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ABSTRACT
In domains where users are exposed to large variations in
visuo-spatial features among designs, they often spend excess
time searching for common elements (features) in familiar
locations. This paper contributes computational approaches
to restructuring layouts such that features on a new, unvisited
interface can be found quicker. We explore four concepts of fa-
miliarisation, inspired by the human visual system (HVS), to
automatically generate a familiar design for each user. Given
a history of previously visited interfaces, we restructure the
spatial layout of the new (unseen) interface with the goal
of making its elements more easily found. Familiariser is
a browser-based implementation that automatically restruc-
tures webpage layouts based on the visual history of the user.
Our evaluation with users provides first evidence favouring
familiarisation.

Author Keywords
Visual search; Graphical layouts; Computational design;
Adaptive user interfaces

INTRODUCTION
This paper addresses a common predicament in interaction
with graphical user interfaces: from blogs to banking and mo-
bile apps, users encounter a wide diversity of visual designs.
Even when serving the same purpose, designs differ in terms
of element positions, colouring, images, and widget types.
While visual uniqueness provides for identity and brand recog-
nition, it also implies that users are constantly confronted with
learning, relearning, and accustoming to navigating new struc-
tures and different styles. For the visual system, this poses a
challenge to constantly adapt the use of visual attention. By
understanding how this happens, we could design and adapt
interfaces automatically such that elements can be more easily
found. This could make interface ecologies more usable and
enjoyable for users who care less about brand identity.

Our work is motivated by the observation that the added effort
experienced upon encountering unfamiliar or atypical designs
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depends on the cost related to visual search for new and un-
familiar visual layouts [8, 18, 35]. Consider taking a familiar
design and moving an element to a different position. Users
would first seek the element in its expected place and, upon
failing, continue with some search strategy to locate the ele-
ment that was moved, or simply give up. However, designs are
likely to differ in more than one feature, requiring ‘guessing’
of element positions, and further frustration.

This paper investigates computational principles that restruc-
ture unfamiliar designs to designs the user considers to be
familiar. More formally, our goal can be defined as follows:
Given a new design d, unfamiliar to the user, and a history of
previously visited visual designs H (d < H), restructure d to
minimize costs to visual search to the user. By ’restructuring’
we refer to manipulations to the visio-spatial layout, such as
moving, resizing, and recolouring elements. In this paper, we
call techniques that achieve this familiarisation techniques.
These techniques exploit the capability of operating systems
and browsers to change an interface design dynamically. Such
computer-driven familiarisation complements efforts at design-
time to ensure consistency and adherence to design standards
and guidelines [26, 31]. At the user-end, familiarisation ex-
ploits the known processes of human visual system in visual
search. This ensures that the familiarised layouts are more
usable due to predictable element locations and layout struc-
tures. While consistency enforced at design time can only
approximate what the user population has experienced, en-
suring consistency through active familiarisation at runtime
allows, in principle, ’perfect consistency’ for an individual.

There are multiple competing principles on which familiari-
sation can be based, depending on how familiarity is defined.
As these principles can lead to different techniques of famil-
iarisation, it is important to explore their assumptions, imple-
mentations, and results. To this end, we define and formalise
four principles of familiarisation, informed by theories of
human visual system (HVS) and visual learning. These are
implemented in Familiariser, a browser-based system that dy-
namically restructures interface layouts to make them easier
to use. Results from our study indicate that familiarisation can
reduce visual search times by over 10%, and also leads to over
23% lesser eye-gaze fixations.

https://doi.org/10.1145/3172944.3172949
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Figure 1. An illustration of the four principles for modelling familiarity. I selects the page with highest frequency; II considers frequency and time,
selecting the page with the highest value on the curve; III considers positional (xy) information, and creates a probability distribution of features; IV
uses a cognitive model of visual search to determine feature locations.

Overview: Four Familiarisation Principles
Familiarisation techniques can be generally defined as func-
tions that take as input user history H and a new design d, and
yield a restructured design d′: f (d,H)→ d′. In this paper,
we explore four principles with different theoretical under-
pinnings and consequences to how restructuring operates and
how they influence results. Section ’Modelling Familiarity’
elaborates on each of these principles in greater detail.

I. Frequency: The most straightforward approach is to sim-
ply take the most frequently used design from H. Any new
design within the same domain would be restructured such
that elements appear in roughly the same places. While this
design is likely to be recognizable, and simple to implement,
the approach does not take into account the fact that most re-
cent experiences are likely to dominate recall. Something that
might have been frequently used in the past might be partially
forgotten and overshadowed by the most recently encountered
designs.

