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Abstract

Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray
flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been
detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked
BLLac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar
BLLacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise
time of ∼2.3hr and a decay time of ∼36min. The peak flux above 200 GeV is (4.2± 0.6)×10−6 photon m−2 s−1
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measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab
Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was
observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a
possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array
observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We
discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the
interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

Key words: BL Lacertae objects: individual (BL Lacertae = VER J2202+422) – galaxies: active

1. Introduction

BLLac objects belong to a subclass of radio-loud active
galactic nuclei (AGNs) known as blazars. They are character-
ized by featureless optical spectra, non-thermal broadband
spectra, and rapid variability, which jointly suggest that their
emission originates in relativistic jets closely aligned to our line
of sight (e.g., Blandford & Rees 1978, and references therein).

Fast variability at very high energies (100 GeVEγ
100 TeV; VHE), with timescales as short as a few minutes, has
been observed in several blazars (e.g., Gaidos et al. 1996;
Aharonian et al. 2007; Albert et al. 2007b; Aleksić et al. 2011),
including the prototypical BLLacertae (VER J2202+422;
Arlen et al. 2013) located at redshift z=0.069 (Miller &
Hawley 1977). Long-term monitoring of BLLacertae has led
to no detection of the source in the TeV gamma-ray band by the
current generation of instruments except during flaring
episodes, when its flux has been observed to reach >100%
of the Crab Nebula flux (C.U.) above 1 TeV in 1998 (Neshpor
et al. 2001), ∼0.03C.U. above 200GeV in 2005 (Albert
et al. 2007a), and most recently ∼1.25C.U. above 200GeV
with a short variability timescale of 13±4 minutes in 2011
(Arlen et al. 2013).

The rapid gamma-ray variability observed in TeV blazars
implies very compact emitting regions, as well as low gamma-
ray attenuation by pair production on infrared/optical photons
near the emission zone. While a one-zone synchrotron self-
Compton (SSC) model, one of the simplest blazar models (e.g.,
Ghisellini et al. 1998; Böttcher & Chiang 2002), has been
effective at explaining emission from high-frequency-peaked
BL Lac (HBL) objects, the intrinsic pair-production opacity of
a relativistic emission zone in such a model depends on its size
and Doppler factor, and on the density of lower-energy
photons. Therefore, if the synchrotron photons are the main
source of the lower-energy radiation, the emitting region must
have a small size and/or a large Doppler factor so that the
gamma-rays can escape pair production. Alternatively, if an
external photon field (e.g., the broad-line region; BLR)
dominates the lower-energy radiation, it can cause substantial
gamma-ray absorption. As a result, the emitting region is
generally expected to be far away from the central region of the
AGN, especially for flat-spectrum radio quasars (FSRQs)
whose broad-line emission is relatively strong.

BLLacertae was first classified as a low-frequency-peaked
BL Lac (LBL) object because the synchrotron peak frequency
of its spectral energy distribution (SED) was measured to be
2.2×1014 Hz (Sambruna et al. 1999), but it was later
reclassified as an intermediate-frequency-peaked BL Lac
(IBL) object (Ackermann et al. 2011). It has been reported
that the SEDs of several IBLs/LBLs cannot be well described
by a one-zone SSC model (see Hervet et al. 2015, and
references therein), and more complex models such as

multi-zone SSC models or external-radiation Compton (ERC)
models are needed.
The large Doppler factor and/or distant downstream

emitting region required by the observed fast TeV variability
of blazars, together with the knotty jet structures (both moving
and stationary) identified with high-resolution radio observa-
tions (e.g., Cohen et al. 2014), can be explained consistently by
theoretical models with multiple emitting zones that are
either spatially or temporally separated, e.g., structured jets
(Ghisellini et al. 2005), jet deceleration (Stern & Poutanen
2008), jets in a jet (Giannios et al. 2009), and plasma passing a
standing shock (e.g., Marscher 2014; Zhang et al. 2014; Hervet
et al. 2016; Pollack et al. 2016).
However, the details regarding the location and the

mechanism of blazar emission are still not well understood
(e.g., Madejski & Sikora 2016). Simultaneous multiwavelength
(MWL) observations can provide insights into the flaring
mechanisms (e.g., leptonic or hadronic processes) of these
objects, particularly at the wavelengths where SEDs often peak.
In practice, such observations are limited in the case of fast
flares at sub-hour timescales, even with dedicated strategies
(e.g., Abeysekara et al. 2017). Nevertheless, contemporaneous
radio data are often relevant because the radio variability
timescale is usually much longer (e.g., Rani et al. 2013). In
particular, the evolution of polarization (both radio and optical)
before and after a gamma-ray flare provides information about
magnetic field structures of the jet, and therefore the activity of
possible gamma-ray-emitting regions (e.g., Zhang et al. 2014).
BLLacertae exhibits both stationary radio cores/knots
and superluminal radio knots (Lister et al. 2013; Gómez
et al. 2016). Possible associations between the variability of
superluminal radio knots and gamma-ray flares have been
investigated for BLLacertae (e.g., Marscher et al. 2008; Arlen
et al. 2013) and other blazars (e.g., Max-Moerbeck et al. 2014;
Rani et al. 2014).
On 2016 October 5, we observed BLLacertae at an elevated

flux level with sub-hour variability with the Very Energetic
Radiation Imaging Telescope Array System (VERITAS; see
Section 2.1). A series of observations with the Very Long
Baseline Array (VLBA) at 43GHz and 15.4GHz was
performed over a few months before and after the gamma-ray
flare, revealing a possible knot structure emerging around the
time of the TeV flare (see Section 2.5). In this work, we report
on the results of the VERITAS, VLBA, and other MWL
observations and discuss their implications. The cosmological
parameters assumed throughout this paper are Ωm=0.27,
ΩΛ=0.73, and H0=70 km s−1 Mpc−1 (Larson et al. 2011).
At the redshift of BLLacertae, the luminosity distance and the
angular size distance are 311Mpc and 273Mpc, respectively,
and the angular scale is 1.3 pc mas−1.
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2. Observations, Data Analysis, and Results

2.1. VERITAS

VERITAS is an array of four imaging atmospheric-
Cherenkov telescopes located in southern Arizona (30°40′ N,
110°57′ W, 1.3 km above sea level; Holder 2011). It is
sensitive to gamma-rays in the energy range from 85 GeV to
>30 TeV with an energy resolution of ∼15% (at 1 TeV) and is
capable of making a detection with a statistical significance of
five standard deviations (5σ) of a point source of 0.01C.U.
in ∼25hr.

