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The exploitation and characterization of memory effects arising from the interaction between system and
environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this
paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting
qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the
Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress,
the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be
used as a diagnostic tool to detect the presence or absence of memory effects.
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I. INTRODUCTION

Real quantum systems are always in contact with a sur-
rounding environment, leading to the necessity of an open-
system description [1,2]. Regardless of the fine microscopic
details of the system-environment interaction, one can, to some
extent, assess some general properties of the reduced system
dynamics and, in particular, investigate the presence and role
of memory effects [3,4].

In recent years, a substantial body of literature has
focused on non-Markovian dynamics [5–10], also due to
relevant technological advances that have made it possible
to observe shorter timescales at which memory effects do
play an important role [11–19]. The range of approaches to
defining and quantifying non-Markovian behavior as well as
applications in quantum information and simulation protocols
[20–22], foundational issues of quantum mechanics, [23]
and even studies in condensed matter is incredibly vast
[24–30]. Although no unique answer regarding the physical
nature of non-Markovianity is currently available, its intrinsic
multifaceted aspect has surely sparked interest in a plethora
of different fields.

In several physical models of open quantum systems, the
Markovian (memory-less) or non-Markovian character of the
dynamics is crucially connected to a physical parameter deter-
mining the relative timescales of the system-environment inter-
action. In the spirit of reservoir engineering one can, in certain
physical implementations, manipulate such parameters driving
and observing the Markovian to non-Markovian crossover.
This has been done experimentally for simple models of qubit
dynamics, mainly with optical setups [11,18,19].

In this paper we consider a system consisting of a (driven)
qubit coupled to a non-Markovian environment modeled as
an additional qubit, which in turn dissipates to a Markovian

*Corresponding author: sihara@utu.fi

thermal bath. For the sake of conveying the objectivity of
qubits, in the rest of the paper we refer to the first qubit as
the cold qubit (CQ) and to the latter qubit as the thermal
qubit (TQ). The TQ plays here the role of the memory of
the non-Markovian environment. Depending on the relative
strength of the CQ-TQ coupling and the TQ-Markovian bath
coupling, one observes the presence or absence of memory
effects. One of our main goals is to establish a relationship
between such a physical parameter and a recently introduced
information-based quantifier of non-Markovianity, namely, the
volume of accessible states [9]. One would expect a linear
increase of non-Markovianity when increasing the CQ-TQ
coupling with respect to the TQ-Markovian bath coupling.
Interestingly, we find that this is not exactly the case as we
observe a slightly nonmonotonic behavior.

We then turn our analysis to the thermodynamic properties
of the open quantum system [31–33], and in particular we look
at the connection between the average work performed on the
CQ [34,35] and memory effects in the dynamics, as measured
by the volume of accessible states. The reason for this specific
choice of quantities lies in the fact that they are both concep-
tually easy to grasp and mathematically solid to investigate
the possible interplay between quantum thermodynamics and
non-Markovianity. Our main target is to understand if such
an interplay exists, and whether it can be used to diagnose
the presence of non-Markovian effects. In particular, we find
that the presence of memory effects suppresses the average of
work performed on the CQ under resonant periodic driving.
This finding, in addition to its use as a diagnostic tool for
memory effects, can be of high importance in certain quantum
thermodynamic tasks. If we want to increase (decrease) the
ability to perform work on a qubit, then our results show
that non-Markovian environments perform worse (better) than
Markovian ones.

While our theoretical analysis is completely general and
not specifically dependent on the physical context in which
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FIG. 1. Sketch of the theoretical model (upper panel) and a
possible experimental implementation (lower panel) in circuits using
transmon qubits. The CQ is coupled to a time-dependent voltage gate
and capacitively coupled to a TQ. This, in turn, is connected to a
resistor that acts as a dissipative environment.

the model can be experimentally implemented, to illustrate
our findings we will use parameter values that are typical of
the superconducting qubits scenario since we believe that this
model will soon be in the grasp of experimentalists in this
framework. We notice that a similar system has been studied
by some of the authors in the classical regime where the role
of hidden variables in the observable (thermo)dynamics was
studied [36,37]. Moreover, a two-qubit system in which each
qubit interacts with its own bath is employed to study heat
transport using numerically exact techniques in [38] and also
quantum correlations in [39].

