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Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced
magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized
Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev
bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of
F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase
between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS
translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing
amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in
principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states
and nonlocal pairing in our setup.
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I. INTRODUCTION

Majorana bound states (MBS) are localized zero energy ex-
citations at the edges of topological superconductors that are in
the focus of recent condensed matter research [1,2]. This strong
interest is mainly due to their non-Abelian statistics, which
makes them ideal building blocks for topological quantum
computers [3,4]. Notably, MBS can be engineered by combin-
ing conventional s-wave superconductors with materials fea-
turing strong spin-orbit coupling. The underlying idea is quite
similar for most proposals: s-wave superconducting pairing
plus spin-orbit coupling leads to an effective p-wave pairing
that is usually more pronounced if some kind of magnetic
factor (e.g., a magnetic field or magnetic adatoms) is added to
the system. The most prominent example thereof is based on
semiconducting nanowires [5–8] in the presence of an external
magnetic field and proximity-induced superconductivity. This
concrete proposal has been tested in several ground-breaking
experiments, which provided evidence for the emergence of
MBS in the form of zero bias conductance peaks [9–16].

A somewhat more robust platform to find MBS has been
predicted on the basis of the helical edge states of quantum
spin Hall insulators (QSHI) [17–20]. Since these helical edge
states form Dirac fermions in one spatial dimension (1D), they
can be viewed as an electronic system mimicking infinitely
strong spin-orbit coupling. In the presence of barriers, based
on proximity-induced s-wave superconductivity and ferromag-
netism, MBS emerge at the helical edge [21,22], which are
stable against the influence of Coulomb interaction [23]. From
the experimental side, superconductivity has been proximity-
induced into QSHI [24,25]. The evidence for MBS in this
realization of a topological superconductor has culminated,
so far, in experiments on (missing) Shapiro steps in Josephson
junctions based on helical edge states [26]. Importantly, for the
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physics discussed in the following, the emergence of MBS at
the helical edge can be connected to particular transport signa-
tures, like crossed Andreev reflections [27], that are intimately
related to the presence of odd-frequency superconductivity
[28]—an exotic pairing that is odd in time [29,30].

In this paper, we study the physical properties of alternating
F-S and/or S-S cavities that introduce confinement into helical
liquids. The main objectives are (i) a better understanding of the
tunability of hybridization of MBS in neighboring cavities and
(ii) a classification of the nonlocal pairing amplitudes, which
are, surprisingly, related to the local density of states in these
hybrid structures. We show below that the two objectives are
strongly connected to each other. Therefore they help us to
develop a deep understanding of the underlying physics. Due
to the topological origin of the helical edge state, the number
of bound states formed within the F-S cavity is always odd.
Independently of the cavity’s dimensions, at least one MBS is
naturally emerging. Additional (trivial) Andreev bound states
(ABS) may appear but they come in pairs at finite energies.
While the MBS is robust (i.e., pinned to zero excitation energy)
against variations of system parameters, the ABS are not.
Two consecutive cavities in an F-S-F setup feature a rich
hybridization between the bound states of each individual
cavity (see Fig. 1). We find, for instance, a condition for
destructive interference of excitations forming the bound states
that totally removes the hybridization of cavity states. With
application potential in topological quantum computing, this
understanding allows to (de)couple neighboring MBS at will.
In this F-S-F setup, the hybridization can, for instance, be
tuned by the relative angle of magnetization of the two outer F
barriers. Likewise, an S-F-S setup can be used for the same
purpose where now the hybridization can be tuned by the
relative superconducting phase of the two outer S barriers.
The story gets a twist in all-S setups (the S-S-S combination)
where helical MBS can be formed under certain combinations
of relative superconducting phases of the three S barriers. In
that latter scenario, the tunability of the hybridization of helical
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FIG. 1. Confinement at the helical edge of a topological insulator.
(a) Basic scattering processes and formation of bound states at the S-F
cavity. (b) General sketch of a double cavity X-Y-X, where X and Y
can be either S or F regions. Right moving spin-up electrons (holes)
are indicated by solid (dashed) red arrows. Blue arrows indicate
equivalent left-moving spin-down particles. In the text, we label outer
normal regions (leads) L and R and the intermediate ones NL and NR.
The barriers are named XL, Y, and XR. To avoid ambiguity, physical
parameters of different regions are labeled accordingly. (c) Setup with
three superconductors. Here, helicity forbids transmission of holes
through the junction. Normal regions are labeled as in (b), whereas
the S barriers are referred to as SL, SM, and SR.

MBS formed in neighboring S-S cavities is unfortunately less
pronounced than in the cases where F barriers are included.
Nevertheless, this analysis is important to identify the ideal Ma-
jorana platform in which MBS can be (de)coupled on demand.