BLLacertae was observed at an elevated TeV gamma-ray
flux by VERITAS on 2016 October 5 as part of an ongoing
monitoring program, and follow-up observations were imme-
diately instigated based on a real-time analysis. The total
exposure of these observations amounts to 153.5 minutes after
data-quality selection, with zenith angles ranging between 11°
and 30°. The data were analyzed using two independent
analysis packages (Cogan 2008; Daniel 2008) and a pre-
determined set of cuts optimized for lower-energy showers (see
e.g., Archambault et al. 2014). A detection with a statistical
significance of 71σ was made from the data on the night of the
flare, with a time-averaged integral flux above 200GeV of
(2.24± 0.06)×10−6 photon m−2 s−1 (or ∼0.95 C.U.).

2.1.1. VHE Gamma-Ray Flux Variability and the Modeling
of the Flare Profile

Figure 1 shows the VERITAS TeV gamma-ray light curve
of BLLacertae above 200 GeV on 2016 October 5 with bins
of 4 minutes and 30 minutes. A gradual rise of the TeV flux
by a factor of ∼2 was observed, followed by a faster decay.
The measured peak flux for the 30-minute-binned light
curve is (3.0± 0.2)×10−6 photon m−2 s−1, corresponding
to ∼1.25C.U., and that for the 4-minute-binned light curve is
(4.2± 0.6)×10−6 photon m−2 s−1, or ∼1.8C.U.

We first fitted the 4-minute-binned VERITAS light curve
with a constant-flux model, obtaining a χ2 value of 170.8 for

45 degrees of freedom (DOFs), corresponding to a p-value of
1.1×10−16 and rejecting the constant-flux hypothesis.
To quantify the rise and decay times of the TeV flare, we

then fitted the VHE gamma-ray light curve with a piecewise
exponential function as follows:
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- -
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⎧
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⎩( ) ( )

( )

( )F t
F e t t

F e t t
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where F0 is the peak flux, tpeak is the time of the peak flux, and
trise and tdecay are the rise and decay times, respectively, on
which the flux varies by a factor of e.
The optimal values of the parameters and their uncertainties

were determined from the posterior distributions obtained from
Markov chain Monte Carlo (MCMC) simulations, for which
the Python package emcee(Foreman-Mackey et al. 2013) was
used. The MCMC chain contains 100 random walkers in the
parameter space initialized with a uniform random prior. Each
random walker walks 4000 steps, the first 2000 steps of which
are discarded as the “burn-in” samples. This amounts to
2×105 effective MCMC simulations. A proposal scale
parameter was chosen so that the mean proposal acceptance
fraction is 37%, ensuring an adequate yet efficient sampling of
the posterior distributions. Note that the parameters are
bounded to be positive, so that they are physically meaningful,
and sufficiently large upper bounds were also provided for
computational efficiency. After the posterior distributions were
obtained, kernel density estimation with Gaussian kernels of
bandwidths equal to 1% of the range of the corresponding
parameter was used to estimate the most likely value
(maximum a posteriori) and the 68% confidence interval of
each parameter.
The joint posterior distributions of the parameters from the

MCMC sampling are shown in Figure 2. The diagonal plots

Figure 1. The VERITAS TeV gamma-ray light curves of BLLacertae above
200 GeV on 2016 October 5 (minute zero corresponds to 03:57:36 UTC). The
light blue filled circles and the dark blue squares show the light curve in bins of
4 minutes and 30 minutes, respectively. The gray dashed line shows the model
(see Equation (1)) with the best-fit parameters, and the shaded region illustrates
the 99% confidence interval, both of which are derived from simulations using
Markov chain Monte Carlo sampling.

Figure 2. The joint posterior distributions of the parameters in Equation (1)
obtained via MCMC simulations. The diagonal plots show the probability
distribution histograms of individual parameters; the upper and lower diagonal
plots show the two-dimensional histograms with hexagon binning and the
kernel density estimations of the joint posterior distributions, respectively.
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show the posterior probability distributions of each parameter,
some of which (e.g., tpeak) appear non-Gaussian. Correlations
between tpeak and trise, as well as between tpeak and tdecay, are
also apparent in the off-diagonal joint distributions. The best-fit
model and the 99% confidence intervals from the MCMC
sampling are shown in Figure 1. The rise and decay times of
the flare are determined to be -

+140 minutes11
25 and -

+36 minutes7
8 ,

respectively. The best-fit peak time and flux are -
+130 minutes3

5

(after MJD 57666.165) and ´-
+ - - -3.4 10 photon m s0.2

0.2 6 2 1,
respectively.

Further VERITAS observations of BLLacertae were made
on 2016 October 6 with 37.6 minutes live exposure, and from
October 22 to November 19 with 294.6 minutes live exposure,
after data-quality selection; neither of these sets of observations
led to a detection of the source (signal significances of only
2.6σ and 0.9σ, respectively). The upper limits on integral flux
(shown in the first panel of Figure 5) between 0.2 and 30 TeV
at 99% confidence level from the observations on October 6
and between October 22 and November 19 were obtained as
2.0×10−7 photon m−2 s−1 and 2.8×10−8 photon m−2 s−1,
respectively, assuming a power-law spectrum with a photon
index of 3.3 (see Section 2.1.2).

Motivated by the existence of multiple radio emission zones
identified in VLBA data (see Section 2.5) and several multi-
zone models for BLLacertae that are consistent with past
observations (e.g., Raiteri et al. 2013; Hervet et al. 2016), we
also fitted the light curve with a model including an additional
constant-flux baseline. In a multi-zone model, different zones
can be of different sizes and vary independently on different
timescales. Therefore, it is possible to have a larger emitting
zone that varies slowly, which can be adequately described by a
constant-baseline component on the timescale considered, and
a smaller, more energetic zone that is responsible for the rapid
flare described by the exponential components. With the more
complex model, the best-fit decay time is only -

+2.6 minutes0.8
6.7 ,

with a baseline flux of ´-
+ - - -1.2 10 photon m s0.2

0.1 6 2 1. This
best-fit baseline flux is higher than the upper limit obtained
from the observations on the next day, indicating that the
slower component would be required to vary on timescales of
∼1 day, consistent with the GeV gamma-ray observations
(Section 2.2). However, we would like to highlight that it is not
possible to unambiguously reject either model based on the
statistics.

2.1.2. The VHE Spectrum

A power-law fit to the VERITAS spectrum of BLLacertae
yields a best-fit photon index of 3.28 and a reduced χ2 value
χ2/DOF=30.6, indicating that a simple power law does not
adequately describe the spectrum.