II. Serial Position Curve: The second principle implements
the well-known serial position function of long-term recall
[10]. Extensive empirical research on long-term and short-
term memory has shown that the first and the most recently
encountered objects are better recalled than ones in the middle.
We implement a mathematical function that describes the rela-
tionship between order and recall probability. This is used to
choose the most-likely-to-be-recalled design in H according
to this function. A limitation of this and the first approach is
that the visual features might not be adequately described by a
single design.

III. Visual Statistical Learning: The third principle is visual
statistical learning (VSL), according to which visual atten-
tion relies on a probabilistic internal model sensitive to the
characteristics of the environments they have encountered be-
fore. We implement this hypothesis by building a statistical
model of visual features in H. It is used to estimate the ’most
probable’ location of a given element. We then restructure
a layout, element by element, considering this function, and
finally align the elements so that they appear orderly.

IV. Cognitive Model: In our final technique, we train a cog-
nitive model of layout learning with H and use its prediction
on an empty canvas to predict the most likely positions of the
elements of d. The model simulates learning of visual posi-
tions, and generates visual search patterns and times, given
a layout and knowledge on that layout [18]. As an input it
requires H and associated visitation durations, and optionally
also considers element frequencies or relevance of elements.
In this, it is similar to the previous approach. However, the
model generates the actual eye movement patterns and visual
search times, in addition to generating the memorability of
location elements. It also simulates forgetting of layouts that
have been visited only shortly and further back in time. This
allows the model to be used for evaluating automatically how
the familiarised layout will impact the user’s behaviour, as
well as how the user learns the new layout.

RELATED WORK
At its core, our work is situated within the domains of layout
generation and restructuring, and user interface adaptation. We
discuss prior literature that has dealt with these two themes,
and draw comparisons to our work.

Layout Generation and Interface Restructuring
Automatic generation of layouts, and restructuring existing
designs, have received significant attention by researchers and
practitioners. One of the main rationales behind automatic
generation is that it simplifies or eliminates the design task,
making it possible for programmers or non-designers to cre-
ate interfaces. Restructuring of designs allow for systematic
improvement in usability and aesthetics of interfaces. Prior
works have often used rules and heuristics to generate layouts
that adhere to specific design guidelines [3, 6, 27, 28, 30], or
example-based retargeting by mining existing designs [20, 21].
Our work situates itself in the area of model-based interface
generation. Model-based techniques [5, 6, 30, 34] tackle the
design problem by first abstracting the user interface as a set of
models, which are then used to steer the generation or restruc-
turing. There have been several prior systems, dating back to



the 1980s, such as [4, 17, 24, 29, 36], that apply model-based
approaches to interface (re-)design.

The above techniques and implementations have largely con-
sidered the user population as a whole, and not individuals or
groups of users. There has also been some significant work
done to address different groups of users. Ability-based design
[38] focuses on creating interfaces that take into account dif-
ferent requirements or restrictions, and optimise them towards
specific abilities (e.g. [14, 33]). Culture-based design [19]
took into account differences among different cultures, and
used this as a basis for creating multiple designs of the same
interface, each suited to a specific group of users. While all
these works have considered a subset of the population, or
specific preferences and requirements of groups of users, they
generally do not address design on the per-user level, and also
do not take into account individual users’ past experiences or
usage history. In contrast, with SUPPLE, Gajos et al. [11, 13]
defined user interface generation as an optimisation problem
that took a set of user interactions as input, and used this to
generate an optimal solution. By doing so, the system could
take into account specific user requirements and abilities, and
create individualised interfaces for each user. HIGHLIGHT
[23] enabled re-authoring of existing websites based on trac-
ing how the user interacts with the site, and created mobile
versions customised to the user tasks and mobile devices. UNI-
FORM [25] bears a lot of resemblance to our work, as it takes
into account a user’s history to automatically generated remote
control interfaces. UNIFORM differs from our work since it
does not restructure existing interfaces, yet focuses on gener-
ating consistent user interfaces that provide access to existing
functionalities on new platforms. Additionally, the user his-
tory is limited to one source design, and the work focuses on
the engineering aspects of restructuring an interface to match
the source, and not on the systematic selection or generation
of source designs from an extended history. The general ap-
proach adopted by previous works on per-user model-based
interface generation has been to model the user as a one-time
activity, before generating an optimised interface. Familiari-
sation, on the other hand, captures the complete user history,
and each time a new interface is encountered, it generates a
just-in-time redesigned interface based on an updated familiar-
ity model. Interfaces can thus evolve over time and usage, and
(re-)design becomes a continuous activity.