Interestingly, the emergence of MBS and ABS in these
hybrid structures is strongly connected to a particular non-
local superconducting pairing. The physics reason behind is
related to the helicity of the edge states. Helicity is highly
restrictive for the allowed superconducting pairing channels
because it implies a broken spin rotation invariance. In
the presence of such hybridized MBS, e.g., in the S-F-S
or the F-S-F setup mentioned above, the induced pairing from
the superconductor can be nonlocal, meaning that Cooper pairs
are formed from electronic states belonging to different cavities
or even different leads. Owing to the perfect spin-momentum
locking of the helical edge, such nonlocal Cooper pairs can
only be in a spin-polarized triplet state, with total suppression
of the nonlocal spin singlet state. The wave function of the
spin-polarized Cooper pairs is even under parity transforma-
tions. To fulfill Fermi-Dirac statistics, it must be odd under
the exchange of the time coordinates of the two constituent
electrons, i.e., odd in frequency [29–31]. We demonstrate
below that odd-frequency equal-spin triplet pairing emerges in
a particular way precisely at the energies where bound states
(MBS or ABS) are formed. Notably, it is dominant for the
zero-energy MBS which indicates a strong connection between
odd-frequency pairing and the emergence of MBS in these
nanostructures [32]. Likewise in the S-S-S setup, we identify
the appearance of unconventional pairing. In that case, it is of
the odd-frequency singlet and odd-frequency triplet (with zero

z component) type, as it was previously suggested for Joseph-
son junctions [33]. Odd-frequency pairings can be dominant
on resonance, but their magnitude is usually comparable to the
even-frequency ones. The helicity of the quantum spin Hall
edge thus results in an ubiquitous presence of odd-frequency
triplet pairing at superconducting junctions. Moreover, non-
local odd-frequency Cooper pairs are spin-polarized in the
presence of magnetic elements. The nonlocal pairing between
cavities strongly affects the local density of states due to the
hybridization of the bound states. The deep reason behind the
connection of local and nonlocal characteristics is quantum
interference of electron and hole trajectories in phase-coherent
systems.

The paper is organized as follows. We introduce the for-
malism and describe the formation of bound states and their
hybridization in Sec. II. We discuss the tunable hybridization
in Sec. III and the unconventional superconducting pairing in
Sec. IV. We conclude in Sec. V.

II. MODEL

A. Formation of bound states at the helical edge

A helical liquid is formed by a pair of edge states of
a QSHI with locked group velocity and spin orientation.
We consider the spin quantization axis to be along the z

direction and describe our system using the Nambu spinor
� = (ψR↑,ψL↓,ψ

†
L↓, − ψ

†
R↑)T , where the electron field oper-

ators ψ
†
R↑ and ψ

†
L↓ (ψR↑ and ψL↓) create (annihilate) right

movers with spin ↑ and left movers with opposite spin,
respectively. In the following, the helical liquid is assumed to
be in proximity to several superconducting and ferromagnetic
electrodes, inducing either singlet s-wave superconductivity
or Zeeman coupling in the edge states. The Bogoliubov-de
Gennes Hamiltonian describing the system takes the form (we
set h̄=1 and the Fermi velocity vF =1):

HBdG(x) = pxσ̂3τ̂3 + m(x) · σ + �(x) · τ , (1)

where px=−i∂x , and the Pauli matrices σ = (σ̂1,σ̂2,σ̂3)
[τ = (τ̂1,τ̂2,τ̂3)] act in spin (particle-hole) space. To
illustrate the general effect that the superconducting
and Zeeman couplings have on the helical states, we
define �(x)= [�0 cos χ,�0 sin χ, − μ]T and m(x)=
[m‖ cos φ,m‖ sin φ,mz]T . The notation in Eq. (1) allows
us to identify the effect that the components of � and m have
on the system. For example, the chemical potential μ and
the perpendicular component of the magnetization mz only
induce a renormalization of the momentum. In this paper,
we distinguish among normal state regions (N) with �0 =0
and m‖ =mz =0, S regions with �0 �=0 and m‖ =mz =0,
and F domains with �0 =0 and m‖,mz �= 0. We impose rigid
boundary conditions such that �(x) and m(x) remain constant
within each region.

Interestingly, the pairing potential �0e
iχ , with χ the su-

perconducting phase, and the in-plane magnetization m‖eiφ ,
with magnitude m‖ and orientation angle φ, open a gap in the
spectrum of the helical liquid. The former couples electrons
and holes in S regions, while the latter connects particles with
opposite spins in F regions. The opening of a gap results in
the otherwise forbidden back-scattering at the interface with
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an N domain, i.e., Andreev reflections take place at NS inter-
faces and spin-flip normal reflections occur at NF junctions
[see Fig. 1(a)]. A resonant state can thus be formed between
two regions of the same type [22,34–37]. For an F-F cavity,
where we omit the intermediate N region for brevity of
notation, the resonance condition for bound state energies ω

reads as

2πn = 2ωdN ± 2μNdN ± �φ − 2 arccos

(
ω ± μF

m‖

)
, (2)

with n an integer, dN the cavity’s width, μN the chemical
potential in the intermediate normal region, and �φ the relative
angle of the in-plane magnetizations in each region (with ±
for electrons and holes, respectively). For simplicity, we have
assumed that the magnitude of the in-plane magnetization
m‖ and the chemical potential μF are the same for both
ferromagnetic regions.

Similarly, the S-S cavity, or Josephson junction if the
superconductors are semi-infinite, features bound states at the
energies given by [21,33,38–41]

2πn = 2ωdN − 2 arccos(ω/�0) ± �χ, (3)

where we have assumed that the superconducting gap is the
same for both S regions and �χ is the phase difference. Note
that since the bound states are composed out of electrons and
holes, this expression is now independent of μN . Furthermore,
the z component of the magnetic field and the chemical
potential in the superconductors do not appear in Eq. (2)
and Eq. (3), respectively, since the particles do not enter the
semi-infinite barriers.