A log-parabola model fits the VERITAS spectrum better:
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with χ2/DOF=1.6.
After de-absorbing the VHE spectrum using the optical

depths for a source at a redshift of 0.069 according to the model
of extragalactic background light in Domínguez et al. (2011),

the best-fit log-parabola model becomes
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with χ2/DOF=1.7. The observed and de-absorbed TeV
gamma-ray spectra are shown together with the GeV gamma-
ray spectra (Section 2.2) in Figure 3 in the νFν representation.

2.2. Fermi-LAT

The Large Area Telescope (LAT) on board the Fermi
satellite is a pair-conversion gamma-ray telescope sensitive to
energies from ∼20MeV to >300GeV (Atwood et al. 2009).
An unbinned likelihood analysis was performed with the LAT

ScienceTools v10r0p5 and Pass-8 P8R2_SOURCE_V6_v06
instrument response functions (Atwood et al. 2013). SOURCE
class events with energy between 100MeV and 300 GeV within
10° of the position of BLLacertae were selected. For the short
durations of interest to the TeV flare, a simple model containing
BLLacertae, another point source 3FGLJ2151.6+4154 ∼2°
away from BLLacertae, and the contributions from the Galactic
(gll_iem_v06) and isotropic (iso_P8R2_SOURCE_V6_v06)
diffuse emission were included. A maximum zenith angle cut of
90° was applied. We checked in the residual test-statistics map
that no significant excess was left unaccounted for within the
model. For the short durations, a power law was used to model
BLLacertae instead of the log-parabola model used in the 3FGL

Figure 3. The gamma-ray SEDs of BLLacertae measured by Fermi-LAT and
VERITAS. The Fermi-LAT SEDs that are strictly simultaneous with
VERITAS observations on the night of the flare (2016 October 5) and from
the three days around it are shown in blue and gray, respectively. The observed
and de-absorbed VERITAS SEDs averaged over all observations on the night
of the flare are shown in red and green, respectively. Each shaded region is
derived from the 1σ confidence intervals of the best-fit parameters for the
corresponding spectrum.
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catalog. We verified with an analysis using a log-parabola
spectral model and obtained consistent flux values.

For the light curve shown in the second panel of Figure 5, an
unbinned likelihood analysis was performed on each one-day
interval, leaving the normalizations and power-law indices of
BLLacertae and 3FGLJ2151.6+4154 free, as well as the
normalization of the diffuse components. The source was in an
elevated GeV gamma-ray state when the TeV flare was
observed, although the GeV flux varied on a much longer
timescale. An exponential fit to a 15 day interval around the
TeV gamma-ray flare yields a rise time of 2.1±0.2 days and a
decay time of 7±2 days.

The gamma-ray SEDs measured by the Fermi-LAT and
VERITAS on the night of the TeV flare are shown in Figure 3.
In order to obtain the GeV gamma-ray SEDs, we used the user-
contributed tool likeSED.py40 to perform the unbinned
likelihood analysis in several energy bands. The power-law
index that gives the best fit to the LAT data completely
simultaneous with VERITAS is 1.83±0.21, which is similar
to that of the three-day binned LAT data, 1.85±0.07. These
values indicate a harder GeV gamma-ray spectrum during the
flare than that reported in the 3FGL catalog (with an index of
2.25; Acero et al. 2015).

Both the GeV and TeV gamma-ray spectral indices of this
flare in 2016 are comparable to those of the flare in 2011 (Arlen
et al. 2013), and they suggest that the peak energy of the
gamma-ray SED during the flare is between 5GeV and
100GeV.

2.3. Swift-XRT

The X-Ray Telescope (XRT) on board the Swift satellite is a
grazing-incidence focusing X-ray telescope, and is sensitive to
photons in the energy range 0.2–10keV (Gehrels et al. 2004;
Burrows et al. 2005).

Follow-up observations of BLLacertae were carried out
with the Swift-XRT on 2016 October 6, 7, and 8; the only other
XRT observations within a 45 day window around the time of
the VHE flare were made on 2016 October 27 and November 2.
The XRT data, taken in the photon-counting (PC) mode, were
analyzed using the HEAsoft package (v6.19). The data were
first processed using xrtpipeline (v0.13.2) with calibration
database (CALDB v20160706). The count rates in the PC
mode were >0.5 counts−1, and the effect of potential pile-up
was checked for all observations by fitting a King function to
the point-spread functions at >15 arcsec (Moretti et al. 2005).
Those central pixels where the data fall below the model curve,
indicating pile-up, were excluded.

For the observations on 2016 October 6, the King function
agrees with the data even on the brightest pixels. Therefore, a
circular source region of a radius of 20 pixels centered on
BLLacertae was used. Annular source regions were used for
the data taken on 2016 October 7 and 8, with inner radii of four
and two pixels, and an outer radius of 20 pixels. For all three
observations, an annular background region with inner and
outer radii of 70 and 120 pixels, respectively, was used. Note
that source regions excluding the central two and four pixels
were also tested for the observations on 2016 October 6, and
consistent results were obtained. Therefore, we are confident
that no bias was introduced by the different exclusion regions
used for pile-up correction.

The observations on October 7 consisted of two intervals of
duration 486 s and 1422 s, separated by roughly one satellite
orbital period (∼90 minutes). A sustained dark stripe (likely
due to bad CCD columns) appears in the XRT image near the
position of BLLacertae, contaminating the second interval.
Therefore, we conservatively chose to use only the data
recorded during the first interval. The image and spectrum of
each ∼3 minutes of this relatively short exposure were checked
for data quality, and no anomaly was found.
Ancillary response files were generated using the xrtmkarf

task with the response matrix file swxpc0to12s6_
20130101v014.rmf. The spectrum was fitted with an
absorbed-power-law model (po∗wabs):

= s
a

-
-

⎜ ⎟⎛
⎝

⎞
⎠ ( )( )dN

dE
e K

E

1 keV
, 4N EH

where NH is the column density of neutral hydrogen, σ(E) is the
photoelectric cross section, and K and α are the normalization
and index of the power-law component, respectively. The best-
fit values of the parameters are shown in Table 1. Note that the
best-fit values of NH are in agreement with the archival results
from X-ray spectral fit (Madejski et al. 1999; Ravasio
et al. 2003; Arlen et al. 2013), but are larger than the value
NH=1.8×1021 cm−2 from the Leiden/Argentine/Bonn
(LAB) survey of Galactic H I (Kalberla et al. 2005). This
difference is likely due to the additional contribution of the
Galactic molecular gas (e.g., CO emission), because BL
Lacertae is relatively close to the Galactic plane (with a
Galactic latitude b=−10°.44) (Madejski et al. 1999). As the
NH value is expected to stay constant over the period of
interest, we also fit the same model with NH fixed at the average
best-fit value NH=2.9×1021 cm−2 over the three nights of
XRT observations, to better constrain the spectral index and
normalization. We also investigated an absorbed-log-parabola
model with NH fixed at 2.9×1021 cm−2 to fit the X-ray
spectra. We see no evidence for spectral curvature, as the best-
fit log-parabola model reduces to a power law. The X-ray SEDs
of BLLacertae measured on 2016 October 6, 7, and 8 are
shown in Figure 4. The X-ray emission from the source was
stronger and harder on 2016 October 7 (two days after the TeV
gamma-ray flare) compared to the day before and the day after