This manuscript is organized as follows. In Sec. II the model
we investigate is introduced. Section III is dedicated to a brief
introduction of the tool we use to quantify non-Markovianity
and its parameter dependence. In Sec. IV we study the work
performed on a subpart of the system in the presence and
absence of memory effects. Finally, we draw conclusions and
discuss open perspectives in Sec. V.

II. TWO-QUBIT MODEL

As depicted in Fig. 1, we consider two distinguishable
interacting two-level systems, labeled 1 and 2, which respec-
tively correspond to CQ and TQ. While CQ is subjected to a
weak periodic driving, TQ is weakly coupled to a Markovian
nondegenerate bosonic bath at temperature (βkB)−1. This type
of setting can be practically implemented using nanodevices
operating in the quantum regime, such as flux qubits, Cooper
pair boxes, and transmon qubits, and by coupling one of them
to a resistor [40]. For the results presented in Secs. III and IV,
we use parameters typical of such a superconducting setting,
employing the engineered setup to sweep through the range of
parameters we study. Therefore, the typical energy scale of the
qubit resonance frequency is about h̄ω0 ≈ 1 K × kB . Beyond
this experimental realization, the principal setup, as depicted in
the upper panel of Fig. 1, has been studied widely in the context
of non-Markovianity. In modeling the non-Markovian features
of the system-environment interaction we follow an approach
conceptually similar to the pseudomode method, introduced
in Ref. [41], dividing the environment into a part storing the
memory (the TQ) and a memoryless Markovian part.

The total Hamiltonian of the system reads (we assume kB =
1 and h̄ = 1 in the rest of the paper)

H (t) =
2∑

j=1

ωj

2
σ (j )

z +
∑

ω

ωb†ωbω + Jσ (1)
x σ (2)

x

+ λ(t)σ (1)
x +

∑
ω

κgω(σ (2)
+ bω + σ

(2)
− b†ω), (1)

in which ωj is the frequency of the j th qubit, bω,b†ω are
the bosonic annihilation and creation operators of the mode
environment at frequency ω, J is the qubit-qubit coupling
constant, λ(t) is a time-dependent driving protocol, gω is the
spectral function of the environment, and κ is a dimensionless
coefficient determining the strength of the interaction between
TQ and the bath. We consider a periodic driving field acting
on CQ, specifically λ(t) = λ0 sin[ωDt]. In the lower panel of
Fig. 1 we depict a possible implementation using transmon
qubits, whose dynamics can by described by Eq. (1), provided
that a global π rotation in the xy plane leading to σx → σy

is performed. By considering the bipartite qubit system as an
open system and limiting our attention to the weak driving
regime, one can study the dynamics of the the joint 2-qubit den-
sity matrix ρ(t) using the following Lindblad master equation:

ρ̇(t) = −i[HS + HD(t),ρ(t)] + D[ρ(t)], (2)

in which we have relabeled HS = ∑2
j=1

ωj

2 σ
(j )
z + Jσ (1)

x σ (2)
x

and HD(t) = λ(t)σ (1)
x , and D is the following Lindblad

dissipator:

Dρ(t) = γ (↓)
(
σ

(2)
− ρ(t)σ (2)

+ − 1
2 {σ (2)

+ σ
(2)
− ,ρ(t)})

+ γ (↑)
(
σ

(2)
+ ρ(t)σ (2)

− − 1
2 {σ (2)

− σ
(2)
+ ,ρ(t)}), (3)

in which γ (↓) = (κ̄/2)[1 + coth(ω2β/2)] = γ (↑)eβω2 are
decay rates of the TQ, generally dependent upon the spectral
density of the bath, which is assumed to be ohmic with a cutoff
frequency that is larger than all the relevant frequencies of
the open system. Here we define κ̄ = κω2, which determines
the TQ-bath interaction strength and is the zero-temperature
decaying rate of the TQ. The parameters identifying the
relevant timescale are the coupling J between the two qubits,
the coupling κ̄ between the TQ and thermal bath (or more
precisely the ratio between the former two), the qubit-qubit
detuning 
 = ω1 − ω2, and the thermal timescale h̄β.

