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ABSTRACT Simulation has become an established technique to support the design of complex, mechatronic
or cyber-physical systems. Ideally, simulations should already be performed at an early design phase before
high-cost design commitments are made, and the recent advances in the digitalization of design information
open possibilities for automatic generation of simulation models. However, high-fidelity simulation model
building depends on accurate data. In particular, first-principles models are desirable source information for
simulations, but such models generally are not available at an early design stage. This paper investigates the
automatic generation of first-principles 3-Dmodels for piping intensive systems based on design information
that is available at an early design stage, namely piping & instrumentation diagrams (P&ID). An algorithm
is presented for the generation of such 3-D models based on machine-readable P&ID information. The main
focus of the algorithm is the automatic generation of feasible pipelines into the 3-D models, so that the
model has sufficient information, which can be exploited in further work to automatically generate high
fidelity first-principles thermo-hydraulic simulations.

INDEX TERMS Development lifecycle, first-principle model, model generation, pipelines, simulation.

I. INTRODUCTION
Simulation models of industrial processes can significantly
support engineering activities along the lifecycle of an indus-
trial plant. One obstacle to exploiting simulation in the early
design phases is that the source information for the models
may not be available at that time. A second obstacle is that
the development cost for accurate models is a significant
factor [45], motivating work in automatic model generation.
Despite the obstacles, simulation would be particularly useful
in the early development phases of complex, mechatronic
or cyber-physical systems (CPS). Simulation can reveal cru-
cial insights on the impact of design choices to important
system properties before high cost design commitments are
made [32], [63], and can resolve testing related challenges
is modern product development processes with increasingly
tight schedules [57]. Previous work in this area has addressed
such issues as reliability and safety [53], [54], emergent
behavior [44] and automatic generation and assessment of
simulation models of alternative designs [55].

This paper addresses the automatic generation of indus-
trial process models from piping diagrams. Especially for
3Dmodel creation, the design of pipelines is a work-intensive
task for diverse industrial systems such as:
• plants in petrochemical, conventional power, nuclear
power, mineral processing, pharmaceutical and food &
beverage industries;

• fuel, cooling and HVAC systems in aircraft, vehicles,
ships and buildings;

• oil, gas, water and waste water piping in urban infras-
tructure and critical infrastructure.

At an early design stage for such systems, a P&ID
(Piping & Instrumentation Diagram) is often available. This
diagram identifies the process components, the pipelines and
the instrumentation required by the automation system. How-
ever, it does not have any information on the positions of
the components or the routes of the pipes, since the route
of the pipeline on the 2D diagram cannot be assumed to
have any correspondence to its route in the 3D model that

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

26591

https://orcid.org/0000-0002-0402-315X


S. A. Sierla et al.: Automatic Generation of Pipelines Into a 3-D Industrial Process Model

will be developed at a later design stage. In recent works
about simulation model generation from a P&ID [5], [8],
authors claim to generate low fidelity models best suited for
the Factory Acceptance Test phase that comes late in the
development lifecycle. Our ambition is to generate models
that have sufficient information for a simulation package that
has a thermo-hydraulic solver and is thus able to dynamically
determine process variables such as temperature, pressure,
vapor pressure and chemical concentrations in various nor-
mal and abnormal operating scenarios of the plant. In [39]
and [54], such simulation models were created from early
phase designs, but instead of generating them from a P&ID,
the models were built manually and important properties
affecting thermo-hydraulic behavior, such as pipe lengths and
the height of nodes, were set arbitrarily.

The research goal in this paper is to be able to generate
a 3D model of tanks and piping based on the information
in a P&ID, which the designer augments with 3D position
information of the tanks. Thus the main task towards real-
izing this goal is to develop an algorithm for generating the
pipelines in 3D. The model generation is not fully automatic,
but bearing in mind that excessive model development cost is
an obstacle for industrial application [45], it is advantageous
to make minimal demands on the process designer’s time.
Thus our goal is to propose a method for model generation
that satisfies all of the following requirements:

1. all source information for the model generation should
be available early in the design lifecycle;

2. the model generation results should also be ready early
in the lifecycle;

3. compared to previous work that satisfies require-
ment 1 [5], [24], a significantly higher level of model
fidelity is desired. In particular, the generated pipeline
model should have the information required for a first-
principle model as defined in [45];

4. the workload for the process design engineer should
be low.

