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Abstract The multivariate Oja (1983) median is an affine equivariaualtivari-
ate location estimate with high efficiency. This estimate &dounded influence
function but zero breakdown. The computation of the estappears to be highly
intensive. We consider different, exact and stochastimrihms for the calcula-
tion of the value of the estimate. In the stochastic algorghthe gradient of the
objective function, the rank function, is estimated by skngpobservation hyper-
planes. The estimated rank function with its estimated r@aguthen yields a con-
fidence region for the true Oja sample median, and the cord@egion shrinks to
the sample median with the increasing number of the samplperplanes. Reg-
ular grids and and the grid given by the data points are us#ueirconstruction.
Computation times of different algorithms are discussedl @mpared. For &-
variate data set with observations our exact and stochastic algorithm have rough
complexity estimates a®(kn logn) andO(5%(1/¢)?), respectively, where is
the radius of confidenck,,-ball.

Key words Multivariate median — multivariate rank — stochastic apgration

1 Introduction

Let X = {x1,...,x,} be a data set af k-variate observation vectors. Thé-
servation hyperplangoing through thek observationg; < --- < i is given

by
{xERk :det(1 o1 1):0}.
X, - X X

To simplify the notations, let the indek = (i1,... i), 1 < i1 <ix < --- <
ir < n refer to ak-subset of observations with indices listedlimnd H (I) the
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hyperplane determined by them. Define tllg(/) andd(I) implicitly by

det( Lo 1 1) = do(I) +d7 (I)x,

where
d(I) = (di (D), ... ,dp(I)T

anddy(I),di(I),... ,dy(I) are the cofactors of the elements in the last column
of the matrix. Note also also that the intersectiot ef 1 hyperplaned? (1), ...,
H(I—1) is usually (not always) a univariatébservation line Finally, the inter-
section ofk hyperplane$i (1), ... , H(I;) usually (not always) yields erossing
point

The volume of the-variatesimplexdetermined by thé-set] along withx is

Vi(x) = %abs{do(I) +d¥(D)x}.

The multivariate Oja mediari5] is the vectorT = T(X) that minimizes the
objective function

D(x) = ave{Vi(x)}, &)

the average of the volumes of simplices determined by theidatex and all
possiblek-sets of observations The centered rank function (which is related to
this generalization of the multivariate median) is

R(x) = VD(x) = ; ave{S;(x)d(1)) @)
where

S1(x) = sign{do(I) + d” (I)x}

is £1 and indicates on which side of hyperplahé¢he pointx is located. An-
other presentation for the objective functionli¥x) = aver{Sr(x)do(I)} +
(aver {Sr(x)d(I)})” x. The affine equivariant centered rank vectors

RiZR(Xz’), i:l,...,n.

can be used in classical multivariate analysis problemsjetg in multivari-
ate multisample location (MANOVA) problems, in principalmaponent analysis
(PCA), in multivariate multiple regression, in canonicatrelation analysis, and
in testing for multinormality (See Visuri et al. [8]).

In this paper we wish to find efficient (exact and stochastighrithms for
the calculation of the value of the sample Oja medlar= T(X). Our plan is
as follows. First, in Section 2, an algorithm for the caltiaia of the exact value
of T is outlined and discussed. In Section 3, stochastic estsree considered;
two different estimated of the true valuér’, based on a random sample from the
set of hyperplanes, are constructed. The computation tif@ifferent algorithms
are compared. The paper is closed with some comments inoSettiDetailed
descriptions of the algorithms are postponed to the Appendi
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2 Exact computation

We first describe a deterministic algorithm for computing #xact value of the
Oja median. This method is a generalization of the Oja bataninedian algorithm
proposed by Niinimaa and Oja [4]. It is known that the med&lotated among
the intersection points of the observation hyperplanesi2¢ bivariate version it-
eratively optimizes the objective function along obseoralines. At each line, the
minimizer is the intersection point of the search line anche@ther observation
line. Then the decision is made on whether to stop (a globailhmim) or to con-
tinue along the crossing line. In most cases there is onl\coresing line; however
if the crossing point is an original data point then thererare2 alternative lines
left which to follow, and the next one is chosen among thoseiaing to some
criterion.

