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We study numerically the detailed structure and decay dynamics of isolated monopoles in conditions similar
to those of their recent experimental discovery. We find that the core of a monopole in the polar phase of a spin-1
Bose-Einstein condensate contains a small half-quantum vortex ring. Well after the creation of the monopole, we
observe a dynamical quantum phase transition that destroys the polar phase. Strikingly, the resulting ferromagnetic
order parameter exhibits a Dirac monopole in its synthetic magnetic field. We observe quantitatively matching
decay dynamics for both ferromagnetic and antiferromagnetic spin-spin interactions.
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I. INTRODUCTION

The significant roles played by topological defects in nature
and their appearance in various physical contexts [1,2] have
sparked numerous theoretical and experimental studies. The
precise control over experimental parameters and the ability
to image the quantum-mechanical order parameter directly
render Bose-Einstein condensates (BECs) a unique platform
to create and observe different types of topological defects. In
particular, BECs with spin degrees of freedom may host a rich
variety of defects due to many possible order-parameter man-
ifolds and symmetries [3–11]. In these systems, topological
defects can either be created in a deterministic manner using
precisely controlled magnetic and laser fields [12–16], or they
can form spontaneously, for example when the condensate is
rapidly quenched a through quantum phase transition [17,18].
The experimentally realized topological structures in BECs to
date include singly and multiply quantized vortices [12,13,19–
21], half-quantum vortices [22], vortex rings [23], soli-
tons [24], skyrmions [15,25], polar core vortices [18], coreless
vortices [26,27], vortex-antivortex superpositions [28], soli-
tonic vortices [29], monopoles [16,30], and knot solitons [31].

The Dirac monopole configuration created in Ref. [16] is
an analog of the classical stationary magnetic point charge
considered by Dirac in the context of quantum mechanics [32].
It manifests itself as a pointlike singularity in the so-called
synthetic magnetic field [33], which is an effective gauge field
for the scalar part of the order parameter arising naturally from
its spin degrees of freedom. In agreement with Dirac’s original
work [32], this kind of monopole induces in the condensate
order parameter a nodal vortex line with vanishing particle
density extending from the location of the monopole to the
boundary of the atom cloud. Thus the ferromagnetic order
parameter supporting the Dirac monopole is energetically and
dynamically reminiscent of a line defect. Critically, there is
no topological point defect in the order parameter itself, as
the condensate is in a configuration topologically equivalent
to the ground state. Indeed, the second homotopy group [2]
for the ferromagnetic order-parameter space is trivial and
topological point defects are not permitted. Point defects may
exist in the polar phase of a spin-1 condensate, however, as
the second homotopy group for the polar order-parameter
space, Gp = [S2 × U(1)]/Z2 [34,35], is isomorphic to the
additive group of integers, π2(Gp) ∼= Z.

Topological point defects in the polar phase of a 87Rb
spin-1 BEC have been recently realized experimentally [30].
No nodal lines or other physical linelike objects are attached
to this monopole, and we therefore refer to it as an isolated
monopole. As Ref. [30] focused only on the first observation of
the isolated monopole within a finite experimental resolution,
there appears to have been no detailed study of the fine
structure of the defect after its creation. Furthermore, both
the isolated monopole [6] and indeed the entire polar phase
of the 87Rb condensate [18] are expected to be unstable at
low magnetic fields, prompting a study of the evolution of the
isolated monopole after its creation.

In this paper, we present computational results on the
fine-grained structure and decay dynamics of the isolated
monopole. We observe that the core of the created monopole
contains a small half-quantum vortex ring. In contrast to the
studies of Ref. [6] based on energetic arguments, we find
that the size of the dynamically forming ring is much smaller
than the spin healing length. We show that beyond the exper-
imentally accessed time scales [30] the polar order parameter
evolves into a ferromagnetic order parameter, accompanied by
the decay of the isolated monopole into a Dirac monopole
in the resulting synthetic magnetic field. Importantly, this
decay arises naturally from the thoroughly understood physics
of the atom cloud without any phenomenological damping
terms. Quantitatively matching dynamics are observed for both
ferromagnetic and antiferromagnetic spin-spin interactions.

