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Abstract—While most RF-sensing approaches proposed in the
literature rely on short-distance indoor point-to-point instru-
mentations, actual large-scale installation of RF sensing suggests
the use of ubiquitously available cellular systems. In particular,
the 5th generation of the wireless communication standard
(5G) is envisioned as a universal communication means also
for Internet of Things devices. In this paper, we investigate
environmental perception capabilities in cellular systems, with
special focus on the upcoming 5G communications standard.
In particular, we analyze the perception capabilities of existing
cellular installations in the GSM band, which is expected to be
used for 5G IoT. Our instrumentation exploits a passive system
capitalizing on environmental RF-noise. In addition, utilizing a
prototypical 5G system with 52 OFDM carriers over 12.48 MHz
bandwidth at 3.45 GHz, we consider the impact of the number
and choice of channels and compare the recognition performance
with acceleration-based sensing. Our results in realistic settings
with five subjects suggest that accurate recognition of activities
and environmental situations can be a reliable implicit service of
future 5G installations.

I. INTRODUCTION

The upcoming 5G cellular communication standard is ex-
pected to become the backbone of the IoT [1]. 5G capa-
ble devices will then be ubiquitously present. Apart from
communication, their shared access to the wireless channel
enables environmental perception [2], [3], [4]. However, unlike
classical RF-sensing approaches that exploit WiFi, the distance
between transmit and receive components is magnitudes larger
in cellular systems, where the base station is likely located out-
side and on top of buildings. the larger distance and necessary
penetration of building walls and other obstacles results in
reduced signal strength at a receiver, and consequently lower
recognition accuracy [?].

We study environmental perception in cellular systems, and
especially focus on 5G. Our contributions are :

1) evaluation of device-free activity recognition accuracy
in existing cellular systems exploiting OsmocomBB
firmware [5]. We exploit GSM-band lower frequency
range that is expected to be utilized for communication
among 5G IoT devices. In particular, we investigate the
detection of crowd size.

2) investigation of presence detection from a 5G prototype
system featuring 52 OFDM carriers over 12.48 MHz

Fig. 1. Overview of our recognition approaches. Crowd-size detection is
employed in the GSM-band, while for the presence and walking speed
detection, data packets are transmitted via 52 OFDM carriers via a prototypical
5G system.

bandwith at 3.4 5GHz in realistic noisy and crowded
indoor spaces.

3) walking speed detection from the same 5G prototype
system in indoor spaces and comparison to acceleration-
based inertial measurement regimes.

For recognition, we investigate the use of multiple OFDM
channels and derive an optimal choice of OFDM carriers for
activity recognition. Since our investigation is tailored for IoT
and other resource-limited mobile devices, we refrain from
using phase-information but instead exploit information that
can be readily extracted from signal-strength time series at
resource limited devices.

Figure 1 gives an overview of the three different settings
considered. The data traffic for recognition is generated by
standard packet data transmission. This ambient traffic is not
under the control of the system and not modified by us.

The rest of this paper is structured as follows. Section II
introduces related prior work, section III describes the systems
exploited in our studies, section IV details the perception
and classification tool-chains and features or presence and
walking speed recognition. Section VI discusses our results
and section VII concludes our discussion. Part of this work,
especially the considerations on walking-speed recognition,
has been presented as a poster in [6].



TABLE I
ACCURACY ACHIEVED FOR WALKING-SPEED RECOGNITION IN THE

LITERATURE

Approach Accuracy
FM-radio [14] 0.64

RSSI (Active) [18] 0.72
RSSI (Passive) [17] 0.78

Acceleration [19] 0.85
This work (cellular 5G) 0.95

II. RELATED WORK

A. Radio-vision

RF-based sensing of activities and gestures has been promi-
nently studied in recent years, ranging from the recognition
of gestures via Doppler fluctuation [3], [4] or CSI signal
envelope [7], respiration rate exploiting Fresnel zones [8]
as well as emotion recognition from phase and time-domain
signal strength fluctuation [9], [10], [11]. Recognition of
environmental stimuli via radio frequency fluctuation has
become undemanding, as pre-installed infrastructure can be
exploited [3]. This situation will further improve with up-
coming 5G communication standards as it is expected that
this technology will support a significantly larger number of
devices to generate RF-traffic and will partly operate at higher
frequency and larger bandwidth [12]. It will add continuous
activity recognition capabilities to virtually all environments.

The above mentioned systems consider point-to-point in-
door installations while our work in contrast focuses on
cellular systems, specifically featuring 5G communication.