There are several obstacles to a straightforward extersfighe bivariate
method. As the dimension increases, numerical problemgmakigation among
the hyperplane intersections less reliable. This leads usatke some changes in
the algorithm design. In order to overcome the numericétdities, our algorithm
is designed to use double bookkeeping for geometrical &hjasing both numer-
ical and combinatorial presentations of the objects in#dlMn the combinatorial
presentation, each object carries with it a constructioipeein the form of an inte-
ger index set. For example, if the hyperplan®&ispanned by observatiors, x,
andxj; intersects the line through, andxs, the intersection point then has index
presentatio{{1, 2,3}, {4,5}}. This kind of design is needed to count and con-
struct observation lines. However, details of this kind ofnbinatorial geometry
are not the focus of the paper and thus are skipped.

The exact median algorithm (see Appendix A.1) starts by simgpan obser-
vation point close to the centre (the mean vector) of the daitad. Then a set of
k — 1 hyperplanes going through the chosen point are picked ugoraly and
their intersection is ensured to be a line. The most time wmirsg part of the al-
gorithm is to minimize the objective function (1) on the lir@ur approach to this
problem will be described later. When the minimum point isrfd, the next task
is to choose another line and repeat the process until nmieprent is achieved.
The point with the minimum value is always located at therigsgetion of the line
and an observation hyperplane.

In the bivariate case there are only two different types afssing points.
The point is either an intersection of two ar— 1 observation lines. In the
latter case the crossing point is an original observatiohre&-dimensional
data adds one more possibility: for instance a point witheingiresentation
{{i1,42},{j1,J2, 3} } is contained i + 1 different observation lines, namely
{{i1,42}} and{{i1,492,m}, {j1, j2, j3 } }, wherem # i; andm # i,. Two other
cases are of course an original data point, and an intessecfi3 hyperplanes
without common data points as in the 2-dimensional caséh Bdditional dimen-
sion introduces one ore more such new cases, each havinfggedifnumber of
lines to explore.

Atthe each turning point we count the number of crossingditernatives. The
algorithm described in Appendix stops if the number of lieeseeds our prede-
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fined limit. This is not absolutely necessary, because wensiead take a random
sample from the collection of possible lines, and not givaunfess this sample
does not have a line with a lower objective function valugeAthe construction
of the crossing lines we discard all lines already followBde gradient (2) of the
objective function may be used to find the next line with theeclion of steepest
descent, or with the smallest angle with the gradient. Téwaally it is enough to
check this line only; in practice, however, the sun{pf terms involved in the def-
inition of the gradient is very sensitive to rounding errdrise cumulation of these
small errors may cause the gradient vector to point in a tijigirong direction.
The careful stopping criterion of the algorithm reflectsttifficulty. We decided
to increase the stability of the algorithm by searching glah intersecting lines
before trusting the answer.

Also the objective function (1) minimization along a linens out to be sur-
prisingly difficult. In high dimensions, the observationpgeyplanes are typically
very dense and split the observation lines to extremelytssgments. Although
the objective function is convex and thus theoreticallyygasninimize on a line,
numerically the function contains a small amount of additise due to round-
ing errors. These errors arise from a vast number of infinitalyy small changes
(but sometimes erroneously rounded to wrong direction dieeck of precision) at
the end of each segment. We failed to apply traditional dgtition methods, and
use instead the following somewhat slower but numericatlyemobust algorithm
(see Appendix A.2).

Let E denote &-variate box containing all data points. A good choicefhis
a slightly enlarged box limited by the componentwise minana maxima of the
data values. The enlargement is usually not important artles number of data
points is quite small. In that case rounding errors may dmpescritical points
outside the box when performing comparisons with exactémi

We begin by computing all crossing points of the search linend the ob-
servation hyperplanes. If the crossing point of the line hyperplaneH is not
contained ink, it can not be the minimum. When calculating the value of #rer
function in E, the sum over terms corresponding to these type of hypezplan
constant and have to be computed only once. All other hypegs are reordered
so that two consecutive hyperplane crossing points @o not have a third point
between them.