The benefit of generating a visual model is to enable a very
rapid method by which an expert process designer can inspect
the visual design and make adjustments to tank positions or
to force the rerouting of pipelines through certain locations,
resulting in an early phase 3D which is feasible according
to the judgment of the expert process designer. The main
envisioned usage of such a model is that it has sufficient
source information from which it will be possible, in further
research, to automate the generation of a thermo-hydraulic
simulation. The most unstraightforward task in creating the
simulation model is to determine the pressure head loss
parameters of the pipelines, which requires knowledge of the
dimensions of the elbows (i.e. curved pipe segments) [23],
and this can only be determined after a 3D pipe routing has
been accomplished.

II. LITERATURE REVIEW
Models of engineered systems in which piping is a major
component have been developed by process control engineers

using conventional approaches, as well as CPS researchers
using a multitude of innovative modeling technologies.
In applications that claim to be CPSs, pipelines play a major
role in building HVAC systems [36], oil pipelines [11], [62],
ship chilled water systems [29], industrial tank processes [4]
and water supply networks [2], [61], [38]. The used modeling
approaches have been selected according to the goals of
the CPS research and include complex network theory [61],
cross-entropy optimization [11] and linear modeling [2], [4],
none of which satisfy our requirement 3 on fidelity in
section 1. The term CPS is used in [62], although the physical
model of wireless sensor networks for oil pipeline modeling
is limited to the sensor networks. CPS testbeds that use a lab
setup instead of a model of the physical system [38] are not
relevant for the problem formulation in this paper. In sum-
mary, the objectives of current research on CPS are different
from our work, so conventional modeling approaches in the
process industries will be investigated in the remainder of this
section.

Since requirement 1 in section 1 states that the desired
modeling approach is usable early in the design lifecycle,
it is desirable for authors to have positioned their proposed
model building activity within some lifecycle model of the
development process. Most lifecycle models for industrial
plant design are limited to control software development [13],
[21], [40]. However, early phase simulation is especially
useful if the goal is to optimize performance at the system
level rather than the subsystem level [3], in which case a
multi-disciplinary lifecycle model should be used such as
in [7], [10], [49] supported bymulti-disciplinary system spec-
ification techniques [51], [52] and architectures [58].

While many articles on new simulation based method-
ologies are published every month, the great majority of
them lacks any mention of an underlying lifecycle model.
This is especially true for work in process industries
(e.g. [1], [6], [14], [19], [26], [35], [48]). All of these studies
involve high fidelity thermo-hydraulic simulations that have
been built manually from a P&ID or other source information
resembling a P&ID. Although development lifecycle aspects
are not elaborated, it is clear that the physical process design
will not be modified based on findings from simulations,
so simulation results will only be used for control system
development. Few works include a partial lifecycle perspec-
tive related to the operation time use of the system, but
the purpose of simulation is still limited to control system
design [30], [34] or fault detection and isolation rather than
system design [37], [50]. None of these works adhere to a
design philosophy in mechatronic systems that states that
control systems and the system to be controlled should be
designed concurrently to achieve optimal system level per-
formance [3]. While these works satisfy requirement 3 from
section 1, they do not satisfy requirements 1, 2 or 4.

If the control system and the physical process to be con-
trolled were to be designed concurrently, simulations results
could result in new requirements for an improved overall
system design rather than only an improved control system.
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The redesign effort would depend on the stage of the
development lifecycle at which these requirements become
available. Information on this effort could be used to motivate
investment to simulation or rescheduling of activities in the
development lifecycle. There is a lack of research about the
redesign effort for physical systems and CPS, but the problem
is well studied in the software engineering community both
in the design lifecycle [12], [20], [60], for the redesign of
systems in operation [46] and for re-engineering legacy sys-
tems [28]. All of these would be relevant lifecycle cases for
industrial plants, but unfortunately there is a lack of scientific
literature outside the software engineering field. The soft-
ware engineering community’s experiences and research on
redesign eventually led to the agile design lifecycle and supe-
rior capabilities for reacting to changing customer needs [56].
A similar agile capability would be very necessary for all
design activities along the lifecycle of industrial plants in
this era of the ‘‘fourth industrial revolution’’ [59], and the
automatic generation of simulation models, which this paper
contributes to, is one key capability to this direction [22].
Another such capability would be the concurrent design of the
physical process and its control systems, which is discussed
in section 6 as further work.