A valid objection to using Eq. (3) to describe the effect of
the dissipative Markov bath could be raised by noticing that if
the qubits are strongly interacting, then a nonlocal dissipator
should be used to describe more realistically the dynamics
of the combined two-qubit system. For this reason, we also
derived a more complicated, nonlocal version of Eq. (3) and
employed it for comparison. However, for the parameter region
we are interested in, no appreciable discrepancies between the
two models were found and therefore all the findings reported
in the following are obtained by using the local dissipator
(3) (see Appendix). Additionally, we benchmarked our results
with an exact, numerical method, the stochastic Liouville–von
Neumann equation [35,42].
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III. NON-MARKOVIAN DYNAMICS OF THE CQ

In this section we study how memory effects depend on
the relevant timescales of our system. We are interested in the
reduced dynamics of the CQ, which in this section is undriven,
i.e., λ0 = 0. More specifically, having the reduced state of the
CQ by taking the partial trace over the TQ, that is, ρ1(t) =
tr2ρ(t), and considering the larger environment consisting of
the TQ and the bath, non-Markovian features could arise in
the reduced dynamics of the CQ. To characterize the degree of
non-Markovianity in the dynamics of CQ we use the geometric
approach introduced in [9], which witnesses memory effects by
monitoring the temporal evolution of the volume of accessible
states during the dynamics. Other definitions are available in
literature [5–8,10] and, depending on the system at hand, might
be more or less suitable. The reason we chose to utilize this
quantifier lies in the relative computational simplicity for this
particular system. It is worth mentioning that the volume of
accessible states is a weak witness of non-Markovianity, in
that it often fails to detect nondivisibility of the dynamical map.
However, non-Markovianity detected by this approach always
implies nondivisibility as well as backflow of information [43].

Consider a completely positive and trace-preserving
(CPTP) map �t describing the evolution of the CQ such that
ρ1(t) = �t [ρ1(0)]. One can find an affine transformation of
the Bloch vector of the qubit, associated with this map, such
that �r(t) = A(t)�r(0) + �T (t). Here �r(t) is the Block vector at a
given time t , A(t) is a transformation matrix which rotates and
possibly shrinks the Bloch vector, and �T (t) is a translation of
the Bloch vector. The volume of accessible states at a given
time dV (t) can be captured by evaluating the determinant of
the transformation matrix |A(t)| [9]

dV (t) = |A(t)|dV (0), (4)

in which dV (0) is the initial differential of the volume of
accessible states. It can be shown that for any Markovian
(divisible) dynamical map, |A(t)| decreases monotonically in
time. Therefore, a nonmonotonic time evolution of the volume
of accessible states signals memory effects in the dynamics of
an open system. This also allows one to define a quantifier of
the degree of non-Markovianity of a dynamical map as

N = 1

V (0)

∫
V̇ (t)>0

V̇ (t)dt, (5)

in which the time integration is performed over those time
intervals accounting for the nonmonotonicity of V (t). It is
generally assumed for this widely studied generic setting we
employ here that non-Markovianity increases monotonically
with the ratio J/κ̄ . However, as we will show in the following,
the behavior of non-Markovianity for CQ is slightly more
sophisticated.

Because the TQ is part of the environment, its initial state is
thermalized, ρ2(0) = e−βω2σ

(2)
z /2/Z2 with Z2 = tr[e−βω2σ

(2)
z /2].

We investigate the two cases of resonant and nonresonant
qubits. We start by inspecting the evolution of |A(κ̄ t)| for
several values of the tuning parameter J/κ̄ at a fixed low tem-
perature of ω2β = 0.35, as displayed in Fig. 2. As expected, a
transition from Markovian to non-Markovian dynamics occurs
at a certain threshold value (J/κ̄)th at which the influence

FIG. 2. Time evolution of the volume of accessible states |A(κ̄ t)|
at low-temperature regime with ω2β = 0.35, different values of J/κ̄ ,
and (a) zero detuning (
/κ̄ = 0) and (b) nonzero detuning (
/κ̄ =
11).

of the TQ, carrying the memory, becomes dominant over the
Markovian thermal bath. So we define (J/κ̄)th as the smallest
value of J/κ̄ at which the volume of accessible states, |A(t)|,
shows temporary increase, i.e., starts to display nonmonotonic
behavior. Depending on whether the qubits are resonant or
not, (J/κ̄)th can be larger or smaller. This can be qualitatively
understood using the following argument. At low temperatures,
when 
/κ̄ = 0, the thermal bath is effectively in resonance
with both qubits. Therefore, being that this is made of a small
density of bosonic modes thermally excited around ω1, it tends
to overrule the effects of the TQ. This is valid up to a critical
value of J/κ̄ at which the qubit-qubit interaction is strong
enough for memory effects to kick in. When the two qubits
are nonresonant, the effective action of the thermal bath on the
CQ becomes strongly off-resonant for lower values of J/κ̄ .
The Markov bath becomes energetically transparent to the CQ,
which at this point, is effectively interacting with the TQ only.