Run-time Adaptation of Interfaces
As highlighted above, familiarisation presents an approach
to adapt and restructure interfaces at runtime. Such an ap-
proach falls under the category of ‘adaptive user interfaces’—
interfaces that can adapt or modify themselves while being
used. There have been several works on adaptive UIs previ-
ously. Past systems have used different criteria for adapting
interfaces. For example, the Walking User Interface in [38]
adapted based on whether the user is stationary or walking. In
the [12], Gajos presents UIs that adapt to users’ current tasks.
In contrast to use scenario or current task, Familiariser adapts
an interface layout based on users’ history, and exposure to
previous interfaces belonging to the same domain. A common
criticism and shortcoming of adaptive UIs is that unpredictabil-
ity and cost of adaptation can negate the benefits provided [15,

22]. Since we focus on adapting newly visited interfaces that
the user has not previously used or learnt, it does not suffer
from these drawbacks. Thus, by incorporating model-based
design generation, and just-in-time interface adaptation, our
work attempts to leverage recall and visual learning, and pro-
vide users access to interfaces tailored to their expectations
and mental models.

MODELLING FAMILIARITY
What we call ‘familiarity’ is a complex cognitive phenomenon
influenced by several factors related to how people learn visual
search. We approach the problem by exploring progressively
sophisticated principles inspired by theories of HVS and hu-
man memory.

At the highest level, these principles break down to two groups:
(a) page-wise familiarity; (b) feature-wise familiarity. In page-
wise familiarity, an entire layout (e.g., webpage) is recognised
as one unit. It is assumed that users learn and recall entire
pages and their visual layouts. On the other hand, feature-
wise familiarity considers high-level features on webpages
as individual units. For example, logos, navigation menus,
and search-boxes, can be considered as features, and users
learn and recall these recurring features across different pages.
Based on these two cases, we explore four principles:

Principle I: Frequency
This is the most straightforward page-wise approach to defin-
ing familiarity. It is informed by the frequency effect: fre-
quently encountered items are more likely to be recalled than
less frequently encountered. More specifically, the number
of encounters directly affects both retrieval time and reten-
tion probability: more frequently practised items are recalled
faster and easier [2]. The interface (webpage) that has been
encountered the most number of times (i.e., most frequently
visited), and for the longest durations, is assumed to be the
most familiar to the user, and is thus used as the base design
to which new pages are familiarised:

fpage = nvisits ∗ taverage (1)

where fpage is the familiarity score of a page, nvisits is number
of visits, and taverage is average duration of visits (in seconds).
This results in a one-to-one retargeting of one page to another.

Principle II: Serial Position Curve
While frequency of usage can be a reasonable method to pre-
dict the most familiar interface in simple scenarios, as user
histories get larger over time, this is susceptible to failure.
Usage-based aspects such as first exposure to a page, recency
of visits, and intervals between visits, are not considered by
the first model. Firstly, not only frequency of rehearsals, but
also their recency, affects recall time and probability: recently
encountered and practised items are recalled faster and more
probably [2]. In addition to recency, there is also an effect
of primacy, where items that have been encountered first are
better remembered than later items [16]. Together, the primacy
and recency effects create a U-shaped curve (a serial position
curve). It maps items encountered in the past to probability
of recall: the first and last items are more likely to be recalled
better.



This leads to a page-wise approach that considers:

1. Frequency (v): The frequency of visits to a given page,
denoting how often a page is visited.

2. Recency (r): The recency of visit to a page, denoting when
the page was last visited.

3. Primacy (p): The order of visits to different pages, or the
sequence in which unique pages are encountered.

For each of these, scores are calculated for every page in the
history by ranking them. By aggregating scores for all factors,
for each page, we can calculate a familiarity score for every
page, and hence determine the most familiar interface. Thus,
we compute the following scores:

1. Frequency Score (Sv): This is the ratio of the visit count
for the given page to the total visit count of all pages in the
history.

Sv = npage/ntotal (2)

where Sv is the frequency score, npage is number of visits to
page, and ntotal is total number of visits to all pages.

2. Recency Score (Sr): This takes into account the decaying
aspect of memory. The number of other pages that are
visited since the user last visited the given page negatively
influences the familiarity. The score is normalised (most
recently visited page has a score of 1), and this reduces as
recency increases

Sr = 1− rpage/ntotal (3)

where Sr is the recency score, rpage is recency of a page,
and ntotal is total number of visits to all pages.