Several works focus on putting industrial plant design
information into a machine readable format [9], [15]–[17],
[25], [33], [42], paving the way for further research on auto-
matic generation of simulation models, so these are enabling
technologies towards satisfying requirements 2 and 4.
Research on using such information for actual automatic
generation of simulation models is very limited, targeting
the generation of low fidelity models from machine readable
P&IDs [8] as well as legacy P&IDs using image recog-
nition [5]. An approach using additional machine-readable
source information available in a brown-field project is pre-
sented in [24]. These works do not attempt to target high
fidelity models, so automatic routing of pipelines is not
attempted, although it is identified as possible further work
in [8]. Thus these works satisfy requirements 1, 2 and 4,
but they do not satisfy requirement 3. The positioning of
such model generation technology into the design lifecycle
has been addressed in [41] and [43]; the latter envisions an
integrated use of simulation throughout the plant lifecycle,
as per requirements 1 and 2, based on a global survey with
industrial and academic participants. A method for higher
fidelity model generation fromMathML has also been devel-
oped [31], but this is a code generator rather than a solu-
tion for overcoming the labor-intensive task of simulation
model building, so it satisfies requirement 3 without satisfy-
ing requirements 1, 2 and 4.

Based on the analysis of the referenced works, it was
discovered that none of them targets the full set of require-
ments 1-4, so the research goal in section 1 targets a gap in
the research. In fact, the analysis revealed a broader research
gap: no previous work addresses requirements 1 and 3.

Finally, there remains the question of where in the plant
lifecycle should the methodology presented in this paper

be positioned. As will be discussed in section 6, the further
work based on this paper is expected to lead to a novel,
concurrent design lifecycle, so it is not possible to reference
an existing lifecycle model. The lifecycle presented in [43] is
promising, especially since it is motivated by the input of over
200 experts globally, but further work is required to elaborate
this lifecycle with more details, before it can be used to
position our proposed contribution.

III. PROPOSED ALGORITHM
In order to be able to illustrate the details of the algorithm
to the reader, it is assumed that the pipelines are connected
to tanks. However, the algorithm is defined in general terms.
The pipeline endpoints and the direction of the pipeline at the
endpoints are specified in the parameters to the algorithm in
Table 1. The naming of these parameters assumes the exis-
tence of tanks, in order to improve readability. The algorithm
can be generalized simply by renaming these parameters.

TABLE 1. Parameters to the proposed algorithm (vectors in bold).

The algorithm will require the use of position, translation
and rotation information in three dimensions, so the coordi-
nate systems and directions of rotation defined in Fig. 1 will
be used.

FIGURE 1. Coordinate system (left) and directions of rotations around the
three axes (right).

FIGURE 2. Tanks and pipe segments.

Fig. 2 shows the constructs used in this research, which
have been generated in the 3D Java environment that will
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FIGURE 3. UML class diagram that includes the building blocks
from Fig. 2.

be used to implement and visualize the proposed algorithm.
From left to right they are the following:

1. Pressure tank
2. Open tank (with transparent walls and half full of

liquid)
3. Vertical straight pipe segment
4. Curve pipe segment
5. Horizontal straight pipe segment (the mesh used to

create the 3D surface is only visible from the outside,
creating the impression that half of the pipe is missing –
this problem will never be encountered when the pipe
segments are connected).

Before presenting an algorithm for creating pipelines
between tanks, the constructs in Fig. 2 need to be captured
as software entities. This is done in the UML class diagram
in Fig. 3, which omits all implementation details that are
not essential for presenting the algorithm. Vector3f is a three
dimensional vector of float values. The abstract class Tank
defines the methods that are used by the algorithm, so new
types of tank that implement these methods may be later
added without breaking the algorithm. In order to generalize
the algorithm beyond pipelines connecting tanks, the inter-
face ‘‘ConnectableComponent’’ is defined to support other
kinds of components such as heat exchangers. ‘‘StraightPipe’’
also implements this interface, and in section 5.2 this will be
used to let the designer override the default implementation
of the algorithm and to specify a location though which the
pipeline should be routed. The constructor of StraightPipe
has a parameter for choosing between a vertical or horizontal
pipe segment illustrated in Fig. 2. StraightPipe and CurvePipe
define all the methods to implement the translations and
rotations in the pipeline generation algorithm specified in
Table 5, Table 6, Table 8 and Table 9. Each segment has two
endpoints A and B. The method ‘‘translate’’ translates the
center of the pipe segment to the specified 3D position ‘‘v’’,
while ‘‘translateA’’ translates endpoint A to ‘‘v’’.