The bound states1 formed in hybrid S-F and F-S junc-
tions differ from the previous resonances in two important
aspects [22]. They involve all four types of particles in
our system, namely, right-moving spin-up and left-moving
spin-down electrons and holes. Moreover, since they require
two Andreev and two normal reflections, cf. Fig. 1(a), the
distance traveled by the standing wave is four times the width
of the intermediate normal region, twice the usual distance.
Assuming semi-infinite S and F regions, we find the bound state
condition

2πn = 4ωdN − 2 arccos

(
ω

�0

)

− arccos

(
ω − μF

m‖

)
− arccos

(
ω + μF

m‖

)
, (4)

with μF the chemical potential in the F region. Contrary to
the usual Fabry-Pérot cavity, Eq. (4) always has a solution
for ω=0 in addition to potential pairs of states at finite
energies. Therefore the total number of states is always odd.
The extra zero-energy state is a topologically protected Ma-
jorana bound state (MBS) [22]. We refer to the Fabry-Pérot

1Only in the particular case where the F or S regions extend to
infinity, one can speak of a bound state. In this work, we consider
finite S and F regions, but we still refer to the resonant states in the
F-S cavities as bound states since they are mostly confined and appear
for well-defined energies with a controllable width.

bound states at nonzero energies as Andreev bound states
(ABS).

B. Correlation functions

To analyze the induced pairing and bound states in our
system, we make use of the retarded Green function defined as

GR(x,t ; x ′,t ′) = −iθ (t − t ′) 〈{�(x,t),�†(x ′,t ′)}〉, (5)

where x,x ′ and t,t ′ denote position and time coordinates,
respectively. In the following, we work in the frequency
representation by using the Fourier transform GR(x,x ′,ω)=∫

dt GR(x,t ; x ′,t ′)ei(ω+i0+)(t−t ′). We construct the Green func-
tion from the asymptotic form of the scattering states of the
system, following the method described in Refs. [28,42–44].
Particle-hole symmetry of the Hamiltonian in Eq. (1), i.e.,
UCH∗

BdGU
†
C =−HBdG, with UC = σ̂2τ̂2, yields a connection

between different Nambu (particle-hole) sectors of the Green’s
function. Indeed, we find that

GR
ee(x,x ′, − ω) = − σ̂2G

R
hh(x,x ′,ω)∗σ̂2,

GR
eh(x,x ′, − ω) = σ̂2G

R
he(x,x ′,ω)∗σ̂2.

Therefore, to characterize our system, we only need to specify
the normal Green function, GR

ee(x,x ′,ω), and the anomalous
function GR

eh(x,x ′,ω). From the normal Green function, we
obtain the local density of states (LDOS) as

ρ(x,ω) = − 1

π
Im

[
Tr GR

ee(x,x,ω)
]
. (6)

In the basis of Nambu spinors that we are using, � =
(ψR↑,ψL↓,ψ

†
L↓, − ψ

†
R↑)T , the anomalous Green function can

be decomposed as follows:

GR
eh(x,x ′,ω) = f R

0 (x,x ′,ω)σ̂0 +
3∑

j=1

f R
j (x,x ′,ω)σ̂j , (7)

with f R
0 (x,x ′,ω) the singlet (S) and f R

j (x,x ′,ω) the triplet (T)
components of the pairing amplitude.

We can now characterize the pairing amplitude’s symmetry
with respect to position and spin. First, we notice that at
the helical edge of a QSHI, the strong spin-orbit locking
imposes some restrictions on the anomalous correlators, i.e.,
on the formation of some type of Cooper pairs. Indeed,
〈ψL↓(t)ψR↓(0)〉 and 〈ψR↑(0)ψL↑(t)〉, with t >0, must van-
ish since they describe Cooper pairs formed by spin-down
electrons moving rightwards and spin-up electrons moving
leftwards; both forbidden by helicity. In Appendix, we demon-
strate how these restrictions affect the general symmetries
of the anomalous Green functions. To define an anomalous
Green function that fulfills Fermi-Dirac statistics, i.e., that
is odd under the exchange of the two fermion operators, we
need a combination of retarded and advanced Green functions
as f R + f A, with f A the advanced anomalous Green func-
tion. From the general property GR(x,x ′,ω)=GA(x ′,x,ω)†,
and using particle-hole symmetry, we find that the advanced
anomalous Green function is written in terms of the retarded
one as [GA

eh]σσ ′(x,x ′,ω)=−[GR
eh]σ ′σ (x ′,x, − ω), with σ,σ ′ =

↑,↓ the spin indices. Notice that the change in spin indices will
only affect the singlet state, which is odd under that exchange.
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To fully identify the symmetry of the anomalous Green
functions of Eq. (7), we consider symmetric and antisym-
metric superpositions of spatial coordinates as f R

μ,±(ω)=
[f R

μ (x,x ′,ω)±f R
μ (x ′,x,ω)]/2, where μ=0 for the singlet and

μ=1,2,3 for the triplet components. We can thus define the
fully symmetrized anomalous functions

f R
μ,±(ω)+f A

μ,±(ω) =
{
f R

0,±(ω) ± f R
0,±(−ω) (singlet)

f R
j,±(ω) ∓ f R

j,±(−ω) (triplet)
. (8)

As a result, the singlet components must be even (E) or
odd (O) in both frequency and spatial coordinates at the
same time. We label these pairing amplitudes ESE (even-
frequency, singlet, even-parity) and OSO (odd-frequency, sin-
glet, odd-parity). For the triplet states, the pairing amplitudes
must have different symmetry with respect to energy and
position. We thus have ETO (even-frequency, triplet, odd-
parity) and OTE (odd-frequency, triplet, even-parity) pairings
[31,45].