3. Primacy Score (Sp): Pages that are encountered first tend
to be better recalled than later pages. This effect is known
as primacy, and the primacy score takes this into account,
where earlier pages have a higher score. The score is nor-
malised (first visited page has a score of 1), and subse-
quently reduces for following pages.

Sp = 1− ((ppage−1)/npages) (4)

where Sp is the primacy score, ppage is visit order number
for the page, and npages is number of unique pages visited.

By aggregating these scores, we derive the familiarity score
for a page:

Fpage = α ∗Sv +β ∗Sr + γ ∗Sp (5)

where Fpage is the familiarity score for the page, α , β , γ are
weights for the three factors, and α + β + γ = 1.

In our implementation, we assign equal weights to frequency
and recency, and suggest that order has a lower effect on
familiarity, thus assigning it a lower weight. Thus, the values
we use are: α = β = 0.4, γ = 0.2.

The page with the highest familiarity score (max Fpage) is
considered to be the familiar page for a user, and is selected
as the basis for familiarisation.

Figure 2 presents a sample scenario, where a user visits four
unique pages multiple times. As the user visits different pages,
Figure 2(a) illustrates evolution in recorded usage metrics and
scores, along with page selection results as per principles I
and II.

Principle III: Visual Statistical Learning
This definition takes into account the statistical frequency with
which different design features occurred in history H. This
hypothesis is based on theories of visual statistical learning
[7], according to which visual search strategies are sensitive
to the statistical structure of the visual environment.

A feature is defined as a high-level semantic element, and can
be composed of multiple low-level elements. For example,
a website’s logo is a feature, and could be composed of an
image and a link element. By aggregating the commonly found
positions of each feature among the visited pages in a user’s
history, we can determine the most familiar characteristics for
each feature, and use this as the familiar design. Unlike in the
previous principles, the resultant familiar design here is not a
single page from the history, but a feature mesh consisting of
familiar features from multiple pages in the user’s history.

To generate this feature mesh, or familiar design, we first
generate spatial probability distribution maps for each encoun-
tered feature. In these maps, for pages in the history, every
for every pixel occupied by a particular feature, the spatial
probability is incremented. Features are weighed according
to familiarity scores (Fpage) of each page (from #2). Thus,
a feature appearing on a more familiar page has a higher in-
fluence on the probability distribution. For each feature, the
value (position) with the highest probability is selected to
create the familiar design consisting of all detected features.
Figure 2(b) illustrates the computed probability distribution
maps and selected positions for different features, for the given
scenario.

Principle IV: Visual Sampling Based on a Generative Cog-
nitive Model
This definition uses a generative approach, where a model of
visual search is used to generate gaze fixations as the simulated
user is searching targets on a layout. The simulation integrates
models of eye movements, visual short-term memory, and
associative long-term memory, and proposes that visual search
is the interaction of these three resources [18]. Given a user
history with layouts, including locations of elements on the
layouts, the model generates eye movement patterns as it
simulates human-like visual search on the layouts. Using
the model of eye movements [32], the simulation encodes
elements on the layout until it has found the target. For each
element, the encoding time is

Te = K · [−log( f )] · ek·ε , (6)

where f is the frequency of the object, either supplied exter-
nally to the model or assumed to be uniform, ε is the distance
of the target from current eye fixation, and K and k are scal-
ing constants, adapted from the literature [32]. Te increases
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(v)
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(r)

Primacy 
(p)

Frequency Score 
(Sv)

Recency Score 
(Sr)

Primacy Score 
(Sp)

Familiarity Score 
(Fpage)

t1

1 3 0 1 0.667 1.000 1.000 0.867

2 1 4 2 0.167 0.333 0.667 0.333

3 1 2 3 0.167 0.666 0.333 0.400

4 0 - - - - - 0

t2

1 5 4 1 0.357 0.714 1.000 0.629

2 4 0 2 0.286 1.000 0.750 0.664

3 3 3 3 0.214 0.786 0.500 0.500

4 2 2 4 0.143 0.857 0.250 0.479

Figure 2. Scenario with 4 different page designs. The user history shows a timeline of page visits (for simplicity, uniform visit durations are assumed
across pages). (a) Evolution of metrics and scores at two timestamps (t1, t2), and page selection outcomes. (b) Computed probability distribution maps
for key features at t2. Red × symbols indicate the selected position for each feature. (c) Activations for features at t2. Circled activations indicate the
predicted positions for each feature.



exponentially as the target is further from the fixation, but the
visual system may compensate this by initiating a fast eye
movement to gaze closer to the target, with movement time of

Ts = tprep + texec +D · tsacc, (7)

where tprep, texec, and tsacc are constants from literature [32]
and D is the movement amplitude.