In this paper a 3D pipeline creation algorithm is proposed
to create a 3D model of a pipeline connecting two tanks. It is
generic for any tanks with top and bottom connection points
and it will be demonstrated with the open tank and pressure
tank components illustrated in Fig. 2. The pipeline shall be
constructed from the components 3-5 in Fig. 2; the straight
pipe segments have a length parameter and the curve pipe
segment has no parameter. The algorithm is implemented in
the PipeLine class in Fig. 3 and it is given the parameters
specified in Table 1.

Table 2 defines variables that will be used to specify the
proposed algorithm.

TABLE 2. Variables definitions.

The first task of the algorithm is to determine the length of
the straight vertical pipe segments that are connected to the
tanks. All the cases that need to be considered in a general
solution are shown in Fig. 4, with TankB on the left and
TankA on the right.

FIGURE 4. Six possible cases for the logic that determines the length of
tankAConnectionPipe (red) and tankBConnectionPipe (blue). In each
figure, tankA is on the right.

Table 3 shows the descriptions and pipe length parameters
for the six cases in Fig. 4.
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TABLE 3. Description and pipe length parameters for the cases in Fig. 4.

Now it is necessary to define the translations and rotations
for each pipe segment in order to generate a 3D model of
the pipeline. These will be different depending on whether
the endpoints of the pipeline are connected to the top or the
bottom of tankA and tankB. There are four possible combi-
nations, three of which are depicted in the images a, c, and e
of Fig. 4 – the pipeline from the top of TankA to the bottom
of TankB is not depicted in Fig. 4. In order to define a single
algorithm to handle all of these cases, auxiliary variables are
defined in terms of the parameters ‘‘topA’’ and ‘‘topB’’ from
Table 1, since the values of these variables determinewhich of
the four above mentioned cases is in question. Table 4 defines
the auxiliary variables ‘‘signA’’ and ‘‘zeroA’’ derived from
’’topA’’; ‘‘signB’’ and ‘‘zeroB’’ are derived analogously from
’’topB’’. ‘‘signA’’ is used to toggle the sign of an expression
and ‘‘zeroA’’ is used to set an expression to zero.

TABLE 4. Auxiliary variables defined in terms of ‘‘topA’’ from Table 1.

The pipeline routing has two different cases: a single hor-
izontal pipeline (b-f in Fig. 4) and two horizontal pipelines
(a in Fig. 4). According to the values for case a in Table 3,
two horizontal pipelines are needed if the vertical distance
between pipeline endpoints is less than 6 times the radius of
the pipe.

The case for a single horizontal pipeline will be addressed
first and the 5 segments of such a pipeline are illustrated in
different colors in Fig. 5. In Fig. 5, TankA is above and to the
right of Tank B, but the translations and rotations of the seg-
ments in Table 5 and Table 6 make no assumptions about the
relative positions of the pipeline endpoints in the 3D world.
The translations and rotations in Table 5 and Table 6 are
defined according to the variables and parameters in Table 1,
Table 2, Table 3 and Table 4 according to the coordinate
system in Fig. 1. The initial rotations of the pipe segments are
depicted in Fig. 2 (to avoid confusion, the camera direction is
the same for all the screenshots in this paper).

TABLE 5. Translations of the positions of the pipe segments
in Fig. 5 and Fig. 6.

FIGURE 5. Pipe segments in the case of a single horizontal pipe.

The case of a pipeline with 2 horizontal segments is shown
in Fig. 6. The translations and rotations of the red, orange,
green, blue and pink segments are the same as in Table 5 and
Table 6. The translations and rotations of the gray, magenta,
cyan, yellow and pink segments are shown in Table 8 and
Table 9, using the variable ‘‘pipeV’’ defined in Table 7.

IV. IMPLEMENTATION
In order to maximize the application potential of the pro-
posed algorithm, its implementation should support machine-
readable source information that is generated in modern plant
development projects. There are at least two competing open
standards, namely CAEX and extensions of ISO 15926 to
the process industries by the DEXPI (Data Exchange in
the Process Industry) initiative. There is a growing body
of scientific literature on CAEX, and the papers [9], [16],
[33], [42] referenced in section 2 are only some examples.
There is much less research on ISO 15926 that is relevant
to process industries [15], [17], but the standard is sup-
ported by major P&ID tool vendors participating in DEXPI
(http://www.dexpi.org/ ). A comparative study of strengths
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TABLE 6. Rotations of the pipe segments in Fig.5 and Fig.6 around the
axes as defined in Fig. 1.

TABLE 7. pipeV: length of magenta pipe in Fig. 6.