In what follows, we consider scattering at junctions where
the leftmost and rightmost regions are in the normal state,
cf. Figs. 1(b) and 1(c). Between those regions, we analyze a
double F-S cavity in Sec. IV A (F-S-F and S-F-S) or the
all-electrical double S-S cavity in Sec. IV B. For all cases, we
can provide analytical expressions for the pairing amplitudes
evaluated at the outermost normal regions as a function of the
scattering amplitudes. Notice that the scattering amplitudes
change for each setup, but the structure of the pairing amplitude
is the same. The only nonzero pairing amplitudes with spatial
coordinates xL in the leftmost region and xR >xL in the
rightmost are given by the equal-spin components:

f +
ETO,OTE(ω,xR,xL)

= −i

2
eiμLxL+iμRxR [e−iω(xL−xR )thL,eR(ω)

±eiω(xL−xR )thL,eR(−ω)], (9a)

f −
ETO,OTE(ω,xL,xR)

= ±i

2
e−iμLxL−iμRxR [eiω(xL−xR )thR,eL(ω)

±e−iω(xL−xR )thR,eL(−ω)], (9b)

where the indices ± denote the spin-polarized triplet states ↑↑
and ↓↓, respectively.

The amplitude thL,eR (thR,eL) corresponds to the scatter-
ing process in which a hole impinging from the leftmost
(rightmost) normal region is transmitted as an electron to
the rightmost (leftmost) one—a crossed Andreev reflection
(CAR). As a result, nonlocal pairing is directly connected to
crossed Andreev processes and will vanish if this transport
channel is closed. Helicity of the edge state of the QSHI
yields that crossed Andreev processes involve particles with
the same spin [28,46]. From Eq. (9), we immediately see
that nonlocal Cooper pairs with electrons going to different
edges of the junction can only be in a spin-polarized triplet
state.

FIG. 2. Local and nonlocal bound states. (a) Schematic repre-
sentation of two possible paths for an electron to scatter across the S
region and end up as a hole. Both processes only differ by a phase (due
to equal number of tunnelings through barriers), and can destructively
interfere if the condition in Eq. (10) is met. Plot of the LDOS in
dependence of energy (b) for φR = 0 (dashed line), 0.6π (dotted
line) and π (solid line). [(c) and (d)] Density plot of the LDOS as
a function of the energy for full (c)/without (d) hybridization. We
take m‖ =1.5�0 as field strength and widths dNL =dNR =dS = 1.5ξ0,
dFL =dFR =1ξ0 for all plots.

III. TUNABLE HYBRIDIZATION OF BOUND STATES
BETWEEN CAVITIES

In all the double cavities considered here, there is a
possibility for the bound states from different cavities to
hybridize due to the finite width of the central barrier, be it
S or F. The hybridization of the quasibound states originates
from possible scattering events of quasiparticle excitations
between the intermediate normal domains, cf. Fig. 2(a). By
tuning several system parameters, one can effectively achieve
destructive interference and prohibit quasiparticle transport
between those N regions. For example, in a F-S-F junction
with semi-infinite F regions, without loss of generality, we can
set the chemical potential in the ferromagnets to zero (μFL =
μFR =0) and assume a symmetric setup with m‖,L =m‖,R and
dNL =dNR, with dNL,NR the width of each cavity. The condition
for destructive interference is then given by

�φ/2 + μNLdNL + μSdS + μNRdNR = (n + 1/2)π, (10)

with �φ=φR−φL the relative orientation of the magneti-
zations in each F region, and dNL,S,NR (μNL,S,NR) the width
(chemical potential) of the intermediate N and S regions.
Analogously, destructive interference occurs at the S-F-S
double cavity if

�χ − mzdF = (n + 1/2)π, (11)

with dF the width of the central F region, �χ =χR−χL the
superconducting phase difference, and where we have set
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FIG. 3. Local density of states and pairing amplitude for the F-S-F setup. [(a) and (b)] Maps of OTE+ (a) and ETO+ (b) pairing as a function
of the energy and position x, with fixed x ′ =−ξ0 in the left lead. (c) For fixed position x =6.5ξ0, plot of the pairings and LDOS as a function
of the energy. [(d) and (e)] Plot of the pairings as a function of the position for fixed energies ω=0.098�0 (d) and ω=0.803�0 (e).

�L =�R ≡�0. For cavities with different widths, Eqs. (10)
and (11) acquire an extra phase (dNL − dNR)ω. However, the
MBS with ω=0 still features the same destructive interference.
This is an important distinction between MBS and finite energy
ABS with consequences further explored below.

In both cases, hybridization between each cavity’s levels can
be tuned by adjusting the chemical potentials in the interme-
diate regions, which can be done by local gates. Additionally,
for the F-S-F setup, hybridization is controlled by the relative
orientation of the in-plane magnetization at each F region.
The phase difference between superconductors plays the same
role for the S-F-S junction. The splitting of cavity levels by
hybridization is always the same, independently of which
parameters are used. One can thus fix all parameters (local
chemical potentials and magnetic orientations or supercon-
ducting phases) and tune the hybridization at will using only
one parameter, which we call hybridization phase from now on.