This argument works well in the low-temperature limit but
it fails in the high-temperature limit, as shown by Fig. 3,
where the threshold values (J/κ̄)th are plotted versus ω2β

for both the 
/κ̄ = 0 and 
/κ̄ = 11 cases. While in the
low-temperature limit, that is, ω2β → ∞, the threshold value
(J/κ̄)th tends asymptotically to 1 for resonant qubits and to
0 for nonresonant qubits; if the rescaled temperature ω2β is
chosen above a certain value the situation is reversed and
the threshold coupling for nonresonant qubits is larger than
the one for resonant ones. At higher temperatures the density
of thermally excited modes increases. With the qubit-qubit
detuning being relatively small, the frequency of the CQ will
be resonant with a bath mode that is sufficiently thermally
occupied and will couple to it via interaction with the TQ.
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FIG. 3. Threshold value of J for Markovian to non-Markovian
crossover in Y axes vs temperature of the Markovian bath in X axes
in log scale for resonant and nonresonant qubits. Left Y and lower X

axes show respectively the threshold J/κ̄ and rescaled temperature of
the bath, ω2β. Right Y and upper X axes determine threshold values
of J in the unit of 100 MHz and temperature of the Markovian bath
in Kelvin, respectively, provided that ω2 = 5 GHz and κ̄ = 50 MHz.

Therefore, since the TQ is off-resonance with the CQ, it will
take a larger interaction strength J to induce memory effects
on the reduced dynamics of the latter. One can easily fit the

/κ̄ = 0 curve to a power-law decay(

J

κ̄

)
th

− 1 ≈ A

(ω2β)B
, (6)

in which A and B can be numerically determined. Now we
give some insight into the order of magnitude of the threshold
J regarding some typical experimental values. Suppose that
two qubits are resonant at the frequency ω1 = ω2 = 5 GHz
and the zero-temperature decaying rate of TQ is κ̄ = 50 MHz.
According to Fig. 3 the threshold value of J for low temper-
atures asymptotically approaches 50 MHz, which is a typical
value for qubit-qubit coupling in experimental setups using
transmon qubits [44]. It is also worth mentioning that the value
of κ̄ can be determined experimentally, provided that we know
the temperature of the bath, by detecting the relaxation time
of the qubit via a dispersive measurement of the qubit state
following a driving pulse [45].

We conclude this section by inspecting the behavior of
N vs J/κ̄ at fixed temperature, as displayed in Fig. 4 for

βω2

βω2

0.25

0.2
0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Non-Markovianity measure N for resonant qubits as a
function of J/κ̄ for two different rescaled temperatures ω2β.

βω2 = 0.2,0.25. First, we notice, in agreement with Fig. 2,
the presence of a threshold value (J/κ̄)th. Second, the memory
effects become stronger at lower temperatures, a trend con-
sistent with the low-temperature argument introduced above.
As anticipated, we find that non-Markovianity is not mono-
tonically increasing with J/κ̄: local extrema can be observed
whose positions in J/κ̄ appear to be independent of the chosen
(low) temperature of the bath.

IV. AVERAGE WORK

In this section, we include in the total system the weak
driving force HD(t) acting on the CQ and we investigate how
memory effects arising in the undriven dynamics can affect
the average work performed. Driving changes in general the
non-Markovianity of an open system; it can be generated,
enhanced, or partly or fully suppressed [46–48]. While we
studied the non-Markovianity both for the driven and undriven
qubit, for the effect discussed, the non-Markovianity of the
undriven qubit turns out to be the most relevant. Also, we
restrict both the coupling strength J and the driving amplitude
λ0 to small values, consistent with the approximations done to
derive our master equation.