Table 1
Swift-XRT Spectral-fit Results Using the Absorbed-power-law Model

Described in Equation (4), with NH Free and Fixed

Date α K NH χ2/DOF
(10−2 keV−1 cm−2 s−1) (1021 cm−2)

Oct 6 2.5±0.1 -
+0.62 0.06

0.07
-
+2.7 0.3

0.3 0.83

Oct 7 2.1±0.1 -
+4.6 0.5

0.6
-
+3.1 0.4

0.5 1.07

Oct 8 2.3±0.1 -
+0.43 0.05

0.06
-
+3.0 0.4

0.5 0.54

Oct 27 -
+1.4 0.3

0.4
-
+0.14 0.04

0.08
-
+1.2 1.2

2.2 0.48

Nov 2 1.3±0.3 -
+0.11 0.03

0.04
-
+1.4 0.8

1.1 0.33

Oct 6 2.54±0.07 0.65±0.03 2.9 (fixed) 0.82
Oct 7 2.08±0.07 4.34±0.24 2.9 (fixed) 1.04
Oct 8 2.26±0.08 0.41±0.02 2.9 (fixed) 0.52
Oct 27 1.64±0.20 0.19±0.03 2.9 (fixed) 0.50
Nov 2 1.76±0.19 0.17±0.02 2.9 (fixed) 0.63

Note.The errors quoted denote 68% confidence intervals.

40 https://fermi.gsfc.nasa.gov/ssc/data/analysis/user/
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(see Table 1). The energy flux values based on the best-fit
absorbed-power-law model between 0.3keV and 10keV on
2016 October 6, 7, and 8 were (1.4± 0.1), (14.2± 0.9), and
(1.1± 0.1)×10−11 erg cm−2 s−1, respectively, as shown in
the third panel of Figure 5 along with the results from two more
observations taken on 2016 October 27 and November 2.

2.4. Optical Facilities

BLLacertae was monitored in the R-band at high cadence
by a number of optical facilities, including the Steward
Observatory41 (Smith et al. 2009), the AZT-8 reflector of the
Crimean Astrophysical Observatory, the Perkins telescope,42

the LX-200 telescope in St. Petersburg, Russia, and the Calar
Alto 2.2 m Telescope (with observations obtained through the
MAPCAT43 program) in Almería, Spain. We also included
the r′-band observations made with the 48 inch telescope
at the Fred Lawrence Whipple Observatory (FLWO). We
transformed the r′-band flux to R-band using the color index
V−R=0.73±0.19 for BLLacertae (Fan et al. 1998) and
the transformation r′−R=0.19(V− R)+0.13 (Smith et al.
2002). The dominant uncertainty from the conversion to
R-band comes from the variability of the V−R color index,
resulting in an additional systematic uncertainty of ∼0.04
magnitude, which is included in the converted FLWO R-band
magnitude shown in Figure 5. Any variability in the color
index Δ(V− R)<0.19 during the epoch of observations
shown would lead to a shift of the FLWO R-band magnitude
within the error bars shown.

The R-band flux and polarization measurements contem-
poraneous with the gamma-ray flare are shown in Figure 5. The
lower three panels (from top to bottom) show the R-band
magnitude, polarization fraction, and electric vector position
angle (EVPA) of the source, respectively. A −180° shift is
applied to all the EVPA measurements before MJD 57662, so
that the EVPA difference between MJD 57662 and 57658 is
reduced to ∼80° from ∼100° before the shift was applied (see,
e.g., Abdo et al. 2010). The measurements are reasonably
consistent between the various instruments.
The R-band flux from the source varied in a similar manner

to the GeV flux, with an increase observed a few days before
the VHE flare. The optical EVPA appeared to have rotated
smoothly from roughly perpendicular to the position angle
(PA) of the jet in late 2016 September to roughly parallel in late
2016 October, except for three days before the TeV gamma-ray
flare when the optical EVPA was nearly aligned with the PA of
the jet. This was followed by a sudden decrease in EVPA on
the day before the TeV gamma-ray flare. The fractional
polarization was relatively low around the time of the TeV
flare, and increased to the highest value of the 45 day period in
late October when the EVPA was again aligned with the jet.

2.5. Radio Facilities

BLLacertae was observed throughout the period of interest
at 43 GHz with the VLBA under the VLBA-BU-Blazar
monitoring program (Jorstad & Marscher 2016) and at
15.4 GHz with the Monitoring Of Jets in AGNs with VLBA
Experiments (MOJAVE) program (Lister et al. 2009). The
43 GHz and 15.4 GHz VLBA data calibration and imaging
procedures were identical to those described by Jorstad et al.
(2005) and Lister et al. (2009), respectively.
Figure 6 presents 43GHz images of the parsec-scale jet of

BLLacertae at five epochs from 2016 September 5 to December
23. The second epoch, 2016 October 6, took place only one day
after the VHE flare. The images are convolved with a circular
Gaussian restoring beam with a FWHM of 0.1 mas, which is
similar to the angular resolution of the longest baselines along the
(southern) direction of the jet. We note that the October 6
observation was affected by equipment failure at the Maunakea
and Hancock antennas, at the extremities of the array, although
this degraded the north–south angular resolution by only 14%.
The corresponding linear resolution at the redshift of BLLacertae
is 0.13 pc in projection on the sky and -

+1.8 pc0.4
0.8 if we adopt a

viewing angle of 4°.2±1°.3 between the jet axis and line of sight
(Jorstad et al. 2017).
As was the case in previous observations (Jorstad et al. 2005;

Arlen et al. 2013; Gómez et al. 2016; Wehrle et al. 2016), the
main structure of the jet consists of three quasi-stationary
brightness peaks, designated as A0, A1 0.12 mas to the south of
A0, and A2 0.30 mas to the south of A0. The locations of A1
and A2 appear to fluctuate as moving emission features
(frequently referred to as “knots”) with superluminal apparent
velocities pass through the region. Such a combination of
moving and stationary emission components complicates the
interpretation of the changing structures of the total and
polarized intensities. Because of this, the interpretation that we
offer to explain the variations within the images is not unique.
We ignore the effects of Faraday rotation on the polarization

EVPA, which Jorstad et al. (2007) estimated to be low (−16°)
between 43GHz and 300GHz. It is worth mentioning that
Hovatta et al. (2012) measured a much lower (by an order of

Figure 4. Top: the X-ray SEDs measured by Swift-XRT on 2016 October 6, 7,
and 8. The dashed lines are the best-fit absorbed-power-law model with NH

fixed at 2.9×1021 cm−2. Bottom: the distributions of the fit residuals of each
X-ray SED. Note that the residual values on October 7, shown in cyan, are
divided by 10 to facilitate comparison with the other two distributions shown.