The task is now to scan through all crossing point&iand choose the point
with the lowest objective function value. We set the firstssing point as a me-
dian candidate. Evaluation of the objective function iselby summing together
one term for each hyperplane and the constant part which aleslated during
hyperplane preprocessing. After that every other inteéis@point in £ is handled
in the previously given order and the lowest objective fiorctalue is recorded.
However, evaluation of the objective function is much eas@w, since it is nec-
essary only to update the sign of the term correspondingattyiperplane which
intersectd. at the current point.

The space requirement of the algorithmQg¢n*) which is needed to store
the representations (ﬁ:) hyperplanes. Its time complexity cannot be determined
so easily. Each minimization along a line has a complexity)¢f* logn*) =
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Running times on Pentium 111/933 Mhz/1024 Mb RAM
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Fig. 1 Performance of the exact algorithm A.1

O(kn*logn), due to the hyperplane sorting involved. This is repeateleaxt

k times, which yields a lower bound of complexify(k2n*logn). Simulation
experiments suggest that usualljk) iterations are enough., but the worst case
behavior of the algorithm may depend on the distributionashdn a complicated
way. (The algorithm and its analysis are similar to the serphethod for linear
programming, which is known to be exponential in the worsec®ut linear-time
on the average under some distributional assumptions [1,3¥p-128].) Figure 1
presents running times for several multivariate i.i.d mally distributed test cases.

3 Stochastic approximation

As can be seen from the computation time diagrams in Figutieelexact algo-
rithm becomes rapidly infeasible as the number of obsemati, and in particular
the dimensionalityt of the observation vectors grow. For instance, within a time
limit of 1000 seconds~28 minutes), our implementation of the exact algorithm
was able to process 2-variate data sets containing moré@tihobservation vec-
tors, but for 4-variate data the maximum size of a data sethaped to about 70
points.

Considerably more efficient computations are possiblesittkactness require-
ment of the algorithm is relaxed somewhat, and a stochagpicoaimation ap-
proach is adopted. The basic idea then isample the collection of observation
hyperplanesand use these samples to direct the construction of inogapre-
cise estimates for the location of the Oja median. We presenalgorithms based
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on this general idea: in the first method the median estimatedocated at the
nodes of a regular, increasingly dergéd, whereas in the second method the
search for increasingly good median estimates is supportabe initially given
observation vectors.

3.1 Confidence regions for sample Oja median

Assume that we have a random sample phyperplanes with indicesg, .. . , I,
and we wish to test the null hypothedi® : T = z, that is,z is the true sample
Oja median. A natural test statistic can then be based orstimeated sample rank
function atz,

R(z) = a}/e{SI]. (z)d(I;)} .

The limiting null distribution of,/n, R(z) is ak-variate normal distribution with
zero mean vector and covariance matiix= ave;{d(1)d7(I)} where the sum
is over all possible(?) hyperplane indiced. A natural estimate o€ is C' =
avg{d(Z;)d* (I;)} which is consistent under the null hypothesis. An approxéma
100(1 — «) percent confidence region fat is then given by

{z . R (2)0'R(z) < X‘g’,(k)}. 3)

If n, — o0, this confidence region shrinks to a unique point, the Ojaiamed
The problem is, however, the explicit calculation of the fiadence region. For
approximations, values of the test statistic

Uz) = R (2)C~'R(z)

are calculated at the nodes of an increasingly dense grid.

3.2 Approximation supported on a regular grid

Given a set ok-variate observation vectoxs, . . . , x,, our grid-based hyperplane
sampling algorithm (Algorithm A.3 in the appendix) is iliized with a regulak-
dimensional grid7,, with 5* gridpoints spaced uniformly at distankeThe grid
spacingh is determined as 1/4 of thie,, diameter of the data set, and the grid is
centered so that all observation vectors are containednaitthextrema.