After the eye movement, the target needs to be encoded (6).
However, if the encoding time is less than tprep, then the target
is encoded without the eyes moving. This creates an eye
movement model where the eyes move only when the target is
too far to encode from the current gaze point.

In addition to visual search, the model simulates learning
of layouts by using an activation-based associative memory
model [1], its location is stored in the memory storage. An
activation strength of an association can be calculated based
on the number of times the target has been found:

Bi = ln(
n

∑
j=1

t−d
j ), (8)

where t j is the time since the j:th time of finding the target i,
and d is a decay parameter, set from literature [18]. As the
model learns the layout, it can use the associative memory
to recall the position of the target without having to visually
search for it. The model is able to recall the position of the
target, if Bi > 0, with noise added from normal distribution
[18]. Recall time is:

Ti = Fe− f Bi , (9)

where F and f are scaling constants, set based on literature
[18].

Longer history with a layout results in higher associative ac-
tivations, and faster, more expert-like performance in finding
targets. From the activations, the model can predict where the
user will gaze, given a layout and user history. Figure 2(c)
illustrates activations, and predicted positions, for the given
scenario.

FAMILIARISER: SYSTEM OVERVIEW
We implemented the above principles of familiarity in Famil-
iariser, a browser-styled application that allows users to visit
webpages and enables access to familiarised versions, adapted
towards each user. As illustrated in Figure 3, when a user
visits a page, the following pipeline is executed:

1. Parse page: The page source (HTML) is parsed by the
system. Key elements, representing high-level features, are
detected and labelled.

2. Update history: If the visited page does not exist in the
history, it is added; if it was previously visited, the cor-
responding entry in the history is updated for the page.
Additionally, familiarity scores, described in the previous
section, are updated for every page in the user history.

Page displayed

1. Parse page

2. Update history

3. Compute familiar design

4. Restructure page

disabled
enabled

Page
visited

Original
Page

Familiarised
Page

Figure 3. To compute a restructuring for a page, the history is updated
for visited pages. Once familiarisation is enabled, the familiar design is
computed using an HVS principle, and restructuring is instantiated via
layout optimisation prior to rendering on a web browser.

While familiarisation is disabled, the pipeline ends at this
point, and the original page is displayed as is. Once fa-
miliarisation is enabled, the following steps (3 and 4) are
executed to familiarise the page.

3. Compute familiar design: Based on usage history, we
compute the familiar page design, to be used as the basis
for restructuring the new page.

4. Restructure page: The new page is restructured using posi-
tional values of matching features from the familiar design,
and repositioning the corresponding elements on the visited
page. Overlaps may occur in the restructured page. Famil-
iariser resolves any such overlaps while attempting to best
maintain relative alignments of elements on the page. This
ensures a valid layout, without obscuring or omitting any
contents. The familiarised page is finally displayed to the
user.
Figure 4 illustrates two examples of results obtained by
Familiariser, given a user history and original (unfamiliar)
page, for each of the four principles of familiarity.
In the remainder of this section, we describe the various
components of the system in greater detail.

Page Parsing
A feature can be defined as a task-level element [37]. They
are actionable elements, with a well-defined purpose, such
as the logo, search bar, buttons or icons to login and access
a user account, or the shopping cart on e-commerce sites,
etc. Features can be composed of several low-level HTML
DOM elements. For familiarisation, it is necessary to first
detect these features on a given page. Prior works have
explored element detection when underlying sources were
not available. Prefab [9] presented a pixel-based approach
to reverse-engineering the GUI. Sikuli [39] allowed users to
take screenshots of widgets and elements, and use these for
search and automation of visual interfaces. For webpages,
however, the underlying source files are openly accessible.
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Model Results
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Figure 4. A visual comparison of the results for the four presented familiarity models, for two independent cases. For a given user history, when a new
(unfamiliar) page is visited, each of the models may produce varying results.



Previously, Webzeitgeist [20] used CSS selectors to detect
common features. Familiariser parses the underlying DOM
tree of a page, and analyses DOM tags, identifiers, and
linked CSS classes, of elements to automatically detect fea-
tures on the page. We use partial string matching to detect
commonly-used names, and map them to corresponding
features. A feature can either be a leaf node in the DOM
tree, or a compound element consisting of several smaller
elements. The detection of features relies on appropriate
naming and tagging of underlying HTML elements, and
this can be a limiting factor in finding all matching features
across different pages. Feature recognition could be im-
proved by employing other computational methods, such as
image recognition or machine learning, but this is out of the
scope of this work.