41 http://james.as.arizona.edu/~psmith/Fermi
42 http://www.lowell.edu/research/research-facilities/1-8-meter-perkins/
43 MAPCAT stands for the Monitoring of AGN with Polarimetry at the Calar
Alto Telescopes, see:http://www.iaa.es/~iagudo/_iagudo/MAPCAT.html.
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magnitude) Faraday rotation using 8–15 GHz observations.
This could be due to a combination of a possible variability in
the rotation measure and a decrease of the rotation measure
with distance from the central black hole (Jorstad et al. 2007),
because the core at 15GHz is located further away from the
black hole than the core at 43GHz due to the effect of opacity.

A knot of emission with enhanced polarization at 43 GHz,
which we designate as K16, appears to propagate down the jet.
Its centroid moves from ∼0.05 mas south of A0 on October 23
to ∼0.28 mas from A0 on December 23. This corresponds to an

apparent speed of c6 , within the range typically observed in
BLLacertae (Jorstad et al. 2005, 2017; Marscher et al. 2008;
Arlen et al. 2013; Lister et al. 2013; Wehrle et al. 2016).
Extrapolation back to October 6 places the knot K16 0.01 mas
north of the centroid of A0, within the A0 emission region
characterized by its angular size of 0.03±0.02 mas (Jorstad
et al. 2017). This implies that the VHE flare occurred as the
moving knot crossed the stationary “core,” which Marscher
et al. (2008) have interpreted as a standing shock located ∼1 pc
from the central black hole.

Figure 5. The 45 day MWL light curves of BLLacertae around the time of the VHE flare. The top panel shows the TeV gamma-ray flux measured by VERITAS on
the night of the flare, as well as the upper limits obtained later. The second panel shows the daily-binned GeV gamma-ray light curve measured by Fermi-LAT, as well
as a piecewise exponential fit (see Equation (1)) to a 15 day interval around the TeV gamma-ray flare (red dashed line). The third panel shows the X-ray energy flux
from the five Swift-XRT observations. The bottom three panels show the R-band photometric and polarimetric measurements (see Section 2.4). The gray vertical
dashed line shows the peak time of the TeV gamma-ray flare observed by VERITAS. The fractional polarizations and the EVPAs of the 43 GHz and 15 GHz core are
also shown in the bottom two panels. The gray horizontal dotted line in the bottom panel shows the position angle of the jet.
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The VLBA images at 15.4GHz, as shown in Figure 7,
reveal the evolution of the jet structures further away from the
central source and on a larger spatial scale, as a result of optical
depth and angular resolution, respectively, compared with the
observations at 43 GHz. Therefore, a delay is expected between
the measurements at these two frequencies. The polarized
intensity of the stationary core of BLLacertae at 15.4 GHz
reached a minimum on 2016 December 26 and gradually
increased, with a potentially bright feature with distinct
polarization angle (consistent with the EVPAs measured at
43 GHz on 2016 December 23), which may correspond to the
knot K16 observed at 43 GHz earlier, appearing at ∼1 mas
southwest of the core. This is consistent with past observations
of the same source with the VLBA at different frequencies
reported by Bach et al. (2006), where new components of the
jet were seen to fade as they separated from the core,
disappearing at ∼0.7mas and reappearing at ∼1mas.

We show the fractional polarizations and EVPAs of the
43 GHz and 15 GHz core in the bottom two panels of Figure 5,
along with the R-band results. The EVPAs of the core at
43 GHz and 15 GHz are roughly consistent with the PA of 10°
of the jet over the course of a few months since 2016
September. This implies that the magnetic field is toroidal/
helical at the core, as we discuss in Section 3. Further
downstream in the jet, the EVPAs become more perpendicular
to the PA of the jet, as shown in Figure 7. Such location-
dependent radio EVPAs help us to interpret the dominant
optical component based on the optical EVPA data.

We show in Figure 8 the evolution of the total flux density of
BLLacertae, measured by the Metsähovi Radio Observatory at
37GHz and by Owens Valley Radio Observatory (OVRO) at
15GHz, over about a year, as well as their z-transformed
discrete cross-correlation (ZDCF; Alexander 2013).

The 37 GHz observations were made with the 13.7 m
diameter Aalto University Metsähovi radio telescope, which
is a radome-enclosed Cassegrain-type antenna situated in
Finland. The measurements were made with a dual-beam
receiver of 1 GHz bandwidth centered at 36.8 GHz. The front
end, a pseudomorphic transistor of high electron mobility,
operates at room temperature. The 37 GHz observations are
Dicke-switched ON–ON observations, alternating the source
and the sky in each feed horn to remove atmospheric and

ground contamination. The typical integration time to obtain
one flux-density data point is between 1200 and 1600 s. The
detection limit of the telescope at 37 GHz is of the order of
0.2 Jy under optimal conditions. Data points with a signal-to-
noise ratio <4 are handled as non-detections.
The flux-density scale is set by observations of the H II

region of DR 21, while NGC 7027, 3C 274, and 3C 84 are used
as secondary calibrators. A detailed description of the data
reduction and analysis can be found in Teräsranta et al. (1998).
The error estimate in the flux density includes the contributions
from the measurement rms and the uncertainty of the absolute
calibration.
The OVRO 40m telescope uses off-axis dual-beam optics

and a cryogenic pseudo-correlation receiver with a 15.0 GHz
center frequency and 3 GHz bandwidth. The source is
alternated between the two beams in an ON–ON fashion to
remove atmospheric and ground contamination. The fast gain
variations are corrected using a 180° phase switch. Calibration
is achieved using a temperature-stable diode noise source to
compensate for drifts in receiver gain, and the flux-density
scale is derived from observations of 3C286 assuming the
value of 3.44Jy at 15.0GHz reported by Baars et al. (1977).
The systematic uncertainty in the flux-density scale is ∼5%,
which is not included in the error bars in Figure 8. Complete
details of the reduction and calibration procedures are given in
Richards et al. (2011).
The 37 GHz and 15 GHz light curves show that at the time of

the TeV gamma-ray flare, BLLacertae was transitioning from
a steady radio flux state to a flaring state that lasted for about
five months. The ZDCF shows no significant detection of any
time lag between the fluxes at the two frequencies, suggesting
that both observations are dominated by the flux from a region
that is optically thin at 15 GHz.