We then choose some confidence level a, say0.95, sample an initial set of
np = ng observation hyperplanes, and compute the values of thetéssticlU (z)
at each gridpoint € Gj. With an ideal choice of; and the sampled hyperplanes,
only a single gridpoinze would then remain in th&00(1 — «) percent confidence
region (3) ofT'. Usually this is not the case, but nevertheless we can ditia
number of gridpoints frong;, as falling outside the confidence region. This results
in a reduced grid@j;, = Gy. (The choice of a good value for the sample batch size
parameten depends on the characteristics of the data. We have simghggi
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a valuen,; = 20 for our simulations. However the average running time of the
algorithm seems to be quite insensitive to the choice,0fas long as it is neither
very small nor big.)

We now add another set af hyperplanes to our sample (consequenf]y=
np + ns), update the values of the test statidfi¢z) at the remaining gridpoints
z € G}, (Algorithm A.4), eliminate the gridpoints falling outsidhe decreased
confidence region (3) etc. This process is iterated untif onk pointz, remains
active in the grid. If some added samplemqf hyperplanes causes the number of
active gridpoints to go to zero, then this sample is withdrawwd a new sample is
generated instead.

When only one gridpointyg remains, the grid is refined by halving the spacing
from h to /2 in the neighborhood ofy, and omitting that part of the old grid that
is at L, distance greater thanfrom z,. The news*-node gridGy , is centered at
2o, and initial test function estimates at those node,0f that were not contained
in G, are obtained by linear interpolation (see Algorithm A.3heThyperplane
sampling and grid reduction process described above is rkgmmed with the
grid G, /2. When gridgy, » is reduced to a single point, it is again refined in the
neighborhood of this point to a gri@, 4 etc. The procedure is repeated until the
grid spacing becomes denser than some predefined paramet@rAt this point
we know the location of the Oja median of our data set vith precisione, to
within confidencd — a.

Running times on Pentium 111/933 Mhz/1024 Mb RAM
100000

10000 }

1000

100 F P

seconds

10 |

01

0.01 -
10 100 1000

points

Fig. 2 Performance of the grid-based approximate algorithm A.3
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As can be seen from Figure 2, the computation time of thishststic approxi-
mate algorithm is practically independent of the numbef the observation vec-
tors. The only factors affecting the computation time, iditidn to the confidence
parametery, are the dimensionality of the data and the precisienrequired in
the stopping criterion.

A rough estimate of the time complexity of the method can biiokd by
noting that ifn, hyperplane samples are needed to achieve a confidence region
with L, radius less tha, i.e. to reduce a gri@, to a single point, then ap-
proximately4n, samples are needed to reduce the radius further to ef@win
other words, between any two grid refinements the numbeoisie hyperplane
samples grows roughly by a factor of four.

The grid spacing decreases belevafter O(log, 1/¢) sampling stages. At
each stage > 0, the number of hyperplanes involved in the calculations is
O(4%ny,), whereny, is the number of hyperplanes required for the first refinement
The number of active gridpoints at which the test functioad®to be evaluated
equals5® at the beginning of each stage. Altogether this yields aimes¢ of
O(5*4'821/2;,) = O(5%(1/¢)?) for the total asymptotic complexity of the al-
gorithm. Figure 2 provides experimental support for thitneste. (The parameter
values used in the simulations were= 0.05,¢ = 0.1.)

3.3 Approximation supported on data points

An undesirable consequence of supporting the median gigoidn a rigid grid
structure, as above, is the induced exponential dependétize algorithm’s run-
ning time on the dimensionality of the problem. An altermaiidea is then to use
in place of the grid the observation vectors themselves &pproach replaces the
algorithm’s exponential dependence on dimensionality Bingle linear depen-
dence on the number of data points, and results in huge fiedadéh computation
time for high-dimensional data. However, the precisiorheffinal estimate is now
determined by the density of the given set of observatiotovec\We now describe
a computation method based on this idea (Algorithm A.5 inaghigendix).