TABLE 8. Translation of the positions of pipe segments in Fig.6.

and weaknesses of CAEX and ISO 15926 is provided in [25].
Since a de-facto standard has not yet established itself, this
paper defines a lightweight intermediate format for the source
information that is required for generating the 3D industrial
process model. This format is a text file that contains the very
minimum of information that is needed, in order to minimize
the cost and effort of exploiting the proposed early phase
3D process model generation technology. The text file may
contain two kinds of lines using the following syntax:

create <ConnectableComponent> <id> <coordinates>
connect <id1> <interface1> <id2> <interface2>

<ConnectableComponent> should be replaced by the
name of any class that implements the ‘‘ConnectableCom-
ponent’’ interface in Fig. 3. <id> is a string identifier that
uniquely identifies an instance of this class. <interface>
is a string that identifies the mechanical interface of the

TABLE 9. Rotations of the pipe segments in Fig.5 and Fig.6 around the
axes as defined in Fig. 1.

component to which a pipeline may be connected; in this
implementation the possible values are ‘‘top’’ and ‘‘bottom’’.
<coordinates> is a string that specifies the component’s
location in the 3D space as a list of comma-separated X,Y,Z
coordinates. The format is case-insensitive. The snippet
below has all the information that the algorithm needs to
generate a 3D model of the tanks and the pipelines between
them shown in Fig. 11.

create opentank tank1 6,-6,-20
create opentank tank2 -3,-6,-15
create pressuretank tank3 3,4,-10
connect tank1 bottom tank2 top
connect tank2 bottom tank3 bottom
connect tank3 top tank1 top

Competent engineers will be able to generate the required
source information into this intermediate format either from
standards or from proprietary formats in case the owner of
such a format would like to exploit this model generation
technology. In this section, an implementation for CAEX
is described. The CAEX XML schema is defined in IEC
62424 [27], and it has been adopted also as the top-level for-
mat of the AutomationML standard. Thus the free Automa-
tionML editor is used to create the process description of
the case study presented in section 5.2. Full details of the
CAEX schema are available in the standard [27], but this
presentation is aimed at giving the reader sufficient under-
standing of the schema for the purposes of this discussion.
All italic names in this section refer to elements defined in the
CAEX schema. CAEX consists of 4 parts: InterfaceClassLib,
RoleClassLib, SystemUnitClassLib and InstanceHierarchy.
InterfaceClassLib can be used to specify any kind of inter-
faces, including mechanical interfaces such as holes in tanks
into which pipelines may be connected. The following XML
snippet has the InterfaceClassLib of the case study, which
defines a top and bottom interface type:

<InterfaceClassLib Name="InterfaceClassLib1">
<Version>1.0.0</Version>
<InterfaceClass

Name="I\_ConnectableComponent\_Bottom"/>
<InterfaceClass

Name="I\_ConnectableComponent\_Top" />
</InterfaceClassLib>
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These two interfaces should be included in all com-
ponent types that are defined in CAEX and from which
it is expected to generate classes that realize the ‘‘Con-
nectableComponent’’ interface in Fig. 3. The component
types are defined in the CAEX SystemUnitClassLib and the
following snippet defines the SystemUnitClass for ‘‘Open-
Tank’’. It instantiates the interfaces defined above and also
has an attribute ‘‘position’’ which contains the information
required for the <coordinates> element in our intermediate
format.

<SystemUnitClass Name="OpenTank">
<Attribute Name="position"

AttributeDataType="xs:string" />
<ExternalInterface Name="bottom"

RefBaseClassPath="InterfaceClassLib1/
I\_Connectable
Component\_Bottom"
ID="8df0d407-58ce-4965-af87-60ddb3cefd83" />
<ExternalInterface Name="top"

RefBaseClassPath="InterfaceClassLib1/I
\_Connectable
Component\_Top"
ID="8f21fefe-61f4-4ec2-878f-a7004fed35f6" />
</SystemUnitClass>

The snippet below is an InternalElement from the Instance-
Hierarchy and it has all the information from which the ‘‘cre-
ate opentank tank1 6,-6,-20’’ command is created. The ID
‘‘52da53f3-d70f-4f3e-ab8d-181b1b54f9f7’’ is a RFC4122
UUID (Universally Unique IDentifier) automatically gener-
ated by the AutomationML Editor.