The LDOS at the intermediate normal regions, as defined in
Eq. (6), directly explores the hybridization of the bound states.
In the absence of hybridization, bound states form at each
intermediate region. As a result, the LDOS always features
a peak at zero energy (MBS) and, if the conditions given by
Eqs. (2)–(4) are fulfilled, at finite energies (ABS). The solid
line of Fig. 2(b) shows these nonhybridized states. When the
hybridization phase is such that destructive interference occurs
between the intermediate left and right normal regions, the
bound states split. This case is illustrated by the dotted and
dashed lines of Fig. 2(b). The spatially resolved LDOS across
the junction, Figs. 2(c) and 2(d), shows how the states are
mainly localized in the cavities and connected through the finite
central region. Note that throughout this paper, we normalize
the LDOS to the constant LDOS within the leads, ρ0.

Hybridization happens to all states, including the MBS,
and has an important consequence on the transport properties

of the junction. For a symmetric double cavity (dNL =dNR),
when we consider injection of electrons from the leftmost
normal region, in the absence of hybridization, we only find
transmitted electrons on the rightmost region (electron co-
tunneling processes). Notice that this case is still different
from a helical NSN junction [47,48], since transmission is only
possible for the energies of the bound states (on resonance).
However, when the bound states at each cavity hybridize,
nonlocal (crossed) Andreev reflections are possible. The effect
of hybridization thus strongly affects the nonlocal conductance
of the junction. For the asymmetric double cavity (dNL �=dNR),
the number of ABSs on each cavity can be different. In that
case, the levels do not hybridize and crossed Andreev reflection
takes place on resonance [28].

IV. PROXIMITY-INDUCED PAIRING IN
A DOUBLE CAVITY

A. SFS and FSF setup

Interestingly, the properties of the localized quasibound
states described above are also reflected in the induced anoma-
lous nonlocal correlations in the system. To illustrate this claim,
we use Eq. (9) to study the even (ETO) and odd-frequency
(OTE) parts of the equal-spin triplet pairing. The reason why
equal-spin pairing is a natural way to capture the effect of
bound states on nonlocal anomalous correlations is twofold:
(i) due to helicity restrictions, nonlocal, anomalous correlations
across the whole scattering region can only involve equal spin
particles and holes and equal-spin pairing requires the mixing
of electrons and holes of both spin channels resulting from a
combination of S and F regions.

We start with the F-S-F structure introduced in Sec. III
and consider fully hybridized states at first. To study the
induced nonlocal pairing, we fix one spatial argument of
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the correlation function in the leftmost lead (x ′ =−ξ0, with
ξ0 =vF /�0 the superconducting coherence length) and sweep
the other across the junction. This represents processes that
take spin up particles or holes from the left lead to the right
lead; we thus focus on the ↑↑-component of the pairing. In the
upper panels of Fig. 3, we plot the position x and energy ω

dependence of |f +
OTE| (a) and |f +

ETO| (b), given in Eq. (9). Both
density plots show that pairing is enhanced on resonance, i.e.,
at energies roughly around the bound states localized inside the
double cavity (cf. Fig. 2). Equal-spin ↑↑ pairing is forbidden
within the left lead, while it connects electrons and holes from
different leads via CAR processes.

OTE and ETO components are complementary and add up
to a total spin ↑↑ contribution, which is closely tied to the
bound state energies. We show in Fig. 3(c) a cut of the density
plots along the interface between the rightmost F region and
normal electrode (x =6.5ξ0). The density of states is shown in
black dashed lines and clearly envelops the contributions from
the pairing. This explicitly reveals the connection between the
local density of states at each cavity and the nonlocal induced
pairing between cavities, owing to the bound states present in
the system.

MBS and ABS formed in the cavities between S and F
barriers behave in a very different manner. The nonlocal pairing
amplitudes plotted in Figs. 3(d) and 3(e) show a different
content of even and odd-frequency pairing for MBS compared
to ABS. First, for energies associated with hybridized MBS,
cf. Fig. 3(d), the pairing is almost constant within the cavities
and in the right lead. The pairing at higher energy due to
ABS resonances, contrarily, features stronger variations in
both energy and space, see Fig. 3(e). This effect is clearly
explained by Eq. (9), since for ω→0 the spatial dependence
becomes an irrelevant global phase factor. Additionally, the
ETO and OTE content of MBS and ABS is also strikingly
different. For MBS, odd-frequency pairing increases as we
take the spatial coordinate further away from the leftmost lead,
reaching a maximum for the nonlocal paring between cavities.
Interestingly, OTE is constant and clearly dominant over ETO
inside the rightmost region, making it the most important
contribution to CAR processes at low energies [28]. ABS, on
the other hand, feature an oscillatory spatial behavior where
ETO and OTE pairing amplitudes alternate. For the validity
of the previous results, it is crucial that the states between
cavities are hybridized. In the absence of hybridization, i.e.,
when the hybridization phase in Fig. 4 reaches a multiple of π

causing destructive interference, the nonlocal pairing vanishes,
cf. Fig. 4. It is important to notice that the nonlocal pairings
in Eq. (9) vanish because the scattering amplitudes thL,eR and
thR,eL are zero. Therefore CAR processes are also forbidden in
the absence of hybridization. Once more, the nonlocal pairing
is reflected in the local density of states, plotted in Fig. 4 as a
black dashed line. Indeed, hybridized MBS are accompanied
by dominant OTE pairing as long as the hybridization phase is
not too close to π . On the other hand, hybridized ABS feature
comparable OTE and ETO contributions for all hybridizations.