3. Discussion

For the second time, VERITAS has detected a fast gamma-
ray flare from BLLacertae.
While no information was obtained from the rising phase of

the first VHE flare in 2011 (Arlen et al. 2013), the VERITAS
measurements during the 2016 flare described in this work
cover both the rise and decay phases of the flare.

Figure 6. The 43 GHz VLBA total (contours) and polarized (color scale) intensity images of BL Lac. The total intensity peak is 1.15 Jy beam−1. The contours are 0.2,
0.4, 0.8, K, 51.2, 96% of the peak. The restoring beam shown in the bottom right corner is a circular Gaussian with FWHM=0.1mas. Linear segments within the
images indicate position angles of the polarization, with the length of segments proportional to the local polarized intensity. Red horizontal lines mark the mean
locations of the three quasi-stationary features; the blue line across the epochs from 2016 October to December traces the motion of the superluminal knot K16.
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Figure 7. Images of BLLacertae from VLBA observations at 15.4 GHz for 10 epochs. A Gaussian restoring beam with dimensions 0.883 mas×0.56 mas and a
position angle −8°. 2 was used. The colors in the top row of each panel show the fractional polarized level. The direction of the blue line segments in the bottom rows
illustrate the EVPA, and their length corresponds to polarized intensity, the lowest of which shown is 0.5 mJy beam−1. The contours show the total intensity, with a
base contour of 1.1 mJy beam−1 in both top and bottom rows, and successive contours increment by factors of two in the top rows. The typical rms values of the total
and polarized intensity image in these images are 0.09 mJy beam−1 and 0.1 mJy beam−1, respectively.
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3.1. On the Size of the Gamma-Ray-emitting Region

The fastest timescale of a flare (in this case the decay time)
provides a constraint on the size R of the emitting region, as


d

+
( )R

ct

z1
, 5

decay

where c is the speed of light, δ is the Doppler factor of the jet,44

and z is the redshift of the source.
The mass of the central black hole (MBH) of BLLacertae

was estimated to be ∼3.8×108Me by Wu et al. (2009) using
the R-band absolute magnitude and the empirical correlation
between black hole mass and bulge luminosity of the host
galaxy (McLure & Dunlop 2002). The corresponding
Schwarzschild radius Rs of the central black hole of
BLLacertae is ∼1.1×1012 m (∼3.6× 10−5 pc). It is worth
noting that measuring the mass of a black hole is a challenging
task, and MBH values in the range (0.16–5.01)×108Me have
been reported for BLLacertae (see Gupta et al. 2012, and
references therein).

The Doppler factor δ was estimated to be ∼24 according to
the method described in Hervet et al. (2016) from the
propagation of a possible perturbation in the radio jet observed
with VLBA at 15 GHz(Lister et al. 2013), assuming a viewing
angle of 2°.2 based on radio measurements of apparent velocity.
Taking the best-fit value of = -

+t 36 minutesdecay 7
8 (see

Section 2.1.1) and using Equation (5), we estimate the upper
limit on the size of the emitting region to be R11.9Rs.

3.2. On the Gamma-Ray Flare Profile

An asymmetric profile with a faster decay of the VHE
gamma-ray flux was observed in the flare, which would be

caused by an abrupt cessation of the high-energy particle
injection (see, e.g., Katarzyński et al. 2003; Petropoulou
et al. 2016). In this scenario, the flaring activity is attributed to
fresh injection of high-energy particles into the emitting region
instead of in situ acceleration of the particles. However,
minimal variability in the radio band would be observable for
this interpretation. Since strictly simultaneous radio observa-
tions were not performed, we cannot draw any conclusions
regarding the radio variability at the time of the TeV gamma-
ray flare. However, we note that the observed gamma-ray flare
profile and the longer-term radio light curves (Figure 8) are
consistent with the model proposed by Petropoulou et al.
(2016). In this model, a fast gamma-ray flare can be produced
by a small plasmoid in the magnetic reconnection layer, with
no concurrent radio flares from the single plasmoid but a
delayed radio flare powered by the entire reconnection event.
The delay timescale is expected to correspond to the duration of
the reconnection event, typically a few weeks. The asymmetric
flare is in contrast to the more frequently observed flaring
profile, a fast rise followed by a slow decay, which can be the
manifestation of in situ acceleration and/or a longer cooling
time (i.e., longer than the acceleration time) associated with a
steep particle-energy distribution (analogous to solar flares; see,
e.g., Harra et al. 2016).
BLLacertae showed an enhancement in its GeV gamma-ray

flux at the time of the TeV flare, but on a longer timescale of a
few days. It also exhibited high X-ray flux on 2016 October 7
(two days after the TeV flare), about a factor of 10 stronger
than the flux on October 6 and 8. These observations indicate
efficient acceleration of relativistic particles in the jet to at least
a few hundred GeV. We note, however, that the delayed X-ray
flare may or may not be related to the TeV gamma-ray flare,
since the lack of strictly simultaneous X-ray data precludes us
from ruling out the possibility of an X-ray flare simultaneous
with the TeV gamma-ray one. The different variability
timescales of the observed TeV and GeV gamma-rays give a
hint that they may originate from different emitting zones. One
possibility is that the GeV gamma-rays were produced by
particles injected into and accelerated in a large shock region
(e.g., a radio core; see Kovalev et al. 2009), while the TeV
gamma-rays were produced through magnetic reconnection in a
localized region (e.g., a small plasmoid in a magnetic
reconnection layer, possibly at the interface between a radio
core and a moving knot; see Petropoulou et al. 2016).