<InternalElement Name="tank1"
RefBaseSystemUnitPath="SystemUnitClassLib1/OpenTan
k"
ID="52da53f3-d70f-4f3e-ab8d-181b1b54f9f7">
<Attribute Name="position"

AttributeDataType="xs:string">
<Value>6,-6,-20</Value>

</Attribute>
<ExternalInterface Name="bottom"

RefBaseClassPath="InterfaceClassLib1/
I\_Connectable
Component\_Bottom"
ID="126484ed-ae14-4e8d-896e-b30a7b447dd6" />
<ExternalInterface Name="top"\\

RefBaseClassPath="InterfaceClassLib1/
I\_Connectable
Component\_Top"
ID="4f11e6a0-56e5-47be-a6f2-fe9c73109152" />
</InternalElement>

Now it is possible to make the linkage in CAEX that
corresponds to a pipeline to be generated by the proposed
algorithm. The following InternalLink from the InstanceHier-
archy has the same information as our intermediate format
statement ‘‘connect tank1 bottom tank2 top’’. The value of
RefPartnerSideA is a string that has been formed by append-
ing the UUID of ‘‘tank1’’, a colon and the interface name
‘‘bottom’’. Similarly RefPartnerSideB identifies ‘‘tank2’’ and
its interface ‘‘top’’.

<InternalLink Name="InternalLink1"
RefPartnerSideA="52da53f3-d70f-4f3e-ab8d-
181b1b54f9f7:bottom"
RefPartnerSideB="64f4cb68-cfcd-4399-a649-
e2570edcbb6e:top"/>

FIGURE 6. Pipe segments in the case of two horizontal pipes.

AXSLT (Extensible Stylesheet Language Transformation)
was developed that reads the CAEX file as input and gen-
erates the text file in the intermediate format. This text file
can be read in the chosen 3D virtualization environment,
which in our case is the Java based JMonkeyEngine3. The
design in Fig. 3 has been implemented in this environment,
and the application will generate the required classes upon
parsing this text file. For each line starting with ‘‘create’’,
the specified class implementing the ‘‘ConnectableCompo-
nent’’ interface is instantiated; the constructor creates the
3D geometry shown in Fig. 2 and immediately adds it to
the 3D model to the scene graph, so these components are
visible as soon as the application is executed. Each line
starting with ‘‘connect’’ has the information required to deter-
mine the parameters in Table 1. ‘‘connA’’ and ‘‘connB’’ are
obtained by the ‘‘getTopConnectionPoint()’’ or ‘‘getBottom-
ConnectionPoint()’’ method, depending on whether the text
file specified the ‘‘top’’ or ‘‘bottom’’ interface. The values
for ‘‘topA’’ and ‘‘topB’’ are true if the text file specifies ‘‘top’’
and false otherwise. The constructor for ‘‘PipeLine’’ is called
with these parameters after which it executes the algorithm in
section 3, after which the 3D model is complete.

The classes in Fig. 3 generate the geometries in Fig. 2
from built-in or custom triangular meshes in the 3D Java
environment. Another option would have been to import such
meshes from CAD models, and such a capability could be
worth supporting in future work that targets applying this
technology to the detailed design phase when vendor specific
models of process components have been selected. However,
in the early design phase which is targeted by this research, it
is advantageous to be able to flexibly specify the dimensions
of the process components and create process models that
can be used to assess and develop designs and thus obtain
requirements for the selection of vendor specific components.
Even after such components have been selected, it is not
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FIGURE 7. Test case for equivalence partition 4 in Table 10.

TABLE 10. Equivalence partitions ‘‘P’’ resulting from considering pipeline
endpoint placements at the top of bottom of the tanks and relative
heights of the tanks.

TABLE 11. Equivalence partitions ‘‘P’’ for the relative X and Z positions of
the tanks.

advantageous to generate the pipe segments from CAD com-
ponents since attributes such as length and curvature can be
flexibly varied directly in the 3D environment. The algorithm
in section 3 assumes that the path angle of ‘‘CurvePipe’’
segments is 90 degrees, but some piping specifications also
require 45 degree angles, which should be supported in fur-
ther work.

V. RESULTS
A. VALIDATION
In order to validate the proposed algorithm, a set of test
cases with adequate test coverage is required. The number

FIGURE 8. Test cases.

of relative positions of two tanks in a 3D world is infinite, so
the testing technique of equivalence partitioning [47] is used.
An equivalence partition is a range of input values for the sys-
tem under test, with which the system is specified to behave
in a similar way, so it is desirable to have a test case from
each partition. The inputs to the algorithm to be tested are the
parameters in Table 1, which are used to specify the partitions
in Table 10 and Table 11 (‘‘rise’’ is derived from ‘‘connA’’
and ‘‘connB’’ as specified in Table 2). As an example of
equivalence partitioning, consider the case of TankA bottom
being connected to TankB top. In section 3 it was stated
that if the vertical distance between pipeline endpoints is
less than 6 times the radius of the pipe, 2 pipes are needed.
Thus one equivalence partition is all tank placements where
‘‘rise’’ is less that ‘‘6r’’ and another is where ‘‘rise’’ is greater
than ‘‘6r’’. There should be one test from each partition,
and these are illustrated in Fig. 4a and Fig. 4b, respectively,
from which the tester can visually confirm that the number
of horizontal pipes is indeed according the specifications.
Table 9 shows the equivalence partitions resulting from the
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FIGURE 9. Case study: laboratory heat production plant.