The previous results are valid for a wide range of parameters
beyond the choice in Figs. 3 and 4. One of our main results
is that the hybridized and nonhybridized cavities behave in a
very different manner. For any choice of parameters, one just
needs to determine if the corresponding hybridization phase

FIG. 4. Connection between induced nonlocal pairing and local
density of states. OTE+ (a) and ETO+ (b) pairing amplitudes for
x ′ =−ξ0 and x =8ξ0 as a function of the hybridization phase and
energy. The dashed, black lines represent the maxima of the LDOS
within the cavities, ρNL/NR(ω).

results in destructive interference or not. For clarity, we have
only chosen symmetric junctions with equal cavity widths.
An asymmetric setup would only affect the pairing at ABS
resonances. Since in this case the energies of ABS in the left
and right cavity do not match, one cannot have degenerate
states and perfect destructive interference. CAR amplitude
and nonlocal pairing will thus remain a finite superposition
of ETO and OTE contributions around ABS resonances. The
behavior of the pairing for the MBS resonances, however,
remains unimpaired. This is captured in Eq. (4), where the
effect of the asymmetry is reduced as ω→0.

Furthermore, the close connection between equal-spin pair-
ing and the bound states between S and F barriers implies that
our findings generalize to setups with a central F region flanked
by two superconductors. We have shown in Sec. III that the
hybridization parameter—which would now have a different
physical origin—has the exact same effect on the behavior
of the bound states. This ultimately translates in analogous
behavior of the nonlocal, equal-spin pairing amplitudes as
well. Local pairing amplitudes within the same lead, however,
would in fact be different, since they depend on local normal or
Andreev reflection. Nevertheless, these are necessarily singlet
or zero z-component triplet amplitudes.

B. SSS setup

We now consider the case of a double cavity formed by
superconductors only. This setup is intrinsically different from
the previous cases, but is easier to achieve experimentally since
it does not require ferromagnetic elements. In the S-S cavity,
electrons and holes with opposite spins form Andreev bound
states. The lack of F regions implies that the ABS formed
from right-moving spin up electrons do not couple to the ones
formed from left moving spin-down electrons. As a result, the
ABS in the cavity are spin-degenerate and have topologically
protected zero-energy crossings [21] when the phase difference
between superconductors is �χ =nπ , with n an integer [see
Fig. 5(a)]. The analysis of the pairing amplitude in the S-S
cavity reveals that the ABS are a superposition of singlet and
triplet states, where the triplet component is not spin polarized
although it features both ETO and OTE terms [33].
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FIG. 5. LDOS and pairing amplitude for setups with only su-
perconductors. (a) Energy levels of the S-S cavity as a function of
the phase difference between superconductors. (b)–(d) For the S-S-S
double cavity, nonlocal odd-frequency triplet and even-frequency
singlet pairing amplitudes between the left lead L and the intermediate
normal region NR (x ′ =−ξ0 and x =4.5ξ0). The dotted/dashed black
lines show the LDOS. The phase differences are (b) �χL =�χR =
0.5π , (c) �χL =π , �χR =0, and (d) �χL =�χR =π . For all plots,
we use the widths dNL =dNR =1.25ξ0, dSL =dSM =dSR =1.5ξ0, and
μ=�0 in every region.

The double S-S-S cavity strongly depends on the relative
phase differences between the middle (C) and outer supercon-
ductors (L and R), i.e., �χL =χM −χL and �χR =χR−χM .
By placing two cavities together, the dependence of the ABS
on the phases becomes more intricate. In Figs. 5(b)–5(d), we
plot the LDOS in both cavities as a function of the energy
for different values of �χL,R (black dotted and dashed lines).
Similarly to the single cavity ABS, and contrary to the previous
F-S-F cavities, the ABS are not confined to a specific set of
energies, but evolve inside the gap as a function of the relative
phase differences. The ABS patterns from each cavity are
completely decoupled in Fig. 5(b), featuring four resonances.
Two of the levels can combine at zero energy as shown in
Fig. 5(c). When the total phase difference across each cavity
is π , the two patterns coincide again, cf. Fig. 5(d).

We also include in Figs. 5(b)–5(d) the ESE and OTE
components of the pairing. We notice that even frequency
terms ESE and ETO have the same energy dependence and
only differ in magnitude; the same applies to OSO and OTE.
Thus we only show ESE and OTE terms for simplicity. All
panels illustrate the nonlocal pairing between the leftmost
region and the right cavity. Even and odd frequency terms
have similar magnitudes and are mingled along the energies
of the ABS. Even-frequency terms dominate for states at
zero energy, where the odd-frequency terms naturally vanish.
The opposite situation arises for finite but small energies, cf.
Figs. 5(c) and 5(d). As the energy of the ABS moves closer to
the gap edges, the magnitude of even and odd-frequency terms
becomes comparable.