Usage History Updates
For each user, page visit history is recorded, and usage-
based metrics are updated each time new pages are visited.
For each page, a unique entry in the history is maintained,
and includes information related to time spent on the page
(duration), frequency of visits, recency, and order of visits.
When an existing page in history is re-visited, the frequency
( fpage) is incremented, and the recency of that page is re-
set such that it is the “most recent” page (i.e. rpage = 0).
For every other page in the history, the recency (rpage) is
incremented, thus decreasing the recency score (Sr).

Familiar Design Computation
All pages in the history are considered to compute the famil-
iar layout design. For web browsing specifically, different
categories of websites have distinctly different features. To
avoid mismatch in domain, website categorisation can be
performed as an intermediate step, and only pages within the
same category as the currently-visited page are considered.
For example, if the user intends to visit a shopping website,
only pages from the shopping domain are considered while
computing the base layout design.

Principles I and II consider a single page as the ‘familiar
design’. Familiarity scores are calculated accordingly, and
the highest-scoring page is selected. Matching features are
extracted from the familiar design, and their xy positions
are used for the base layout design. Principles III and 4
compute familiar designs based on all pages in the user
history. For principle III, probability distribution maps are
created for features detected on all visited pages. Using
these, the most likely position for each feature is estimated,
resulting in a base design where all feature are located
appropriately. For principle IV, activation points for each
feature are computed. The point with the highest activation,
for a feature, is predicted to be the most familiar position,
and hence used for the base design.

Target Page Restructuring
The base design that is computed is used to restructure the
newly-visited page. Features on the target page are matched
to those on the base design, and repositioned accordingly.
In [21], retargeting occasionally resulted in truncated or
cropped content due to size mismatch. In our approach,

while repositioning, dimensions of the original elements
are maintained so as to avoid truncation of contents. This
can however result in some overlapping or occlusion of
elements.

Overlap Resolution
Overlaps are resolved by setting up a series of overlap-
redressal rules. Examples of rules used in Familiariser are
as follows:

(a) Left-alignment or top-alignment of two (or more) el-
ements should not be violated. If this is violated, a
penalty is applied.

(b) Movement of any element from its preferred (horizon-
tal) location entails a penalty.

(c) The vertical or horizontal sequence of any pair of ele-
ments should be honoured.

(d) The canvas width should not be changed. The height
may be changed if needed.

The rules are implemented using any standard integer-linear
programming solver, resulting in a valid layout without
overlaps.

Enabling Familiarisation
During the initial stages of browsing, familiarisation is dis-
abled. As users visit different pages, they gradually learn
visual layouts of these, thus increasing chances of recall dur-
ing future visits. Once a user is fluent with a small set of
pages, familiarisation is enabled, and newly visited pages are
be adapted to computed familiar designs. However, we need
to determine the ideal moment to enable familiarisation, to
make it effective. There is a trade-off between familiarising
too early and too late. If enabled too early, users may not have
learnt visited pages sufficiently, thus future pages would not
benefit from adaptation. On the other hand, if familiarisation is
delayed, then users might have already been exposed to a large
number of diverse designs, thus making recall harder. For the
purpose of our study, we determined (by trial-and-error) that
enabling familiarisation after 25 page visits was favourable,
given that the number of unique pages was less than or equal
to 5. For future systems, familiarity scores can be used to
empirically determine when to enable familiarisation, or this
could be customisable per user.

With automatic (always-on) familiarisation, pages are auto-
matically adapted once enabled. Familiariser also supports
manual (on-demand) familiarisation, where users can request
for a familiarised version of page. Here, the original page is
displayed by default, and a familiarised version is rendered
only when requested. This is similar to how web services
such as translation and reader-friendly modes enable users to
request for adapted versions of a page. Manual familiarisation
obviates the need for a determining a fixed point at which
adaptations are enabled.