The first phase of Algorithm A.5 proceeds exactly as in thd-pased Algo-
rithm A.3, except that instead of the grig},, the support seZ used to obtain
the approximation initially consists of the given obselmatvectorsxy, .. .,x,.
Also, rather than refining the support sétto a predetermined precision, Algo-
rithm A.5 aims to thin outZ by hyperplane sampling until a set of exadtiy- 1
vectors remain in the confidence region (3). Fhe&implex spanned by theget 1
highest-confidence observation vectors then providestanas for the location
of the median. (If desired, a point estimate can be obtaigduhbar interpolation
of the rank function estimate over the simplex.) As in thevariate case, the pre-
cision of the estimate is thus determined by the density efdéta cloud around
the median.

Thus, batches af; hyperplanes are sampled and the supporZsetduced as
in Algorithm A.3 until its size decreases below some thrégivalue|Z| < n,.
Then the algorithm switches to sampling a single hyperpd@adime and reducing
the remaining sef with that until a size ofZ| = k + 1 is reached.
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Average running times on Pentium [11/933 Mhz/1024 Mb RAM
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Fig. 3 Performance of the data-point based approximate algortiim

As can be seen from Figure 3.3, this algorithm is overwhejgifaster than
the grid-based method for high-dimensional data. For s &ven 10-variate data
sets with 10000 observation vectors were handled fastardhis of 5-variate data
using the grid-based method. A limitation induced by usimg dbservation vec-
tors as gridpoints, on the other hand, is that while Algonith.3 yields a reliable
estimate of the location of the median up to a given precjsiorsome patho-
logical cases the true median may actually be located arltifar away from
the k-simplex provided by Algorithm A.5. (Consider, for instandata distributed
uniformly on a spherical surface of dimensibn- 1.)

4 Final comments

We introduced different (exact and stochastic) algoritiarsthe calculation of
the value of the sample Oja medidh The problem then naturally is, what are
the losses (in bias and efficiency) and the gains (in comguiine) when using
stochastic estimates? In the paper we considered only thpwation times of the
algorithms. Note that stochastic estimalds an estimate of the true population
valueu also and in the comparisons the bias

E(T — p) = E[E(T - T|T)] - E(T — )
as well as the covariance matrix

Cov(T) = CoME(T|T)] + E[CoV(T|T)]
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should be considered. As 'an estimate of an estimate is anast, the two dif-
ferent stochastic versions should be compared in simplelation studies.

In practice, also an estimate of the accuracy (covarian¢exhaf the true Oja
median is called for. For this purpose, it is possible toneaté simultaneously the
value of the Oja median and the values of the bootstrap sametians. These
bootstrap sample medians may then be used in the usual wapnstract the co-
variance matrix estimate. See also Nadar et al. [3] for ttimation of the limiting
covariance matrix.

The computing time of the stochastic algorithm appears tednsitive to the
choice of the hyperplane sample batch size(see the strange computing times
in Figure 2). It is possible that sometimes the values gf, Co andf{o(z) are
saved just before the number of active gridpoints is reduceshe. Then with
high probability no active gridpoints are left after a nevida The problem may
be circumvented by a runtime adjustment of the batch sizé&Some additional
robustness would be achieved if, in the sampling processpléag probabilities
depending on the 'size’ of the hyperplane were utilized. Tdr&k function esti-
mate is then the regular Horwitz-Thompson estimate withesily calculable
covariance matrix estimate.

We have also experimented with a parallel version of the texigorithm.We
used simultaneous processes to compute several minionizsks A.2 at the
same time. One process is needed to coordinate progressthputing tasks to
other processes. This is an almostidle job when comparée todavy calculations
and can be executed without noticeable performance lossarobthe processors
that participates in the computation. Speedup is good éppimcessors but after
that additional processors do not bring much benefit. Thasdsnsequence of the
fact that at each step there are usually dnlybservation line through the current
crossing point and extra processors can only explore oides lhoping to find
some random shortcut.

