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Local Clustering of Large Graphs by Approximate
Fiedler Vectors [Extended Abstract]

Pekka Orponen? and Satu Elisa Schaeffer??

Laboratory for Theoretical Computer Science, P.O. Box 5400
FI-02015 TKK Helsinki University of Technology, Finland

Abstract We address the problem of determining the natural neighbourhood of
a given nodei in a large nonunifom networkG in a way that uses only local com-
putations, i.e. without recourse to the full adjacency matrix of G. We view the
problem as that of computing potential values in a diffusivesystem where node
i is fixed at zero potential, and the potentials at the other nodes are then induced
by the adjacency relation ofG. This point of view leads to a constrained spec-
tral clustering approach. We observe that a gradient methodfor computing the
respective Fiedler vector values at each node can be implemented in a local man-
ner, leading to our eventual algorithm. The algorithm is evaluated experimentally
using two types of nonuniform networks: randomised “caveman graphs” and a
scientific collaboration network.

1 Introduction

The recent interest in the analysis of natural network data [14,20] has given
rise to an array of fascinating algorithmic research issues. One key task is that
of extracting naturalclustersof nodes in a network that have a relatively high
interconnectivity among themselves, and a relatively low connectivity to the
rest of the network. (Also called “communities” in, e.g. [14,15].) Most of the
existing literature on this topic considers the task of finding an idealglobal
clustering of a given graph. This is, however, infeasible bypresent techniques
in the case of really large networks such as the WWW. For largenetworks, an
effective clustering algorithm should scale at most linearly in the number of
nodesn, whereas global clustering methods typically scale asm log m or mn,
wherem is the number of edges. In the case of the WWW, wheren and m
are currently in the order of several billions, such methodsare quite inadequate.
The fastest global algorithms can currently deal with networks containing up to
maybe a few millions of nodes [11,14,15]. An added complication with online
networks such as the WWW is that not all the nodes are directlyaccessible, and
the graph can only be explored “on demand”.

In many applications it would in fact be sufficient to know therelevant
cluster of a given source node, or maybe a group of nodes. Somerecent papers,
such as [18,21] address also this more limited goal. E.g. in [18], a parameter-
free local clustering quality measure is optimised using simulated annealing; the
computational effort needed to obtain the cluster of a givensource node is quite
modest and — most importantly — independent of the total sizeof the network,
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and the results seem to be quite robust with respect to variations in the annealing
process.

One fascinating aspect of the clustering problem is that it is not even clear
how the notion of a “natural cluster” of nodes in a graph should be defined. It
is usually apparent to the human eye what the “correct” or at least “reasonable”
clustering of a given node neighbourhood is, but this intuition is difficult to make
precise in a way that could be reliably automated. The clustering quality meas-
ure in [18] is robust, easily computable and gives good results, but is somewhat
heuristic. In the general literature, spectral and conductance-based notions are
preferred on conceptual grounds [5,6,8,9,10,12,16,17], but are computationally
demanding. (See, however, [13] for a distributed algorithmfor decentralising
the computational load.) Also flow-based and other more heuristic approaches
have been proposed; see [1,7] for overviews and comparisons.

In [21] the clustering task is formulated, with the goal of efficient computa-
tion, as a problem of determining voltage levels in an electrical circuit with unit
resistances corresponding to the edges of the original network. The source node
is fixed at a high potential and a randomly selected target node at low potential;
an approximate solution to the Kirchhoff equations is computed by an iteration
scheme, and the eventual cluster of the source node is deemedto consist of those
nodes whose voltages are “close” to the high value. The possibility that the tar-
get node is accidentally selected from within the natural cluster of the source
node is decreased by repeating the experiment some small number of times and
determining cluster membership by majority vote.

This electrical circuit analogue appears to have been first suggested in [15],
where however the aim is to compute a global clustering of a given network
by considering all possible source-target pairs, and for each pair solving the
Kirchhoff equations exactly by explicitly inverting the corresponding Laplacian
matrix. (We note that since solutions of the Kirchhoff equations can be decom-
posed in terms of the eigenvectors of the circuit graph Laplacian, this method is
actually also a variant of the spectral partitioning techniques.)

In Section 2, we present our local clustering algorithm, which improves
on [15,21] by eliminating the need for arbitrary “target” nodes, and by making
the connection to spectral methods explicit. Section 3 discusses our experiments
with the method. Section 4 summarises the work and addressesdirections for
further research.