ARCHITECTURE AND IMPLEMENTATION
Familiariser is implemented in Swift, on MacOS 10.13, as a
standalone browser-styled application. In the back-end, the
application contains a history model for each user, containing



a dictionary of visited websites. Along with the website URL,
and parsed contents, each website object also contains rele-
vant usage information required for modelling familiarity (as
described in section ‘Modelling Familiarity’). Every time a
new page is visited, custom JavaScript code parses the page
source, and converts the page into a flattened JSON file, con-
taining absolute (xy) positions of elements, as they appear on
the browser, and other element properties, such as tags and
CSS styles, required to recreate the page and to infer features.
The JSON file is parsed, to construct a webpage object. The
cognitive learning model (described in principle IV) is im-
plemented using Common Lisp. Each time familiarisation is
required, a CSV file containing relevant history information,
including access timestamp, duration, and linked JSON file
name, is generated. The CSV file and required JSON files
for all webpages are passed as input to the learning model.
As output, the model generates a CSV file containing activa-
tion points for all detected features, along with confidence
values, and returns this to Familiariser. Familiariser uses this
to select the desirable positions for features, to generate the
familiar design. Overlaps in layout elements are resolved by
passing a file containing element positions to a Java applica-
tion. The application applies overlap-redressal rules to each
element. We use an IBM CPLEX linear programming solver
to optimally resolve any detected overlaps. The solver returns
a corresponding file with resultant element positions. This is
used by Familiariser to generate the final valid layout, which
is then displayed to the user.

EVALUATION
The goal of our evaluation is to verify the concept of famil-
iarisation, and the presented system. We seek to answer the
question: Does familiarisation improve performance in web
browsing for end-users? To this end, we conducted a com-
parative user study, and report on quantitative results. We
compared original (unmodified) designs against familiarised
designs in a study where users were asked to point-and-click
on different features on the displayed page. We used the visual
statistical learning principle (principle III) for familiarisation
as these selection tasks were quite brief in duration. As depen-
dent variables, we analysed visual search time, approximated
by pointing time, and number of eye-gaze fixations per target
feature. Comparing these two cases enables us to evaluate
the potential effects of familiarisation during real-world usage.
For the test case, we chose the domain of shopping websites,
a frequently used category of webpages that are also plenty in
number. These websites typically contain similar features yet
vary vastly in their layouts and presentation of these features.
This makes them a good test candidate for Familiariser, and
provides a realistic use scenario for the study.

Study Tasks
For the study, participants were given the task of selecting
(clicking on) a feature element on the displayed webpage, in a
browser-based application. Webpages were selected randomly,
from a dataset of 30 shopping sites. The target feature was
also selected randomly from the page, and included commonly
occurring elements, such as logos, navigation menus, search
boxes, among others. Participants were requested to perform

tasks quickly yet accurately as possible, and avoid unnecessary
pauses. As tasks were performed, the software logged mouse
movements, click events, and eye gaze information, including
eye position (averaged) and fixations.

Apparatus
A 13” MacBook Pro with Retina Display (2560-by-1600 pix-
els), running MacOS 10.13, was used for the study. The
browser-based Familiariser software was displayed as a full-
screen application. We selected 30 shopping websites to create
the dataset, excluding commonly-used shopping pages to avoid
bias. Webpages used in the dataset were rendered offline to
avoid delays. Tasks were completed using the in-built track-
pad. All cursor motions and events were logged by the study
software. For eye-tracking, an EyeTribe Tracker1 was used,
along with a custom Python program to log gaze positions and
fixations.

Participants
We recruited 16 participants, aged 21 to 36 (mean 29), with
no visual impairments. All participants reported frequent web
usage (daily), and also reported exposure to shopping websites.
Participants completed tasks with both original (unmodified)
and test (familiarised) pages, in a within-subject study design.

Method
During the experiment, participants were exposed to a set of
different websites. Before a website was displayed, they were
presented with the task of selecting (clicking on) a particular
feature element (e.g. logo, main menu, search box) on the
page. The target feature element was selected at random
from the page to be displayed. The timed trial started once
the participant confirmed they were ready, by clicking on a
confirmation button. This button was consistently placed at
the centre of the screen, ensuring a constant starting point for
the cursor during all trials.

The experiment was divided into two phases: Learning Phase
and Test Phase.

1. Learning Phase
For each participant, the system selected 5 webpages, at ran-
dom, from the dataset of 30 pages, for the learning phase. The
learning dataset thus varied for each participant. During each
trial, a page from this subset was selected at random, and the
participant was asked to point and click at a randomly chosen
feature on the page. A total of 25 trials were performed during
this phase, and this was used to construct the ’usage history’
for the participant.