The problem of defining work in the quantum realm has
attracted a great deal of attention recently [31–34]. Due to
the foundational problem posed by quantum measurement and
the impossibility of defining work as an observable, several
approaches have been considered, mostly limited to the case
of unitary dynamics. A significant and well-defined quantity
is the average of the work performed, introduced in [34] and
applicable to the case of open systems too. In this setting, the
average work is defined via the power operator

P (t) ≡ ∂H

∂t
(t), (7)

which is linked to the first momentum of work via the following
relation:

〈W (t)〉 =
∫ t

0
dτ 〈P (τ )〉. (8)

The interplay between non-Markovianity and weak driving can
lead to interesting results. We assume the CQ is driven by
a resonant periodic driving protocol λ(t) = λ0 sin[ωDt] that
changes its free Hamiltonian in time. Since the two qubits are
interacting at all times, one may wonder what is the correct
frequency ωD at which the CQ should be driven. Generally
speaking, due to the qubit-qubit interaction, the natural oscil-
lation frequencies of the total system are dressed. On the other
hand, since we are working in a weak coupling regime, this
frequency dressing should not be too drastic and one should
still be able to consider the two qubits as separated entities,
at least to some extent. Therefore, an interesting question
naturally arises on how the work performed on the CQ changes
depending not only on the presence of memory effects, but also
on the specific driving frequency. For all the above reasons,
we choose two different driving frequencies: the bare CQ
transition frequency ω1 and the lower nondegenerate transition
frequencies of the joint qubit-qubit system ε1 =

√
ω2

2 + J 2−J .
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FIG. 5. Time evolution of the average work performed on the CQ
at temperature ω2β = 0.2, 
/κ̄ = 0 and for the following values of
J/κ̄ = 1 (dotted black marked by star), 2 (dashed red marked by
square), 20 (dotted blue marked by circle), and 30 (dashed green
marked by diamond). In the lower panel the frequency of the driving
field is set to ωD = ε1 while in the upper panel ωD = ω1.

In Fig. 5 we display the time evolution of the average work
performed on the single qubit for these two driving frequencies.
In both cases the first striking feature is a suppression (damping
of the oscillations) of the 〈W (κ̄ t)〉 when the CQ dynamics
transitions from Markovian to non-Markovian. Given the
sinusoidal driving we employ, one would expect an oscillatory
behavior of the average work, damped of course because of
the bath attached. In fact, for longer propagation times (not
shown), the oscillations vanish due to damping. Which is
exactly the behavior we observe in the case of Markovian
dynamics (red and black lines). But for the non-Markovian
case (blue and green lines), the average work does not evolve
according to this expectation. Memory effects in the single-
qubit dynamics act as a friction that opposes the ability to
coherently drive the Bloch vector of the CQ. This effect appears
stronger in the case of bare-frequency driving (upper panel).
Although for stronger qubit-qubit interaction (blue and green
line) one might argue that this is due to off-resonant driving,
the lower panel, where ωD is set equal to ε1 and therefore
J dependent, seems to indicate otherwise. At longer times,
for both driving protocols, the average work increases linearly
in time, suggesting the onset of a time-dependent steady
state. Obviously, for ωD = ω1 the stronger the J the more
off-resonant the driving is, resulting in an average work barely
increasing above zero. The suppression of work effect does not
depend on the amount of non-Markovianity and can therefore
be understood as a qualifier for non-Markovianity, which is
experimentally accessible.

V. CONCLUSIONS

In this paper we have addressed the interplay between
memory effects and the work performed on part of a larger
quantum system. The system considered here consists of two
interacting qubits: one of them is coupled to a thermal bath
and the other is driven coherently. We have used a quantifier of
memory effects based on the volume of accessible states and
found a threshold value for the relevant couplings at which
single-qubit non-Markovian dynamics sets in. Furthermore,
we have shown that memory effects induce a significant
suppression of the work performed on the driven qubit un-
der resonant periodic driving. Besides shedding light on the
interplay between non-Markovianity and out-of-equilibrium
dynamics, this findings suggest a diagnostic tool for testing
the degree of non-Markovianity in some experimentally inter-
esting scenarios.
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APPENDIX: COMPARISON BETWEEN A NONLOCAL
AND A LOCAL MASTER EQUATION