2 Approximate computation of Fiedler vectors

We continue the analogue of representing cluster membership values as phys-
ical potentials, but eliminate the unnatural choice of random “target” nodes by
basing our model on diffusion in anunboundedmedium rather than the elec-
trical closed-circuit model. Thus, given a graphG and a source nodei, we fix
i at a constant potential level, which we choose to be zero, andconsider the
solution to the discrete Dirichlet problem onG with this single-node boundary
condition [2, p. 128]. For clustering purposes, we find an eigenvectoru corres-
ponding to the smallest eigenvalueσ1 of the respective Dirichlet matrix, i.e. the
Laplacian matrix ofG with row and columni removed [2,3]. This eigenvectoru,
the (Dirichlet-)Fiedler vector ofG, will now assign potential valuesu(j) close



to 0 for nodesj that are within a densely interconnected neighbourhood of the
source nodei, and larger values for nodes that have sparser connections to the
source. The method obviously generalises to starting from alarger set of source
nodes, if desired.

Since we wish to develop a local algorithm, and not deal with the full adja-
cency matrix of the network, we approach the computation of the Fiedler vector
u via minimising the Rayleigh quotient [2,3]:

σ1 = inf
u

∑

j∼k(u(j) − u(k))2
∑

j u(j)2
, (1)

where the infimum is computed over vectorsu satisfying the boundary condition
u(i) = 0 at the source node(s). (The notationj ∼ k is an abbreviation for
(j, k) ∈ E.) Furthermore, since we are free to normalise our eventual Fiedler
vector to any length we wish, we can constrain the minimisation to vectorsu
that satisfy, say,‖u‖2

2 = n = |V |. Thus, the task becomes one of finding a
vectoru that satisfies:

u = argmin
{

∑

j∼k

(u(j) − u(k))2
∣

∣

∣ u(i) = 0, ‖u‖2
2 = n

}

. (2)

We can solve this task approximately by reformulating the requirement that
‖u‖2

2 = n as a “soft constraint” with weightc > 0, and minimising the ob-
jective function

f(u) =
1

2

∑

j∼k

(

u(j) − u(k)

)2

+
c

2
·

(

n −
∑

j

u(j)2
)

(3)

by gradient descent. Since the partial derivatives off have the simple form

∂f

∂u(j)
= −

∑

k∼j

u(k) + (deg(j) − c) · u(j), (4)

the descent step can be computed locally at each node, based on information
about theu-estimates at the node itself and its neighbours:

ũt+1(j) = ũt(j) + δ · (
∑

k∼j

ũ(k) − (deg(j) − c) · ũ(j)), (5)

whereδ > 0 is a parameter determining the speed of the descent.
Assuming that the natural cluster of nodei is small compared to the size of

the full network, the normalisation‖u‖2
2 = n entails that most nodesj in the

network will haveu(j) ≈ 1. Thus the descent iterations (5) can be started from
an initial vectorũ0 that has̃u0(i) = 0 for the source nodei andũ0(k) = 1 for
all k 6= i. The estimates need then to be updated at timet > 0 only for those
nodesj that have neighboursk ∼ j such that̃ut−1(k) < 1.

Balancing the constraint weightc against the speed of gradient descentδ
naturally requires some care. We have obtained reasonably stable results with
the following heuristic: given an estimatēk for the average degree of the nodes
in the network, setc = 1/k̄ andδ = c/10. The gradient iterations (5) are then
continued until all the changes in theu-estimates are belowε = δ/10. The



˜u(j) values are thresholded at 1, so that if the right hand side of equation (5)
suggests a value greater than this, then a value of 1 is used inthe update instead.
Occasionally equation (5) may suggest also negativeu-estimates, but this we
have taken as an indication of a too rapid descent, and have restarted the run
with a smaller value ofδ.

The eventual (approximate) Fiedler values thus represent the degree of mem-
bership of each nodej in the cluster of nodei. A fully automated clustering
system needs to still determine a good cluster boundary for node i, based on
these values. This is a simple one-dimensional two-classification task that can
in principle be solved using any of the standard pattern classifiers, such as the
k-means algorithm [4]. However since we wish to maintain the locality of our
method also at this stage, the most obvious implementationsof these algorithms
are not acceptable to us. (We have not yet looked into the possibility of loc-
alising the standard classifiers.) One simple local approach would be to just
threshold the potentials as in [21], but we prefer not to introduce any additional
instance-specific parameters to the algorithm.

Rather, we choose to follow the approach of [18,19] of defining a locally
computable cluster quality measure and optimising it by some local process —
currently by a simulated annealing computation that modifies (expands or con-
tracts) a candidate cluster one node at a time, with a time-increasing preference
towards modifications that improve cluster quality. Given asource nodei and a
candidate clusterS containingi, a natural family of quality measures is provided
by theweighted Cheeger ratios[2, p. 35]:

hw(S) =

∑

j∈S

∑

k∼j,k 6∈S w(j, k)
∑

j∈S

∑

k∼j w(j, k)
, (6)

wherew(j, k) is an appropriate nonnegative edge weight function. Clusters S
with low Cheeger ratios have low (weighted) extracluster connectivity, and high
(weighted) intracluster connectivity, as is to be intuitively expected of a good
cluster. Thus, aiming to minimise this ratio seems like a reasonable thing to
do, and is also justified by general isoperimetric principles. In our experiments,
edge weights determined asw(j, k) = (|u(j)−u(k)|)−1 seem to lead to natural
clusters in different types of networks, and are also intuitively appealing.