3.3. On the Lorentz Factor and the Location of
the Gamma-Ray-emitting Region

Without simultaneous MWL observations with temporal
resolution comparable to that of the TeV gamma-ray observa-
tions, we cannot construct a reliable broadband SED of the
source during the TeV flaring state. Instead, we constrain the
Lorentz factor (Γ) of the gamma-ray-emitting region based on
the gamma-ray variability, assuming two different emission
mechanisms, SSC and ERC. Both models have been used to
describe the broadband SED of BLLacertae in the past (e.g.,
Madejski et al. 1999; Raiteri et al. 2013). However, we note
that during the flare, the peak of the gamma-ray SED is located
between ∼5 GeV and ∼100 GeV, higher than that in the lower
flux state (e.g., Abdo et al. 2011; Rani et al. 2013). Such
behavior is most frequently observed in FSRQs and can be
interpreted as an ERC process acting on IR photons in the
torus region (e.g., Ghisellini & Tavecchio 2009; Tagliaferri

Figure 8. The top panel shows the 37 GHz (blue dots) and 15 GHz (red
squares) radio light curves measured over ∼1 yr by Metsähovi and OVRO,
respectively. The gray dashed line shows the peak time of the TeV flare
observed by VERITAS. The bottom panel shows the z-transformed discrete
cross-correlation between the two light curves above. The time lag values are
calculated as the difference in time t between 37GHz and 15GHz so that
positive time lags correspond to the 37 GHz flux leading the 15 GHz flux.

44 d b q= G - -[ ( )]1 cos 1 , where Γ is the bulk Lorentz factor of the jet, and θ
is the angle between the axis of the jet and the line of sight.
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et al. 2015). Such an ERC process was also used to interpret the
emission of BLLacertae in a flaring state (Madejski et al. 1999;
Ravasio et al. 2003).

Assuming a one-zone SSC model, we can calculate an
opacity constraint on the Doppler factor δ of the TeV gamma-
ray emitting region by requiring the pair-production optical
depth to be �1, following Equation(3.7) and (3.8) in Dondi &
Ghisellini (1995) (see also Arlen et al. 2013). We found that
δ13 using the following observables: the best-fit decay time
of the TeV gamma-ray flare (36 minutes), the center of the
highest-energy bin with significant excess of the TeV gamma-
ray spectrum of the source during the flare (∼1.5 TeV), the
R-band magnitude inferred from the FLWO observations on the
same night (13.17), and the near-infrared spectral index (1.5;
Allen et al. 1982). Assuming a viewing angle of 2°.2, the
constraint δ13 is equivalent to a constraint on the Lorentz
factor of Γ7.

Assuming the gamma-rays are emitted via an ERC process,
we can constrain the Lorentz factor Γ and the distance r from
the central black hole of the gamma-ray-emitting region
following the method described by Nalewajko et al. (2014).
The collimation constraint was derived from the requirement
Γθ1. Both SSC and ERC processes are considered in the
calculation of the SSC constraint, while the majority of the
gamma-rays are assumed to be produced via an ERC process.
For the cooling constraint, only the ERC process on the thermal
radiation fields close to the black hole is considered. This does
not take into account any possible inverse-Compton scattering
of an external synchrotron field, which, as we consider below,
would loosen the cooling constraint on Γ at large distances
from the central black hole. We also assume that the emitting
region is spherically symmetric. It is possible that the emitting
region is not spherical (e.g., if it is passing a standing shock),
and the constraints on Γ and r may change.

The values of the parameters used for the calculation of the
above three constraints on Γ and r are shown in Table 2. Some
of the parameters are constrained by observations, and the
others are chosen so that a conservative constraint is derived.
For example, we set the Compton dominance parameter
q=Lgamma/Lsyn=10 based on the observed R-band magni-
tude and the peak flux of the gamma-ray SED, the former of
which should provide a good estimation of the peak of the
synchrotron flux, considering that the source is a lower-
frequency-peaked BLLac object. The SSC luminosity was set
equal to the observed gamma-ray luminosity LSSC=Lgamma in
order to obtain a conservative SSC constraint. We also used a
relatively high observed gamma-ray energy (1 TeV) for a
conservative ERC cooling limit. We note that changes in the

values of the parameters describing the geometry of the
external radiation fields, namely the covering factor òBLR
and characteristic radius rBLR for the BLR, and similarly òIR
and rIR for the IR torus, which are poorly constrained by
observations, could change the cooling constraint. The values
of the radii used in this work are derived based on the disk
luminosity Ld=6.0×1044 erg s−1 (Abdo et al. 2011) and
the relations = ´ »-( )r L1 10 10 erg s m 0.025 pcBLR

15
d

45 1

and = ´ »-( )r L2 10 10 erg s m 0.5 pcIR
16

d
45 1 (Ghisellini

& Tavecchio 2015).
In this analysis, the distance r between the central black hole

and the gamma-ray-emitting region is constrained to be 12.4
pc. If we fix the Lorentz factor at Γ=24, then we constrain the
distance to be 0.01r/pc0.7. If we fix the distance at
r=1 pc, the estimated distance between the core A0 and the
central black hole, and assume that the gamma-rays are
produced as the knot K16 passes the core A0, then the Lorentz
factor is only loosely constrained at 35Γ226.
At small r values (r0.68 pc), the SSC constraint on the

lower limit of Γ is stricter than the cooling constraint. At
r=rBLR=0.025 pc (the smallest distance for the VHE-
emitting region without heavy absorption from the radiation
field in the BLR), we put a strong lower limit on the Lorentz
factor Γ10.1, which is larger than the archival values
(∼5–7) derived from radio observations (Jorstad et al. 2005,
2017) and consistent with the value of 24 adopted in this work.
A possible explanation for the lower values of Γ obtained from
the radio observations is that they are calculated based on the
apparent velocity of the superluminal features in the jet, which
may travel at a lower speed than the bulk plasma flow (e.g.,
Lister et al. 2013; Hervet et al. 2016).
At large r values (r2 pc), the lower limit on the Lorentz

factor Γ increases to >100, exceeding the typical range of
Γ∼4–50 obtained from observations of blazars (e.g., Jorstad
et al. 2005; Cohen et al. 2007; Lister et al. 2016). This indicates
that another seed-photon population, such as an external
synchrotron radiation field, is needed if the gamma-ray-
emitting region lies beyond ∼2 pc.