We recast the total Hamiltonian of the CQ-TQ system
and the bath as H (t) = HS + HB + HI + HD(t), where HS

is the inner Hamiltonian of the CQ-TQ system, HB is the
Hamiltonian of the bath, HI is the interaction Hamiltonian, and
HD(t) is the driving Hamiltonian. A microscopic derivation
[1] that accounts for Born-Markov approximation and weak
driving leads to the following equation:

d

dt
ρ̃(t) = −i[H̃D(t),ρ̃(t)]

−
∫ ∞

0
ds trB{[H̃I (t),[H̃I (t − s),ρ̃(t) ⊗ ρB]]},

(A1)

where ρB is the stationary state of the bath and ρ̃(t) denotes
the density operator of the open system in the interaction
picture. Note that the contribution of the driving Hamiltonian
is neglected in the second term of Eq. (A1). This is justifiable
because of the Born-Markov approximation and becauseHD(t)
is a local operator. The commutators can be expanded by
recasting the TQ-bath interaction as

HI = σx ⊗ Bx + σy ⊗ By, (A2)

where σx,y are Pauli matrices of the TQ and Bx = κ�ωgω(bω+b
†
ω)

2 ,

By = iκ�ωgω(bω−b
†
ω)

2 . The exact eigenvalues and eigenstates of
HS can be easily computed as

|E4〉 = α|e〉|e〉 + ξ |g〉|g〉, E4 = 1
2

√
4J 2 + �2, (A3)

|E3〉 = η|e〉|g〉 − δ|g〉|e〉, E3 = 1
2

√
4J 2 + 
2, (A4)
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|E2〉 = η|g〉|e〉 + δ|e〉|g〉, E2 = −E3, (A5)

|E1〉 = α|g〉|g〉 − ξ |e〉|e〉, E1 = −E4, (A6)

in which we have defined � = ω1 + ω2 and 
 = ω1 − ω2 and
the coefficients α,δ,η,ξ depend upon the parameters of the
model as follows:

α = � + √
4J 2 + �2√

(� + √
4J 2 + �2)2 + 4J 2

, (A7)

ξ = 2J√
(� + √

4J 2 + �2)2 + 4J 2

, (A8)

η = 
 + √
4J 2 + 
2√

(
 + √
4J 2 + 
2)2 + 4J 2

, (A9)

δ = −2J√
(
 + √

4J 2 + 
2)2 + 4J 2

. (A10)

The above eigenstates can be used to define the following
global, CQ-TQ Lindblad operators:

Lx(ε1) = (αη − ξδ)(|E3〉〈E4| + |E1〉〈E2|), (A11)

Ly(ε1) = i(αη + ξδ)(|E3〉〈E4| + |E1〉〈E2|), (A12)

Lx(ε2) = (αδ + ξη)(|E2〉〈E4| − |E1〉〈E3|), (A13)

Ly(ε2) = i(αδ − ξη)(|E2〉〈E4| − |E1〉〈E3|), (A14)

in which ε1 and ε2 are the CQ-TQ nondegenerate energy gaps

ε1 = 1
2 (

√
4J 2 + �2 −

√
4J 2 + 
2), (A15)

ε2 = 1
2 (

√
4J 2 + �2 +

√
4J 2 + 
2). (A16)

After some standard steps one arrives at the following nonlocal
master equation:

d

dt
ρ̃(t) = −i[H̃D(t),ρ̃(t)]

+
{ ∑

ν,μ

∑
i,j

eit(ν−μ)�ji(ν)[Li(ν)ρ̃(t)Lj (μ)†

−Lj (μ)†Li(ν)ρ̃(t)] + H.c.

}
, (A17)

with �ji(ν) = ∫ ∞
0 ds eiνs trB[B̃†

j (t)B̃i(t − s)]. When
performing the secular approximation that leads to a
Lindblad master equation, one drops terms oscillating
much faster than the shortest relaxation time of the
open system. The corresponding timescale is expressed
by the decay rates of Eq. (A18), given by γ (ν) =
�ji(ν) + �∗

ij (ν). This means that a Markovian master
equation in Lindblad form can be derived only when
min{2ε1,2ε2,ε2 − ε1} � max{γ (ε1),γ (ε2)}. Provided that
this requirement is fulfilled, after neglecting all oscillating
terms and switching back to the Schrödinger picture, one