II. THEORETICAL BACKGROUND

The mean-field order parameter of a spin-1 condensate
can be expressed as ψ(r) = √

n(r)eiφ(r)ξ (r), where n(r) is
the particle density, φ(r) is the scalar phase [36], and ξ (r) is a
three-component complex-valued spinor such that ξ (r)†ξ (r) =
1. For brevity, the temporal dependence of these functions is
not expressed explicitly. The evolution of the order parameter
at low temperatures is accurately described by the differential
equation

i�
∂

∂t
ψ(r) = {h(r) + n(r)[c0 + c2S(r) · F] − i�n2(r)}ψ(r),

(1)

where h(r) is the single-particle Hamiltonian, F = (Fx,Fy,Fz)
is a vector composed of the dimensionless spin-1 matrices, �

2469-9926/2016/93(3)/033638(6) 033638-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.033638


K. TIUREV et al. PHYSICAL REVIEW A 93, 033638 (2016)

is the three-body recombination rate, and S(r) = ξ (r)†Fξ (r) is
the local average spin. The coupling constants characterizing
the atom-atom interactions are given by c0 = 4π�

2(a0 +
2a2)/(3m) and c2 = 4π�

2(a2 − a0)/(3m), where af is the s-
wave scattering length corresponding to the scattering channel
with total two-atom hyperfine spin f . The single-particle
Hamiltonian is given by

h(r,t) = − �
2∇2/(2m) + V (r)

+ gFμBB(r,t) · F + q[B(r,t) · F]2, (2)

where m is the mass of the atoms, V (r) is an external optical
trapping potential, gF is the Landé g factor, μB is the Bohr
magneton, B is an externally applied magnetic field, and q is
the strength of the quadratic Zeeman shift [37]. We assume
that V (r) = m[ω2

r (x2 + y2) + ω2
zz

2]/2, where ωr and ωz are
the radial and axial trapping frequencies, respectively.

In the pure polar phase with S(r) = 0, the order parameter
can be expressed in the basis of the z-quantized spin states
{|1〉 , |0〉 , |−1〉} as [38,39]

ψ(r) =
√

n(r)eiφ(r)

√
2

⎛
⎝

−dx(r) + idy(r)√
2dz(r)

dx(r) + idy(r)

⎞
⎠

z

. (3)

Thus in the Cartesian basis the polar order parameter reads
ψ(r) = √

n(r)eiφ(r)d̂(r), where d̂ = (dx,dy,dz)T is a real unit
vector known as the nematic vector. Note that, if the order
parameter in Eq. (3) is expressed using d̂(r) as the quantization
axis, it remains fully in the component (0,1,0)T

d̂
.

On the other hand, when the average spin does not
vanish, we investigate the nematic order through the magnetic
quadrupole tensor [38]

Qab = ξaξb
∗ + ξbξa

∗

2
, (4)

where {ξi} are the components of the spinor in the Cartesian
basis. For 〈S(r)〉 �= 0, the vector d̂ is defined as the eigenvector
corresponding to the largest eigenvalue of Q.

III. METHODS

The nematic vector behaves identically to the average
spin under rotations in spin space, and hence it also follows
adiabatic changes in the external magnetic field. Consequently,
the method originally developed in Ref. [9] for the adiabatic
creation of Dirac monopoles in the ferromagnetic phase can
be used to create isolated monopoles in the polar phase, as
realized in Ref. [30].

In brief, the condensate is subjected to an external magnetic
field B(r,t) = Bq(r) + Bb(t), where Bq(r) = bq(xx̂ + yŷ −
2zẑ) is a quadrupolar magnetic field with gradient bq and
Bb(t) = Bz(t)ẑ is a spatially homogeneous bias field. In the
beginning of the simulation, the condensate is in the spin state
|0〉, yielding a nematic vector d̂(r) = ẑ. At the initial bias field
Bz = 1 G, the field gradient is linearly ramped from zero to
bq = 3.7 G/cm in 10 ms and the bias field is subsequently
decreased to Bz = 10 mG in 10 ms. The monopole is created
by decreasing the value of the bias field linearly to zero at a rate
Ḃz(t) = −0.25 G/s. This part of the control protocol is referred
to as the creation ramp and it ideally results in d̂ = B̂q(r). After

FIG. 1. (a) Horizontally and (b) vertically integrated particle
densities for the indicated waiting times after the creation ramp
which produces the isolated monopole. Different colors correspond
to particles in different z-quantized spin states with the color
and intensity scales given in the bottommost panel. The peak
column density is ñp = 2.7 × 1011 cm−2 and the field of view is
15.5 × 15.5 μm2 in each panel. The white arrows indicate the location
of a vortex line shown more clearly in Fig. 2.
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FIG. 2. (a) Spin density |ψ †Fψ | and (b) particle density ψ †ψ of
the condensate 200 ms after the creation ramp. The shown density
range is [nmin,nmax] = [1.0,4.8] × 10−4N/a3

r . The data in both panels
are shown only for |z| < 1.5ar . The spin density is well depleted along
the vortex, whereas the particle density is only partially depleted.

the creation ramp the temporal evolution continues with the
quadrupole field and optical trap intact.