Interestingly, the hybridization of the ABS in this setup
cannot be completely removed. We test this statement in a
simple S-S-S setup where the outer regions are semi-infinite
superconductors and both cavities have the same width d. We

FIG. 6. Local density of states for the setup with three supercon-
ductors (S-S-S) for �χL =π (top row) and �χL =0.5π (bottom row).
The LDOS is calculated in the left cavity (right cavity) in left (right)
column.

analyze the common denominator of the scattering amplitudes
for the injection of electrons from the leftmost region. This
quantity is proportional to the denominator of the Green
function, so its zeros provide the spectrum of the junction.
We find that the denominator contains two terms, namely,

D1 + e2κLD2 = D1 + D2 + (e2κL − 1)D2, (12)

with κ =
√

�2
0 − ω2 and

D1 = − sin (dω + �χL/2) sin (dω + �χR/2),

D2 = sin (dω − η + �χL/2) sin (dω − η + �χR/2),

where η=arccos(ω/�0). D2 is the product of two resonance
conditions for independent cavities, cf. Eq. (3). For L=0, the
denominator reduces to

D1 + D2 = sin(η) sin [2dω − η + (�χL + �χR)/2],

which is equivalent to the condition for the bound states of an S-
S cavity of width 2d and relative phase �χL+�χR =χR−χL.
The rightmost term in Eq. (12) interpolates between this case
and the situation with two independent cavities of width d,
obtained in the limit L→∞ [the divergence in Eq. (12) is
countered by the numerator]. We immediately see that there
is no zero-energy state for �χL =π and �χR =π , since D1+
D2 �=0 for finite L.

A zero energy solution (ω=0) can still be found localized
in one of the cavities for the conditions �χL =π , �χR =0 (left
cavity) or �χL =0, �χR =π (right cavity), see the two panels
of Fig. 6(a). Although both conditions fulfill that D1+D2 =0,
the numerator of the Green function suppresses the resonance
in one of the cavities, cf. right panel of Fig. 6(a). A similar
analysis can be done for the scattering process consisting of
injected spin-down electrons from the rightmost region and
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the results would be the same, up to an overall sign in the
phase differences. Therefore the ABS remain uncoupled and
the LDOS exhibits the superposition of two different patterns
as shown in Fig. 6(b).

V. CONCLUSION

We have analyzed the hybridization of Majorana bound
states at the helical edge of quantum spin Hall insulators. In
our theoretical model, confinement is achieved by two different
means: (i) proximity to ferromagnetic insulators (F) and (ii)
proximity to s-wave superconductors (S). We have looked at
certain combinations of those barriers, i.e., F-S-F, S-F-S, and
S-S-S setups. Each of these combinations can be viewed as a
“double-dot” structure for Majorana and Andreev bound states
at the quantum spin Hall edge. Interestingly, we have identified
different ways to tune the hybridization between the bound
states in each of the “dots” by playing with system parameters,
e.g., the relative angle between the magnetization directions
of two F regions or the superconducting phase difference
between two S regions. This understanding could be useful
for applications in topological quantum computing.

Furthermore, we have shown how the bound states are
connected to unconventional superconducting pairing. This
pairing could be of triplet type and becomes spin polarized for
junctions including ferromagnets. It also shows odd-frequency
behavior under generic conditions. We have put emphasis
on the nonlocal (in real space) pairing because of its rich
information content in our system due to the helicity of
particle and hole excitations. Remarkably, we have been able
to identify a strong connection between the nonlocal pairing
amplitude and the local density of states. We have come full
circle because the bound states in the “double-dot” structure
are indeed responsible for this unusual connection between
nonlocal characteristics of a system (the pairing amplitude)
and a local observable (the density of states).

In the future, we would like to extend this analysis to
interacting systems in which Majorana fermions can become
parafermions. To the best of our knowledge, the relation of
parafermions to unconventional superconducting pairing is not
understood at all.
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APPENDIX: SYMMETRY ANALYSIS

Superconducting correlations in the system are described
by the causal anomalous Green function

F++
αβ,σσ ′(τ ) = − iθ (τ )〈cασ (τ )cβσ ′(0)〉

+ iθ (−τ )〈cβσ ′ (−τ )cασ (0)〉, (A1)

with τ = t−t ′ the difference between the time coordinates of
the fermions forming the Cooper pair, which are described by

the annihilation operators cασ (τ ). In the following, the indices
σ,σ ′ correspond to the spin degree of freedom, and α,β label
the position coordinates. We assume that the rest of quantum
numbers do not play any role. Analogously, the anticausal
anomalous Green function, defined on the negative branch of
the Keldysh contour, is given by

F−−
αβ,σσ ′(τ ) = iθ (τ )〈cβσ ′(0)cασ (τ )〉

− iθ (−τ )〈cασ (0)cβσ ′(−τ )〉. (A2)

To illustrate the possible creation of Cooper pairs in our
system, we set two positions L and R > L and we consider
a symmetric superposition of the causal Green functions with
both spatial coordinates. Taking the limit τ →0+, we find

F++
(LR+RL),σσ ′(0+) = −i〈cRσ (0+)cLσ ′(0)〉

−i〈cLσ (0+)cRσ ′(0)〉︸ ︷︷ ︸
forbidden by helicity if σ = σ ′ = ↑

, (A3)

F−−
(LR+RL),σσ ′(0+) = i〈cLσ ′(0)cRσ (0+)〉

+i〈cRσ ′ (0)cLσ (0+)〉︸ ︷︷ ︸
forbidden by helicity if σ = σ ′ = ↑

. (A4)

Equation (A3) indicates two possible ways to create a Cooper
pair: an electron is annihilated at position L or R after another
electron was destroyed at a previous time in position R or
L, respectively. Notice that the anticausal anomalous Green
function describes the same processes for negative relative
times.