FIG. 6. Relative error of replacing decay rates of the two-qubit
system, γ (↓)(εi), by the decay rates of the TQ, γ (↓)(ω2), when qubits

are in resonance. Respectively, | γ (↓)(ε1)−γ (↓)(ω2)
γ (↓)(ω2)

| and | γ (↓)(ε2)−γ (↓)(ω2)
γ (↓)(ω2)

|
are plotted in (a) and (b) as a function of J and βω1 with ω1 = 1.

finds

ρ̇(t) = −i[HS + HD(t),ρ(t)]

+ γ (↓)(ε1)
(
L1ρ(t)L†

1 − 1
2 {L†

1L1,ρ(t)})
+ γ (↑)(ε1)

(
L
†
1ρ(t)L1 − 1

2 {L1L
†
1,ρ(t)})

+ γ (↓)(ε2)
(
L2ρ(t)L†

2 − 1
2 {L†

2L2,ρ(t)})
+ γ (↑)(ε2)

(
L
†
2ρ(t)L2 − 1

2 {L2L
†
2,ρ(t)}), (A18)

where we have defined L1(2) = 1/2(Lx(ε1(2)) − iLy(ε1(2))) and
considered a notation in which γ (↓)(εi) = γ (εi) and γ (↑)(εi) =
γ (−εi).

The reliability of Eq. (A18) is dependent upon the valid-
ity of the secular approximation. In particular, this means
that for resonant qubits (ω1 = ω2) the condition 2J �
max{γ (↓)(ε1),γ (↓)(ε2)} must be fulfilled. This requirement sets
a lower limit on the value of J . Thus, when the qubits are
resonant, Eq. (A18) is valid for a stronger CQ-TQ interac-
tion. On the other hand, when qubits are resonant and J

is small, a valid master equation must contain those terms
that are neglected in the secular approximation and therefore
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cannot be in the Lindblad form with respect to the operators
(A11)–(A14).

On the other hand, the local master equation we use in the
manuscript reads

ρ̇(t) = −i[HS + HD(t),ρ(t)]

+ γ (↓)(ω2)
(
σ

(2)
− ρ(t)σ (2)

+ − 1
2 {σ (2)

+ σ
(2)
− ,ρ(t)})

+ γ (↑)(ω2)
(
σ

(2)
+ ρ(t)σ (2)

− − 1
2 {σ (2)

− σ
(2)
+ ,ρ(t)}), (A19)

whose dissipating part is the local Lindblad in the TQ. To
understand the range of validity of this master equation, we
compare it to Eq. (A18). Let us expand the local Lindblad
operators, σ+ and σ−, with respect to the nonlocal operators
(A11)–(A14), such that

σ− = 1

2

∑
j=1,2

[Lx(εj ) − iLy(εj ) + Lx(εj )† − iLy(εj )†].

(A20)

Now we substitute this expression and its conjugate transpose
in Eq. (A19) and compare the resulting equation with the
master equation (A18) in the Schrödinger picture. Reminding

the definitions of �ji(ν) and γ (ν), it is straightforward to check
that two master equations coincide when γ (↓)(ε1) = γ (↓)(ε2) =
γ (↓)(ω2) and γ (↑)(ε1) = γ (↑)(ε2) = γ (↑)(ω2). Therefore, the
local master equation can be justified microscopically when
the decay rates act collectively. We stress that while Eq. (A19)
is in Lindblad form with respect to the local operators σ± of
the TQ, it contains all the rotating terms with respect to the
nonlocal operators (A11)–(A14). It is noteworthy to mention
that a similar statement is presented in [49] for a different
but somewhat related physical model, that is, the dissipative
Jaynes-Cummings model.

Accordingly, one may approximate Eq. (A18) by the
Eq. (A19) when the differences between the decay rates are
small enough. Considering the ohmic spectral density of the
bath, decay rates can be defined by γ (↓)(ω) = (κ/2)ω[1 +
coth(ωβ/2)] = γ (↑)(ω) eωβ . For resonant qubits, the difference
between ε1 and ε2 is of the order of 2J . The relative error of
replacing γ (↓)(ε1) and γ (↓)(ε1) by γ (↓)(ω2) is depicted in Fig. 6
as a function of J and βω1. This figure clearly shows that the
deviation of two decay rates from γ (↓)(ω2) is small in the region
of small to moderate values of J . This is also relevant in the
case of a high-temperature bath.
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