The initial particle number is 2.1 × 105 and the optical
trapping frequencies are ωr = 2π × 124 Hz and ωz = 2π ×
164 Hz. We take the other parameters according to 87Rb such
as the literature values for the atom loss arising from the three-
body recombination � = � × 2.9 × 10−30 cm6/s [40,41],
the quadratic Zeeman shift q = 2π� × 70 Hz/T2 [18], and
the scattering lengths a0 = 5.387 nm and a2 = 5.313 nm. The
computational volume considered is (24×24×24)a3

r , where
ar = √

�/(mωr ) = 1 μm, and the corresponding size of the
computational grid is 200×200×200 points.

In order to enhance the numerical emulation of the experi-
mental conditions of Ref. [30], we add spatially uncorrelated
complex-valued noise to the spinor components at each grid
point prior to the creation ramp. The amplitude of the noise
is uniformly distributed to introduce 0–1% fluctuations in the
local particle density for each spinor component.

Before the beginning of the control cycle, the ground
state is found using the successive over-relaxation method
restricted to the spin state |0〉. Subsequently, the split-operator
method together with fast Fourier transformations are utilized
to simulate the temporal evolution. The length of the time step
is fixed to τ = 2 × 10−4/ωr .

IV. RESULTS

We numerically integrate Eq. (1) and apply the control
protocol described above with the initial condition d̂ = ẑ.
Figure 1 shows the resulting spin-contrast images of the
condensate particle densities for different waiting times after
the creation ramp. As in Ref. [30], the condensate particle
densities just after the creation ramp are in good agreement
with Eq. (3) and d̂ = B̂q(r). Thus the particles almost entirely
reside in the so-called neutral state which corresponds to the
zero eigenvalue of the local Zeeman Hamiltonian. However,
50 ms after the creation ramp, the polar phase has noticeably
decayed towards the local ferromagnetic strong-field-seeking
state (SFSS), i.e., the spin state that minimizes the local
Zeeman energy

EZ(r) = gFμBξ †(r)Bq(r) · Fξ (r). (5)

FIG. 3. Projection of (a)–(c),(e),(f) the nematic vector d̂ (↑) and
(d),(g) average spin Ŝ ( ) of the condensate onto (a)–(d) the xz and (e)–
(g) xy planes for different indicated waiting times after the creation
ramp. The background color map shows (a)–(d) the y component,
(e),(f) the azimuthal component, and (g) the z component of the spin.
The core of the Alice ring is shown with black dots in (a), which
shows a magnification of the center region of (b). The white arrow
indicates the location of a vortex line shown more clearly in Fig. 2.

The ferromagnetic phase is first visible at the top and bottom
edges of the condensate and extends gradually until the
condensate resides almost entirely in the SFSS. Qualitatively
similar results are obtained in simulations without the added
noise (data not shown).

It is well known [9,16,33] that the SFSS corresponding
to the quadrupole field Bq(r) contains a Dirac monopole in
its synthetic magnetic field B∗ = �∇ × A∗, where A∗(r) =
iξ †∇ξ is a vector potential arising from the spinor part of the
order parameter [16]. Physically, the vector potential A∗ is
related to the superfluid velocity as vs = �

m
(∇φ − A∗), and

the corresponding vorticity is 
s = ∇ × vs. Note that the

033638-3



K. TIUREV et al. PHYSICAL REVIEW A 93, 033638 (2016)

FIG. 4. Temporal evolution of the relative population of the
neutral state, nns(t) (solid line), and deviation of the order parameter
from the created isolated monopole at t = 0, ε(t) (dashed line). In
addition to the standard parameters given in the text, neutral-state
populations are also shown for (i) q = 0 ( ), (ii) � = 0 ( ), and (iii)
c2 = −4π�

2(a2 − a0)/(3m) ( ) in Eq. (1). Furthermore, we show
nns(t) for cases in which the quadrupole field gradient is suddenly
changed at t = 0 from its standard value bs

q = 3.7 G/cm to 1.4bs
q

( ), 0.5bq ( ), and 0.3bq ( ). All curves are interpolated using cubic
splines for enhanced visual appearance.

superfluid velocity and vorticity are physical observables, and
hence independent of the choice of gauge for the synthetic
fields [36]. In contrast, the synthetic vector potential depends
strongly on the gauge.

In Refs. [9,16], the SFSS is accompanied by a double-
quantum vortex line terminating at the location of the Dirac
monopole. This vortex line corresponds to the physical
nodal [42] line consider by Dirac [32]. Note that the superfluid
vorticity contains a line singularity that coincides with the
vortex line, but any line singularity in the synthetic magnetic
field is not physical and can be removed by the choice of
gauge [36].