3 Experiments

We report on tests of our local Fiedler clustering method on two types of net-
works: randomised “caveman graphs” with138 and 1533 nodes, and a “col-
laboration graph” representing a network of503 mathematicians and computer
scientists and their pairwise coauthorships.

The synthetic caveman graphs (cf. Figure 1) were generated according to
a probabilistic variation of the deterministic construction given in [20, p. 103].
Whereas the recipe in [20] stipulates that a caveman graph ofsizen = rk and
cavesizek consist of exactlyr copies of ak-clique connected together into a
cycle in a specific way, our construction gives only probabilistic parameters for
the expected size, number and connection densities of the caves, resulting in
a somewhat more natural family of test graphs with nevertheless predictable



Figure 1. Local Fiedler clusters in a 138-node caveman graph.

clustering properties. (The precise graph generation method is given in [19, p.
94].)

Figure 1 represents the results of the approximate Fiedler vector calcula-
tions on the 138-node caveman graph, starting from three different source nodes.
For visual effect, the nodes are colour-coded so that dark colours correspond to
small approximated Fiedler potential values, with the source node in each case
coloured black. The parameter values used in this case were the standard ones
derived fromk̄ = 5.1 (i.e. c = 0.20, δ = 0.002, ε = 0.0002). As can be seen,
the method discerns the natural clusters embedded in the graph quite distinctly.
The nodes selected by the Cheeger ratio heuristic for the relevant clusters in each
of the three cases are indicated by thickened node boundaries; also the clusters
determined in this manner can be seen to correspond to the natural ones. (The
smaller, 138-node graph was chosen here merely for illustrative purposes. The
results on the bigger, 1533-node graph are qualitatively similar, but the graph is
too large to be represented in a drawing.)

Figure 2. Local Fiedler clusters in a 503-node collaboration graph.



Figure 3. A closeup view of the three clusters.

Our other test graph was extracted from the Mathematics section of the
Karlsruhe Collection of Computer Science Bibliographies.1 The raw coauthor-
ship data was cleaned in various ways to eliminate nonpersonauthors such as
institutes and committees, unify spellings of authors’ names, etc. (details given
in [19, p. 99]). The resulting 503-node graph is shown in the left panel of Fig-
ure 3. The right panel shows three small collaborative clusters identified by the
local Fiedler clustering method, starting from three distinct source nodes; the
clusters are non-overlapping in the sense that none of the source nodes gave
values less than 1.0 for any of the members of the other two clusters. Figure 3
presents a close-up view of the three clusters indicated in Figure 3, with distant
and overlapping nodes rearranged to allow a better view of the structure of the
induced subgraphs. Also in this instance, our standard parameter values based
on k̄ = 3.3 (i.e. c = 0.30, δ = 0.03, ε = 0.003) were used.

We wish to emphasize that the small size of our example graphshere is
due to the requirements of illustration. The fact that our method islocal means
exactly that its running time scales relative to the size of the resultingcluster,
and doesnot depend on the size of the ambient graph.

In fact, we have also implemented the method in such a manner that the
u-estimates are updated according to equation (5) only as required by the op-
timisation process of the Cheeger clustering criterion (6). This means, firstly,
that nodes that fall out of the single-edge neighbourhood ofan evolving candid-
ate cluster no longer need to be accessed, and secondly, thatnodes that remain
in the cluster have theiru-estimates updated repeatedly in connection with re-
evaluations of the Cheeger criterion, thus implicitly focusing the gradient des-
cent of theu-estimates to the part of the graph that is of interest for theclustering
goal. This implementation saves considerably in both the working space and the
running time requirements of the algorithm, without affecting the quality of the
results.

4 Conclusions and Further Work

We presented a local method for clustering graphs based on computing their
approximate Fiedler vectors and illustrated its behaviouron simple “caveman”
and “collaboration” graphs. According to our experiments,the method behaves
well and conforms to the intuition that arises from its analytical properties. The

1 http://liinwww.ira.uka.de/bibliography/Math/, accessed 2 December
2002.



key characteristic of the method is that its resource requirements depend only on
the size and connectivity of the resulting cluster, andnot on the characteristics
of the whole graph.

As future work, the algorithm should also be extended to workon directed
graphs, in order to deal with interesting natural networks such as the WWW.
Some interesting issues remain also in the area of localising standard clustering
methods and comparing them to the presently used Cheeger criterion optimisa-
tion technique.
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