The general result of Eq. (A3) changes drastically when we
consider that our system is the helical edge of a QSHI. For the
spin quantization axis chosen in the main text, if σ =σ ′ = ↑,
the latter terms of Eqs. (A3) and (A4) are forbidden by helicity.
By restricting the propagation of equal spin particles to only
one direction, we have effectively excluded one of the possible
ways for creating Cooper pairs.

We can recover this “lost symmetry” by realizing that the
surviving term of the anticausal anomalous Green function
corresponds to the forbidden term of the causal function
for negative relative times [cf. second term on right-hand
side of Eq. (A1)]. Consequently, a combination of causal
and anticausal anomalous Green functions should recover the
missing symmetry of the system, that is,

F++
(LR+RL),σσ (0+) − F−−

(LR+RL),σσ (0+)

= −i〈cRσ (0+)cLσ (0)〉 − i〈cLσ (−0+)cRσ (0)〉. (A5)

We immediately see that this result is equivalent to superposing
the parts with τ > 0 and τ < 0 in the definition of the
spatially symmetric causal Green function, excluding the terms
forbidden by helicity [cf. Eq. (A1)]. Moreover, the full causal
and anticausal Green functions in Nambu space are connected
to the retarded and advanced ones as G++−G−− =GR+GA.
The anomalous part of this Green function is odd under the
exchange of the two fermion operators,

FR
αβ(τ ) + FA

αβ(τ ) = −[
FR

βα(−τ ) + FA
βα(−τ )

]
, (A6)

thus fulfilling the general requirement of Fermi-Dirac statis-
tics. In brief, due to the restrictions imposed by helical systems,
neither the causal nor the anticausal Green functions fulfill the
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typical symmetries that stem from Fermi-Dirac statistics them-
selves (the same applies to retarded and advanced functions).
The combination of both does it, however. It is thus the object of
interest for the symmetry classification of pairing amplitudes
of helical systems.

We now focus on the symmetry classification of the anoma-
lous Green function FR + FA. We make use of the connection
between the full retarded and advanced Green functions in
Nambu space and their transformation under particle-hole
symmetry (PHS), namely,

GA
αβ(ω) = [

GR
βα(ω)

]†
, (A7)

P GR,A
αβ (ω)P−1 = − GR,A

αβ (−ω), (A8)

where P= σ̂2τ̂2K, with K the complex conjugation operator,
is the PHS operator. In the basis � = (c↑,c↓,c†↑,c†↓)T , the
PHS operator is given by P = σ̂0τ̂1K. Combining these two
properties, we find

FA
αβ,σσ ′ (ω) = −FR

βα,σ ′σ (−ω),

where F is the anomalous Green function corresponding to the
electron-hole Nambu component of G.

Imposing the symmetric and antisymmetric superposition
of the spin indices, we find the spin-singlet scalar and the spin-
triplet pseudovector anomalous Green functions

FR
αβ,μ(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

FR
αβ,0(ω) ≡ FR

αβ,(↑↓−↓↑)(ω) = FR
αβ,↑↓ − FR

αβ,↓↑
FR

αβ,3(ω) ≡ FR
αβ,(↑↓+↓↑)(ω) = FR

αβ,↑↓ + FR
αβ,↓↑

FR
αβ,+(ω) ≡ FR

αβ,↑↑(ω)

FR
αβ,−(ω) ≡ FR

αβ,↓↓(ω)

,

with μ = 0,+,−,3. We define the exchange of spin index μ̄

so that FR
αβ,μ̄ = (−FR

αβ,0,F
R
αβ,j ), with j = +,−,3.

Analogously, we can construct the anomalous Green func-
tion that is symmetric or antisymmetric with respect to the
spatial coordinates, defining

FR,A
±,μ(ω) ≡ FR,A

(αβ±βα),μ(ω) = FR,A
αβ,μ(ω) ± FR,A

βα,μ(ω).

From the advanced anomalous Green function, symmetric both
in spin and real space indices, we find

FA
±,μ(ω) = FA

αβ,μ(ω) ± FA
βα,μ(ω)

= − FR
βα,μ̄(−ω) ∓ FR

αβ,μ̄(−ω) = ∓FR
±,μ̄(−ω).

Going back to the time-symmetric anomalous Green func-
tion FR + FA, we can write

FR
±,μ(ω) + FA

±,μ(ω) = FR
±,μ(ω) ∓ FR

±,μ̄(−ω)

=
⎧⎨
⎩

FR
±,0(ω) ± FR

±,0(−ω)

FR
±,i(ω) ∓ FR

±,i(−ω)
.

We immediately see that the singlet component that is
(anti)symmetric in spatial coordinates is (odd) even in
frequency. They correspond to ESE and OSO symmetry
classes. For the triplet components, the spatial symmetric
and antisymmetric combinations are odd and even in fre-
quency, respectively. They belong to the OTE and ETO
classes.
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