In contrast to Refs. [9,16], the final order parameter in
our case does not have a terminating double-quantum vortex.
Instead, there is a single-quantum vortex that reverses its
circulation at the monopole, a scenario that has previously
been shown to minimize the mean-field energy in the case
of a Dirac monopole [43]. We confirm the presence of this
single-quantum vortex in Fig. 2 where it is visible as a line
of suppressed spin density. We have verified that the phase
winding along this vortex line reverses its sign near the origin
where the magnetic field vanishes (data not shown). The
orientation of the vortex depends on the particular realization
of the applied noise.

Figure 3 shows the nematic vector and selected components
of the spin vector during the decay of the isolated monopole. A
ferromagnetic ring with a well-defined polarization is clearly
visible just after the creation ramp [see Figs. 3(a), 3(b),
and 3(e)], although it is so small that it was not distinguished
within the finite experimental resolution of Ref. [30]. This
ring resides at the monopole core and retains its size during
the temporal evolution. Since the nematic vector is observed
to rotate by π about the ferromagnetic core [see Fig. 3(a)],
the ring is identified as a half-quantum vortex ring, or Alice
ring, discussed in Ref. [6]. We determine the radius of the

FIG. 5. (a) Horizontally and (b) vertically integrated particle
densities produced in the strong magnetic field gradient bq =
11.1 G/cm. All other parameters assume identical values to those
specified in the main text. The peak column density is ñp = 2.7 ×
1011 cm−2 and the field of view is 22 × 22 μm2 in each panel.

Alice ring from the behavior of the nematic vector to be
roughly 0.2 μm, which exceeds neither the spin healing
length �/

√
2m|c2|n(0) ≈ 4 μm nor the density healing length

�/
√

2m|c2 + c0|n(0) ≈ 0.3 μm. Thus the texture imprinted in
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the condensate using the creation ramp essentially manifests
itself as a point defect. The subsequent decay of the polar phase
destroys the Alice ring and eventually the characterization of
the condensate using the nematic vector becomes obscure. We
therefore do not show the nematic vector but rather the local
spin for long evolution times. Ultimately, the local spin aligns
with the external magnetic field as shown in Figs. 3(d) and 3(g).

Figure 4 shows the fraction of particles in the neutral
state and the deviation of the order parameter from the
initial isolated monopole state during the decay. The rel-
ative population of the neutral state is given by nns(t) =

1
N(t)

∫
dr|�ns(r,t)ψ(r,t)|2, where N (t) is the total number of

atoms and �ns(r,t) is a projection to the neutral state [14].
The deviation of the order parameter from the initial iso-
lated monopole state at t = 0 is characterized by ε(t) =
1 − | ∫ dr ψ∗(r,t)ψ(r,0)|/√N (0)N (t). We observe that, just
after the creation ramp, roughly 90% of the atoms reside
in the neutral state, in agreement with the experimentally
obtained value in Ref. [30]. The decay of the isolated monopole
into the ferromagnetic phase is observed to change from an
exponential-like behavior into approximately linear decay with
increasing magnetic field gradient. This observation suggests
that a cascade of decay channels plays a significant role at
strong field gradients. Due to the decreasing spatial overlap
between the resulting domains with increasing field gradient,
the decay dynamics is slower the stronger is the field gradient.
For a sufficiently strong gradient, the resulting domains are
spatially well separated as shown in Fig. 5.

Figure 4 also shows the results obtained for three additional
cases: (i) elimination of the quadratic Zeeman potential, (ii)
elimination of three-body recombination, and (iii) reversal
of the sign of the spin-spin interaction strength. None of
these changes leads to a significant effect on the decay
dynamics, indicating that the decay is not originating from
these terms. We also studied the creation and decay of the
isolated monopole with parameters corresponding to 23Na

atoms and obtained qualitative agreement with the case of
87Rb atoms (results not shown).

V. CONCLUSIONS

Our numerical studies suggest that the isolated monopole
structure observed in Ref. [30] contains a small Alice ring [6].
This vortex ring is destroyed by a subsequent dynamical phase
transition into a ferromagnetic order parameter supporting
a Dirac monopole. Although the quadrupole field has been
observed to stabilize the polar phase of a 87Rb condensate
if the field zero is well outside the condensate [30], our
simulations reveal that after the field zero is brought into the
condensate, the polar phase decomposes on a time scale of
100 ms. We attribute this behavior to the spatially varying
magnetic field and the linear Zeeman interaction. Neither
the spin-spin interactions, nor the quadratic Zeeman effect,
nor three-body recombination has a significant effect on the
decay dynamics. However, the strength of the magnetic field
gradient is shown to have a detrimental effect on the decay
speed and characteristics. These studies set the stage for the
detailed dynamics of topological point defects in quantum
fields. Finding ways to extend the lifetime of the defect further
and thereafter to study the dynamics of multiple interacting
point defects remain future challenges.
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