2. Test Phase
Once the participant had experienced this subset of pages in
the training phase, the experiment moved on to the test phase.
The 5 pages used in the learning phase were stored in the
user history, and excluded from the test dataset. Similar to
the learning phase, participants again browsed to randomly
selected pages, and were asked to select a target feature on the
page. During the test trials, either the original (unmodified)
page or a familiarised version was presented to the user, chosen
1www.theeyetribe.com



Visual Search Time Fixation Count
Original 2.8 seconds 3.4

Familiarised 2.5 seconds 2.6
Table 1. Summary of results for average visual search time and fixation
count per target feature.

at random. Participants performed a total of 100 timed trials
during the test phase.

The average duration of the study was approximately 30 min-
utes for each participant.

Results
We created a linear mixed model with search time as depen-
dent variable, page type (Original vs. Familiarised) as fixed
independent variable, and participant id and page URL as ran-
dom variables. Grand mean search times were Original = 2.8
seconds and Familiarised = 2.5 seconds. The difference was
statistically significant, t(663) = 5.3, p < .001, with model
F(1,663) = 28.5, p < .001. In standardised units, the benefit
of familiarised layout was β = 0.35.

We compared similarly the number of fixations per target.
Grand mean fixation counts were Original = 3.4 and Famil-
iarised = 2.6. The difference was statistically significant,
t(596) = 4.7, p < .001, with model F(1,596) = 22.3, p <
.001. In standardised units, the benefit of familiarised lay-
out was β = 0.35.

The above results indicate that familiarisation improved user
performance by reducing both visual search time and number
of gaze fixations. Our study evaluates familiarisation using
the visual statistical learning principle. A comparison of all
four principles requires a more extensive study, and is left as
subject of future work.

DISCUSSION
Our work on familiarisation of visual designs situates itself in
the field of automatically generated user interfaces that adapt
to individual users. It deals with concepts of recall and visual
learning to make interfaces appear closer to each user’s expec-
tations. We explore four principles of familiarity, inspired by
the human visual system, and grounded in literature. Famil-
iariser implements these in an end-user system that captures
users’ history, and restructures newly visited pages based on
automatically generated familiar layout designs. Results from
the empirical study provide evidence for our approach. Famil-
iarisation significantly improves visual search time by over
10%, and reduces the number of fixations by over 23%, while
searching for features on a given design.

The cost of adaptation is often a concern for adaptive user
interfaces. Our work circumvents this as familiarisation re-
structures only new and unfamiliar designs, instead of contin-
uously adapting or modifying frequently-used layouts. One
could criticise our approach for compromising brand identity,
or undermining the designer, by modifying designs. However,
we argue that usability of an interface supersedes these as-
pects for the end-user. Additionally, Familiariser addresses
this by allowing users to optionally view either original or
familiarised versions of designs. Commercial browsers have

also used such techniques to improve usability of webpages.
For instance, ‘reader-friendly mode’ on browsers allows users
to switch between the original page and a version enhanced
for reading.

There are certain limitations for applying familiarisation uni-
versally, as it requires (1) logging of a user’s history of seen
layouts, (2) detailed information and representation of lay-
outs, (3) just-in-time computations of familiar design, and (4)
instantiation of page restructuring in runtime, prior to render-
ing it on a display. By exploring a range of principles for
familiarisation, we provide alternatives that enable systems to
circumvent some of these limitations. The basic frequency-
based approach (principle I) is straightforward to implement,
and requires minimal user history information. Serial-position
curve (II) requires some additional usage information, and
requires calculations of various scores to select a page as the
familiar design. The feature-based principles (III and IV)
require detailed information about the interface layout, and
are computationally more expensive, but offer more accurate
representations for a user.

While this paper, and our implementation, focuses on reposi-
tioning of features, future familiarisation efforts can apply our
work to address other interface aspects, such as colours, fonts,
and other visuo-perceptual properties. Such properties are
often position-agnostic, and thus for these page-wise familiari-
sation (I or II) is preferred. Apart from addressing additional
interface properties, usability and experience with user inter-
faces can be further improved. Future systems can explore a
dual-optimisation strategy, where the familiarity model can be
combined with other predictive models of human perception.
Additionally, more interfaces can be covered by applying the
concept of familiarity to a variety of mediums (digital, phys-
ical, hybrid). For instance, it can be possible to familiarise
physical interfaces, adapting them to resemble previously en-
countered digital or physical interfaces. Finally, by providing
a formal model of familiarity, we can implicitly gain an un-
derstanding of “unfamiliarity”. This opens up possibilities of
other applications such as ‘unfamiliarisation’ or diversification
of interfaces. This could encourage alternative design goals
such as exploration, or be used to draw users’ attention to
certain elements.

More information and material related to this paper can be
found at http://www.kashyaptodi.com/familiarisation.
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