The approximate algorithms can also gain benefit from thisteid computing,
but we have not yet implemented it. Algorithm A.4 is the coféhe both algo-
rithms. Because update formulas for rank and covarianima&sts are additive,
each of theP processes can sample its own seff/ P] hyperplanes. After col-
lecting together changes R, C andny,, grid nodes can be divided evenly among
the processes, each updating abalf P test valued/(z;).

A Appendix: Description of algorithms
A.1 Compute the exact Oja median.

Input: Data setX = {x,...,x,}in RF.
Input: Maximum number of observation lines to scan at each istay,, > &
Output: Exact Oja mediarT or give up with probability going to zero asin-
creases.
1: Precalculate observation hyperpla#éd), where

I=(1,2,...,k),...,(n—k+1,... ,n—1,n).
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: Choose random observatian nearz.
. Select random indicek, ... , Ir_1 each containing.
:SetL «+ H(Ii)N---NH(Ix1).
. if dim(L) > 1 then
Goto 3.
end if

. Apply algorithm A.2 to computd + arg min¢, D(t).
. Set the median candidai + T.

. Initialize the collection of investigated lines+ {L}.

: Letnr be the number of the observation lines contairﬁhg
: if np > max,, then

Give up. There are too many possibilities.

:end if

: Construct these observation linés« Ly,... ,L,,.
cSetl' + L'NL.

: while £' # § do

Find the line of deepest descent

L+ arg max{‘RT(T)uL‘} ,
LeL
whereuy, is the unit vector in the direction df.
Apply algorithm A.2 to havel' + arg min ., D(t).
Updatel « LU {L}and(l' + L' — {L}.
if D(T) < D(T) then

Goto 9.
end if
: end while
: ReturnT.

A.2 MinimizeD on the observation line.

Input: Precalculated observation hyperpla#gd).
Input: Observation lind..
Input: Enclosing boXE = [Xmin, Xmaz)-
Output: The minimumt = arg min,., D(t).
1: Choose any pointy € EN L.
2: Initialize Dy < 0, D + 0 andH « 0.

3: for all I do

4. ifH(I)NL C Ethen

5: AddH « HU{I}.

6: €lse

7: D + D + 5S1(to)d(1)

8: Dy <+ Dy + %S[(to)do(_[)
9:  endif

10: end for
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11: Sort hyperplane indices € #H according to intersection points, i.e.fif =
{Lo+pur, : 8 € R} andwe havé? (I)NL = {Lo+frur} andH(J)NL =
{Lo + Byur} for somesr andsy, thenl < J <= 1 < ;. Setnp « |H|
and denote the order by, I(2), ... , I(np)-

12: Set{y1} « Ln H(l).

13: Set{ynp} «~ LN H(np)-

14: Set the potential minimurt « Yi.

15: ComputeD < D + 5 > /e Sr(T)d(I) and

16: Do Do + 1 Y eq0 St(T)do(I).

17: EvaluateD(T), i.e. setD « DTT + D.

18: foralli =2,... ,np do

19: Set

1 1
D«+D- HSI(I'—n(yl) d(I(i—l)) + HSI(i—l)(ynP) d(I(i—l))
20: Set
1 1
Do <= Do — HSI@_U(Yl) do(I(i-1)) + 71576 (Yne) do(I(i-1))-

21:  Set{t} « Ln H(I(i)).

22:  if DTt 4+ Dy < D then

23: SetT « t andD « DTt + D,.
24:  endif

25: end for

26: ReturnT.

A.3 Compute an estimate of the Oja median.

Input: Data setX = {x1,...,X,}in RF.
Input: Number of the sampled hyperplanes between successive gdaltings
ng > 1.
Input: Confidenceleved < 1 —a < 1.
Input: Radius of the confidenck,,-balle > 0.
Output: EstimateT of the Oja mediaT(X), s.tP(|T—T(X)||c < &) = 1—cv.
1: Find the enclosing box of the data

Xmin = (MIN{Z11,... ,Zpa}, ... ,MiN{T14,... ,Znr})
and
Xmaz = (maX{.’L’ll, A ,.’L‘nl}, . ,maX{.’L‘ld, . ,.Z'nk}) .

