster of node. A fully automated clustering
system needs to still determine a good cluster boundarydde fy based on
these values. This is a simple one-dimensional two-claasifin task that can
in principle be solved using any of the standard patterrsifiass, such as the
k-means algorithm [4]. However since we wish to maintain teality of our
method also at this stage, the most obvious implementatibthese algorithms
are not acceptable to us. (We have not yet looked into theilplitysof loc-
alising the standard classifiers.) One simple local appragsuld be to just
threshold the potentials as in [21], but we prefer not tooitice any additional
instance-specific parameters to the algorithm.

Rather, we choose to follow the approach of [18,19] of defjranlocally
computable cluster quality measure and optimising it byestommal process —
currently by a simulated annealing computation that maalifisxpands or con-
tracts) a candidate cluster one node at a time, with a tiroe#asing preference
towards modifications that improve cluster quality. Givesoarce nodé and a
candidate cluste$ containing:, a natural family of quality measures is provided
by theweighted Cheeger ratid®, p. 35]:
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wherew(y, k) is an appropriate nonnegative edge weight function. Qlsiste

with low Cheeger ratios have low (weighted) extraclustemeztivity, and high

(weighted) intracluster connectivity, as is to be intutiv expected of a good
cluster. Thus, aiming to minimise this ratio seems like ssoeable thing to

do, and is also justified by general isoperimetric princpla our experiments,
edge weights determined agj, k) = (Ju(j) —u(k)|)~! seem to lead to natural
clusters in different types of networks, and are also iivielly appealing.

3 Experiments

We report on tests of our local Fiedler clustering methodvem tiypes of net-
works: randomised “caveman graphs” witB8 and 1533 nodes, and a “col-
laboration graph” representing a network508 mathematicians and computer
scientists and their pairwise coauthorships.

The synthetic caveman graphs (cf. Figure 1) were generateatding to
a probabilistic variation of the deterministic constroatigiven in [20, p. 103].
Whereas the recipe in [20] stipulates that a caveman graplzef = rk and
cavesizek consist of exactly- copies of ak-clique connected together into a
cycle in a specific way, our construction gives only prokiatidl parameters for
the expected size, number and connection densities of thesceesulting in
a somewhat more natural family of test graphs with nevesisepredictable



Figurel. Local Fiedler clusters in a 138-node caveman graph.

clustering properties. (The precise graph generation odeighgiven in [19, p.
94].)

Figure 1 represents the results of the approximate Fiedletov calcula-
tions on the 138-node caveman graph, starting from thréerelift source nodes.
For visual effect, the nodes are colour-coded so that ddducocorrespond to
small approximated Fiedler potential values, with the seurode in each case
coloured black. The parameter values used in this case werstdndard ones
derived fromk = 5.1 (i.e.c¢ = 0.20, § = 0.002, ¢ = 0.0002). As can be seen,
the method discerns the natural clusters embedded in thé grate distinctly.
The nodes selected by the Cheeger ratio heuristic for tbeaet clusters in each
of the three cases are indicated by thickened node bousdal# the clusters
determined in this manner can be seen to correspond to tbeahahes. (The
smaller, 138-node graph was chosen here merely for illigraurposes. The
results on the bigger, 1533-node graph are qualitativehyiai, but the graph is
too large to be represented in a drawing.)

Figure2. Local Fiedler clusters in a 503-node collaboration graph.



Figure3. A closeup view of the three clusters.

Our other test graph was extracted from the Mathematicsoseof the
Karlsruhe Collection of Computer Science BibliograpHiéghe raw coauthor-
ship data was cleaned in various ways to eliminate nonpeastiors such as
institutes and committees, unify spellings of authors’ eanetc. (details given
in [19, p. 99]). The resulting 503-node graph is shown in #fepanel of Fig-
ure 3. The right panel shows three small collaborative ehsstentified by the
local Fiedler clustering method, starting from three distisource nodes; the
clusters are non-overlapping in the sense that none of tikeesmodes gave
values less than 1.0 for any of the members of the other twsiarsl Figure 3
presents a close-up view of the three clusters indicatedgur® 3, with distant
and overlapping nodes rearranged to allow a better viewethucture of the
induced subgraphs. Also in this instance, our standardmpetea values based
onk = 3.3 (i.e.c = 0.30, 6 = 0.03, ¢ = 0.003) were used.

We wish to emphasize that the small size of our example graphs is
due to the requirements of illustration. The fact that outhoé islocal means
exactly that its running time scales relative to the sizehefriesultingcluster,
and doesotdepend on the size of the ambient graph.

In fact, we have also implemented the method in such a mahagithe
u-estimates are updated according to equation (5) only asresjby the op-
timisation process of the Cheeger clustering criterion {8lis means, firstly,
that nodes that fall out of the single-edge neighbourhoaghadvolving candid-
ate cluster no longer need to be accessed, and secondipotied that remain
in the cluster have theii-estimates updated repeatedly in connection with re-
evaluations of the Cheeger criterion, thus implicitly feity the gradient des-
cent of theu-estimates to the part of the graph that is of interest focthstering
goal. This implementation saves considerably in both thekiwg space and the
running time requirements of the algorithm, without affiegtthe quality of the
results.

4 Conclusions and Further Work

We presented a local method for clustering graphs based mpwting their
approximate Fiedler vectors and illustrated its behavausimple “caveman”
and “collaboration” graphs. According to our experimethg, method behaves
well and conforms to the intuition that arises from its atiabl properties. The

Yhttp://1iinww.ira.uka. de/ bi bl i ography/ Math/, accessed 2 December
2002.



key characteristic of the method is that its resource requénts depend only on
the size and connectivity of the resulting cluster, antion the characteristics
of the whole graph.

As future work, the algorithm should also be extended to vmrldirected
graphs, in order to deal with interesting natural netwonkshsas the WWW.
Some interesting issues remain also in the area of locgliendard clustering
methods and comparing them to the presently used Cheetgiarioptimisa-
tion technique.
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