FIGURE 10. P&ID for the primary line (marked with green tape) of the
process in Fig.9.

consideration of relative heights of the tanks and placement
of the pipeline endpoints at the bottom or top of the tanks.

For each of the cases in Table 10, a figure has been
references in the column ‘‘expected outcome’’ to give an
example test case belonging to that partition. In each of
these figures, both tanks have had the same Z coordinate
and the X coordinate of TankA has been greater than that
of TankB. (In all screenshots in this paper, the camera is
looking into the direction of the negative z axis, so TankA
appears to the right of TankB Fig. 4, Fig. 5, Fig. 6, Fig. 7
and Fig. 8.) If the relative X and Z positions of the tanks
would be changed, the test coverage would be increased,

FIGURE 11. Result of applying the proposed algorithm to the process
description in Fig.10.

possibly revealing errors in the translation or rotation of pipe
segments. Thus, 4 new partitions are defined in Table 11, and
since these partitions have been defined independently from
the ones in Table 10, all combinations of partitions should
be considered, resulting in 8∗4 = 32 test cases. Test cases
identifiers are of the form ‘‘X.Y’’, where ‘‘X’’ is the partition
from Table 10 and ‘‘Y’’ is the partition from Table 11. The
results from executing these tests are shown in Fig. 8, from
which it is possible to visually confirm that the pipelines are
according to specifications. Over the course of performing
the 32 test cases, it was confirmed that 16 of the test cases
are redundant since they result in the same 3D model. Thus,
each test case screenshot in Fig. 8 is labelled with the two
redundant test cases that both generate the same visual result.
For example, 1.A and 3.D give the same result: in 1.A, tankA
is the tank in the foreground while in 3.D it is the tank in the
background. These cases are equivalent from the perspective
of testing the pipeline generation algorithm proposed in this
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FIGURE 12. Result of applying the algorithm after adjusting tank
positions.

paper, since the algorithm parameters in Table 1 only specify
the 3D location and direction of the pipeline at the endpoints
without any information about the identity of the component
at the endpoint.

B. CASE STUDY
The case study is a laboratory heat production plant at the
authors’ laboratory (Fig. 9) that was built for investigating
novel automation development processes [21]. Specifically,
the case study is focused on the primary line of this process
which is marked with green tape in Fig. 9. The P&ID of the
primary line is in Fig. 10, consisting of three pipelines. The
purpose of this case study is to apply the proposed algorithm
to automatically generate these pipelines into a 3D model.
As discussed in section 4, the tanks and piping related aspects
of this P&ID have been expressed in the machine readable
CAEX. The 3D position vectors that specify the tank posi-
tions cannot be generated from information in the P&ID, so
the designer is expected to give initial approximations for the
positions into ‘‘position’’ parameter described in section 4.
The ‘‘getTopConnectionPoint’’ and ‘‘getBottomConnection-
Point’’ methods of the Tank class in Fig. 3 use the tank
dimension parameters to determine the locations of the tank
pipeline interfaces based on the tank position, resulting in the
values for the ‘‘connA’’ and ‘‘connB’’ parameters required
by the algorithm. The values for the ‘‘topA’’ and ‘‘topB’’
parameters are set true if the interface type in the CAEX is
‘‘I_ConnectableComponent_Top’’ and false otherwise.

As stated in section 1, the primary motivation of the pro-
posed work is not to generate final high fidelity process

FIGURE 13. Using the StraightPipe (red segment) as a component that
implements the ConnectableComponent interface (Fig. 3) to force the
pipeline through this segment.

models. Rather, the purpose is to generate models as early
as possible in the development lifecycle, so that the models
are accurate enough to inform further system design deci-
sions. The sufficient level of accuracy will be determined
by the judgment of the expert process designer. There is no
intention to fully automate the process designer but to equip
the designer with tools that make it possible to generate the
models withminimal additional effort. This should be accom-
plished so that the organization that employs the designer
will not perceive the proposed model generation activity as
problematic either from the perspective of additional salary
costs or delays in the project schedule.