2: Set the grid spacinl « max{(Zmaez; — Tmini})/4 i =1,... ,k}.
3: Set the center of the grigh < 1 (Xmin + Xmaz)-

! This assignment is numerically safer than the shorter, emastically equivalent for-
mulaD «+ D — %Sl(i—l) (y1) d(I(z—l))



Computation of the multivariate Oja median 13

4: Select the regular grid

k
Z H {in - 2haz0i - hazo»i,zoz' + h,Z(]z' + 2h} .

i=1

Initialize ny, + 0, C + 0 k x k matrixandvz € Z : R(z) « 0 k-vector.
Save values,g < np, Co < C andVz € Z : Ro(z) « R(z).
repeat

Update rank estimates with algorithm A.4.

SelectZ « {z € Z : U(z) < x2(k)}.
10: until |Z] < 1.
11: if |Z| = 0 then
12:  Restore values, « npo, C + Coandvz € Z : R(z) + Ro().
13: Goto 7.
14: elseif h > e then
15:  Refine the grich + £,z + z € Z and

k
ZI <« H {in - 2}7/) 204 — h'a 2045205 + h, 204 + 2h} .

i=1
16: Initialize rank estimates z’ € Z':

R(z) = R(z), ifz' € Z,
~ laveR(z) : z € Zand||z — 2'||.o = h}, otherwise.

17:  SetZ «+ Z' and goto 6.
18: end if
19: Returnz € Z.

A.4 Update rank estimates.

Input: Number of the hyperplanes to be sampled.
Input: Collection of pointsZ = {z,, ... ,z,}, where ranks should be estimated.
Input: Current rank estimateR.(z, ), ... , R(z,,), covarianc&’ and the number
of the already sampled hyperplangs

Input: Observations;, ... ,x, € R* (these are necessary for computih()).
Output: UpdatedR(z1),. .. , R(zm), C andny,.
Output: Test statistic value& (z1), ... ,U(zm).

1: for ng timesdo

2. Choose randomly = (i1, ... ,i), 45 < 441, 1 <i; <n.
3 Setnp + np + 1.
4. forallze Zdo
5: SetR(z) « "= R(z) + 1 S;(z)d(I).
6: endfor
7. SetC « =14 L q()d7(I).
nh nh



14 T. Ronkainen et al.

8: end for

9 forallze Zdo

10:  SetU(z) + ny R(z)TC~'R(z).
11: end for

A.5 Find minimal simplex approximating the Oja median.

Input: Observation;, ... ,x, € R¥,
Input: Confidenceleve) <1 —a < 1.
Input: Number of the sample hyperplanes during the first plhgse 1.
Input: How many gridpoints to pass to the second phase k + 1.
1: Initializeny + 0,C + 0 k x k matrixandvz € Z : R(z) + 0 k-vector.

. (First phase) Se¥ « {x1,... ,Xn}.
: while|Z| > ns do

Use algorithm A.4 to update rank estimates.

SelectZ « {z € Z : U(z) < x%(k)}.
end while
. If |Z| < k + 1, we have too smah, value. Increase it and try again.
. (Second phase) Set, « 1.
cif{z€ Z : U(z) < x4(k)}| > k + 1then
Sample one hyperplane with algorithm A.4.
Goto 9.
12: end if
13: Findz(y), ... , Zx4+1) With the lowest test statistic valuéqz).
14: Denote the simple$ < simplexz(y), .. . ,Z(x41))-
15: if int(S) N Z # 0 then
16: Sample one hyperplane with algorithm A.4.
17:  Goto 9.
18: end if
19: Returnz(l), <o B(k41)-

©O~NOUAWN

o
= o

Implementation of these algorithms are available at
http://ww. jyu.fi/~tojuro/

as an SPlus module written in C++.
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