3.4. On the Radio and Optical Polarizations

The 43 and 15 GHz observations reveal that the EVPAs at
the core are mostly parallel to the PA of the jet. This implies
that the magnetic field is likely toroidal or strongly helical near
the core, consistent with earlier observations of BL Lacertae
(e.g., Gómez et al. 2016). The 15 GHz EVPAs at larger
distances away from the core become more perpendicular to the
PA of the jet, indicating that the magnetic field may be more
poloidal in the outer jet. Such a magnetic field configuration

Table 2
Parameters Used to Calculate the Constraints Shown in Figure 9

Lgamma Lsyn Ld
a tvar MBH

b Ecool δ/Γ òBLR òIR rBLR rIR EBLR EIR gSSC gERC
(erg s−1) (erg s−1) (erg s−1) (min) (Me) (TeV) (pc) (pc) (eV) (eV)

7.8×1045 7.8×1044 6.0×1044 36 3.8×108 1 1 0.1 0.1 0.025 0.5 10 0.3 0.75 0.5

Notes. Lgamma, Lsyn, and Ld are the observed gamma-ray luminosity, the synchrotron luminosity, and the disk luminosity, respectively; tvar is the observed variability
time; MBH is the mass of the central black hole; Ecool is the energy of the observed photons due to the external Compton cooling of relativistic electrons; δ/Γ is the
ratio between the Doppler factor and Lorentz factor of the electrons; òBLR, rBLR, and EBLR are the covering factor, characteristic radius of the BLR, and the energy of
BLR photons, respectively; òIR, rIR, and EIR are similar parameters for the IR-emitting torus region; gSSC and gERC are the bolometric correction factors for SSC and
ERC mechanisms.
a Abdo et al. (2011).
b Wu et al. (2009).
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has been proposed for low-frequency-peaked BL Lac objects
(e.g., Kharb et al. 2008; Hervet et al. 2016).

Based on these radio observations, we can use the observed
changes in the optical polarizations of BL Lacertae (as shown
in Figure 5) to gain insights into the magnetic field structure
and the location of the region that dominates the optical
emission (e.g., D’arcangelo et al. 2009; Algaba et al. 2011).
The optical EVPAs were observed roughly perpendicular to the
PA of the jet in late 2016 September, indicating that the
magnetic field is close to being aligned with the jet and likely
dominated by the region downstream in the jet at that time.
Similarly, the optical EVPAs became mostly parallel to the PA
of the jet after late October, suggesting that the optical emission
was then dominated by the core or the inner jet. We also
observed the highest optical fractional polarization during this
period, suggesting that the magnetic field of the core/inner jet
is more ordered.

During the three days preceding the TeV gamma-ray flare,
the optical EVPA became (temporarily) nearly aligned with the
PA of the jet, but on the day before the TeV gamma-ray flare it
suddenly rotated back to a direction consistent with its direction
prior to this quasi-alignment. Such abrupt changes in optical
polarization associated with flares are found in numerical
simulations for blazars and gamma-ray bursts (Zhang et al.
2014; Deng et al. 2016), and can potentially be interpreted as
resulting from the helical motion of an emitting component in a
toroidal/helical magnetic field before that component reaches
the shocked region (e.g., Marscher et al. 2008). However, since
the fractional polarization was relatively low during this period,
it is also possible that the observed change in EVPA was a
random fluctuation due to a turbulent magnetic field.

A superluminal radio knot K16 was observed through a
series of VLBA exposures on BLLacertae at 43 GHz.
Extrapolation of the knot position implies that the VHE
gamma-ray flare happened as the knot K16 crossed the quasi-
stationary radio core. This suggests a possible association
between the fast VHE gamma-ray flare and the emergence of
the superluminal radio knot for the source, similar to that
reported by Arlen et al. (2013).

3.5. Interpretations of the TeV Gamma-Ray
and the Radio Results

In the model proposed by Marscher (2014), the radio core is
a Mach disk at the apex of a conical shock downstream in the
jet, with a transverse orientation with respect to the jet axis.
When turbulent cells of plasma pass through the conical shock,
relativistic electrons can be accelerated to higher energies in
those cells where the magnetic field orientation relative to the
shock normal is favorable. A fast gamma-ray flare can happen
via inverse-Compton scattering as the relativistic plasma
approaches the Mach disk at the end of the conical shock,
which provides a dense source of synchrotron and SSC seed
photons. After the energized plasma passes the Mach disk, a
conical rarefaction causes the flow to expand and accelerate,
with the bright plasma appearing as a superluminal radio knot.
In some numerical simulations, the polarization fraction

drops as the magnetic field direction changes, while the EVPA
can rotate owing to random fluctuation of the field or the
emergence of a new field component (e.g., Marscher 2014;
Zhang et al. 2014). This is consistent with the variation
observed in the R-band polarization shortly before the VHE
gamma-ray flare (see Figure 5), as well as the VLBA images at
15.4GHz (see Figure 7). The changing superposition of the
magnetic fields as the moving knot (K16) passes the quasi-
stationary knots (A0, A1, and A2) may also explain the change
in the positions of A0, A1, and A2 between epochs (see
Figure 6).
An alternative hypothesis that can explain both the VHE

gamma-ray flare and the superluminal radio knot of BLLa-
certae is the breakout of a recollimation-shock zone (Hervet
et al. 2016). In this model, one or more recollimation shocks, of
similar nature to those in Marscher (2014) (see also Mizuno
et al. 2015; Fromm et al. 2016), can form upstream in the jet
where the magnetic energy density is high and appear as
stationary radio knots; further downstream in the jet, particle
kinetic energy becomes dominant, the magnetic field becomes
unstable, and a stationary knot can be carried away by the
underlying relativistic flow and become a superluminal knot. In
the case of a compact region with large kinetic energy passing
the recollimation-shock zone, a multi-component flare could be
observed, with one component that varies slowly (i.e., on
timescales of hours), thereby giving the appearance of a quasi-
constant baseline in an intra-night light curve, as a result of the
following sequence of events. First, in this scenario, an increase
in the non-thermal emission of the shock region is expected,
which leads to a flux increase on the timescale corresponding to
the size of the entire shock region (as the baseline component).
As the kinetic power of the jet increases in the shock zone, the
magnetic field structure is subject to strong tearing instabilities,
at which point a magnetic reconnection event occurs, leading to
the observed fast flare. Finally, the shock zone is dragged away
by the flow and enters an adiabatic expansion and cooling
phase, leading to a decrease in flux and a return to the low state
of the source. In the case of the 2016 flare of BLLacertae, there
is no evidence for any disruption or breakout of a stationary
knot, although it is possible that the recollimation zone
reformed quickly between VLBA epochs and was therefore
not sampled by the observations. Therefore, future observations
of flares from gamma-ray blazars, with adequate coverage after
the flux decreases, can potentially reduce the ambiguity in the
interpretation.

Figure 9. The constraints on the Lorentz factor (Γ) and the distance (r) between
the central black hole and the gamma-ray-emitting location. The gray vertical
dashed line indicates the location of the BLR (0.025 pc) used in the calculation.
The yellow shaded region illustrates the allowed parameter space.
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