The following actions are required from the process
designer: after creating the initial model in Fig. 11, the
designer will visually inspect the model and adjust the tank
position coordinates if necessary and then rerun the pipeline
generation algorithm. As an example, Fig. 12 shows the result
after the leftmost tank has beenmoved into the direction of the
positive Y-axis and the pressure tank has been moved into the
direction of the negative Z-axis. This process may be repeated
until the process designer declares that the model is suitable
for the subsequent design phases in the plant development
lifecycle.

Even after adjusting the positions of the tanks, the designer
may not be entirely satisfied with the automatically generated
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design. For example, in Fig. 11, there may be a need to keep
clear the area under the pressure tank and the pipeline should
go around it. For this purpose, the ‘‘StraightPipe’’ in Fig. 3
also implements the ‘‘ConnectableComponent’’ interface, so
that the designer may specify such a segment in the CAEX –
in Fig. 13 such a segment is marked in red. In the CAEX it
is created as an InternalElement just like the tanks with a 3D
position attribute, which the designer sets. The designer also
uses InternalLinks to connect the top of the segment to the
bottom of the PressureTank and the bottom of the segment to
the bottom of the leftmost OpenTank. Now the algorithm is
forced to route the pipeline though this segment, so that the
area under the pressure tank is kept clear of piping.

VI. CONCLUSION
In section 1, the research goal was elaborated with a list
of four requirements, which were addressed in the paper as
follows:

1. The source information that was required for the
algorithm was presented in detail in section 4. This
information will be present in a P&ID diagram as
soon as the tanks and the pipelines between the tanks
have been placed. As discussed in section 5.2 in the
context of Fig. 13, the methodology supports other
connectable components as well as tanks, so other
process components such as heat exchangers could be
used instead of tanks. All of this information can be
expected to be available early in the design process.
Further, a first approximation for the 3D location of all
process components should be specified as a triple of
X,Y,Z coordinates, and it is reasonable to assume that
entering this volume of information will not be a major
task for an expert process designer, since they are first
approximations that can be easily changed later.

2. The processing of source information as described in
section 4 has been automated, so the duration of the
model generation activity will depend on how long the
process designer will spend on the tasks mentioned in
section 5.2. These tasks are the visual inspection of the
generated 3D model, updating the process component
positions and optionally forcing the routing of pipelines
through specific locations as described in Fig. 13. Each
of these tasks involves only a few mouse clicks and
entering a very limited number of coordinates.

3. As has been elaborated in section 3, the process of
generating the pipelines results in detailed informa-
tion about each pipe segment’s elevation, curvature
and dimensions, which satisfies the definition of a
first-principle model according to [45]. This informa-
tion would enable building accurate thermo-hydraulic
simulations based on correct elevations of nodes and
pressure head losses in pipelines between nodes.

4. The overall process designer’s workload consists of
the tasks that have been explicitly identified under
items 1 and 2 above. In current state-of-the-art, first-
principle models are created manually [45]; however,

that main motivation of this work is not to automate
current process design practice. The main advantage
of the proposed automatic 3D model generation is to
enable new types of rapid prototyping practices, which
are currently not feasible due the engineering cost of
building process models.

After discussing how the results satisfy the research goals
stated in section 1, it remains to discuss the usefulness and
application potential of the results and further work. The
models generated by the method presented in this paper
cannot be simulated, but they contain source information
required to build a thermo-hydraulically accurate simulation.
Some of this source information is explicit, such as the eleva-
tion of the tanks, whereas especially the head loss parameters
for entire pipelines need to be computed from several model
parameters. Further, the automation related aspects in the
P&ID diagram have not been included in the model genera-
tion, but the machine readable representations for the source
information discussed in section 4 have support also for these
aspects. This enables further work on automatic generation
of automation functionality into the thermo-hydraulic process
simulation, resulting in a CPS simulation as defined in [59].
Thus, the results in this paper open a potential for further
work, which will be pursued by the authors, for a highly
automatic process of generating high fidelity CPS simulation
models early in the lifecycle.

In order to recognize the impact of completing this envi-
sioned further work, it is necessary to appreciate that cur-
rent design lifecycles consists of separate physical process
design and subsequent control system design, as discussed in
section 2 with references [1], [6], [14], [19], [26], [35], [48].
Thus, the further work would result in a concurrent
design lifecycle aiming at designing an optimal CPS
rather than an optimal control system for a given physical
process.
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