B. Sensing of walking-speed

Walking-state and walking speed recognition has been ex-
ploited by various modalities, including RF-fluctuation, such
as WiFi, FM-radio or software radios [2], [4], [7]. Walking
speed is also used in a number of relevant applications for
the IoT, such as fitness tracking, attention monitoring, and
health [13], [14]. For instance, walking speed has been pro-
posed as a reliable modality to detect movement disorders such
as in Multiple sclerosis and elderly care [15]. Environmental
sensing (e.g. RF-based) of walking speed and other activities,
promises seamless, ubiquitous integration into environments
and convenience for subjects as the sensing equipment need
not be worn on the body [4].

The recognition of walking speed from RF-fluctuation
has been considered from variance in FM radio signal
strength [14], custom SDR [16] or RSSI [17].

Exploiting a prototype 5G OFDM system, developed at our
department, we describe detection and classification of walk-
ing behaviors. We investigate the impact of sub-channel count
and compare our results to accelerometer-based recognition.

To compare the results achieved in this work to the state-of-
the-art, we summarize the accuracy achieved in previous work
to the results presented in this paper in table I. While accuracy
in radio-based walking speed recognition has already been
nearly at level with inertial sensing approaches, exploiting fur-
ther carriers over a larger bandwidth combined with low noise

Fig. 2. The canteen environment at different days and time of day

in the signal reception has the potential to achieve comparable
or even better recognition accuracy (cf. section V-C).

III. SYSTEM DESCRIPTION

This section describes our measurement systems for crowd
size, presence and walking speed (cf. figure 1).

A. Cellular system exploiting osmocom-BB

The current GSM-band is expected to be occupied as part
of the 5G frequency bands. Especially, the lower frequency
bands are reserved for resource-restricted devices and will
establish the backbone of the IoT. To investigate environmental
perception in these frequency bands, we use the OsmocomBB
open source GSM baseband implementation. The firmware
realizes the GSM protocol stack together with device drivers
for the baseband chipsets. It runs on the host machine and
the connected mobile device to access the wireless interface.
We used Motorola C123 mobile devices as phone hardware.
In particular, the OsmocomBB network monitor is capable
to capture the RSSI of overheard packages. We use this
information for the environmental perception.

1) Crowd-size detection: We investigate the recognition of
crowd-size in a canteen environment at Aalto University. In
particular, the phone was placed on a table in the entrance
area of a canteen. The phone records RSSI information and
from this establishes information about the crowdedness of
the restaurant. In particular, we distinguish between rush-
hour times and off-peak times. Recordings have been taken
at different time of day and over several days (see Figure 2).
Data used for training and testing the model have been
chosen from different days. For classification, a support-vector
machine (SVM) has been trained from mean, variance and
entropy features. Features are generated from non-overlapping
windows.

B. Prototype 5G OFDM system

We utilize a prototype 5th generation communication system
developed at our department. The system suggested by recent
studies, uses sub-frames with separated control and data parts
(see Figure 3) [12]. The system characteristics are depicted in
table II. In contrast to other radio-based systems exploited for
human activity recognition, it features a large sub-carrier spac-
ing (240 KHz) to enable shorter symbol length. Consequently,
this large sub-carrier spacing enables the system to operate
at higher carrier frequencies and with improved robustness to
phase noise compared to LTE systems [12]. The received data
is a sequence of OFDM symbols with a gap of 200 µs between



Fig. 3. OFDM carriers and symbols of our prototype 5G system

TABLE II
5G PROTOTYPE SYSTEM CHARACTERISTICS

Characteristics Value
Center Frequency 3.45 GHz

OFDM carriers 73 (52 for data)
One OFDM symbol length 4.16µs

Sub-carrier spacing 240kHz
Carrier Bandwidth 12.48MHz

each in time domain (see Figure 3). Data is sampled at 12.5 M
samples per second. Figure 4 shows data streams received for
various walking speed cases. The y-axis in the figure depicts
the 52 data carriers, the x-axis shows the OFDM symbols
received over time while their signal magnitude is color-coded.

1) Presence detection: For this experiment, we used uni-
versal software radio peripherals (USRP) devices for the
instrumentations (USRP X310, covering center frequency up
to 6GHz) as transmitter (Tx) and receiver (Rx). We utilized
TPLINK omni-directional antennas with a gain of 18 dBi in
both Tx and Rx sides.Tx and Rx are positioned in two distinct
office rooms, separated by a concrete wall (see Figure 5).

2) Walking speed detection: Two USRP NI 2932 devices
(covering center frequencies from 400 MHz to 4.4 GHz) were
used as Tx and Rx devices with a maximum RF-bandwidth of
40 MHz. The TPLINK omni-directional transmitter antenna
features a gain of 18 dBi and in receiver side a planar antenna
with a gain of 5 dBi was employed (Figure 6 (a) and (b)). We

Fig. 4. Data transmitted over 52 data channels for the three walking speeds
considered.

Fig. 5. The figure shows Rx and Tx side (respectively) which are separated
with a wall in middle.

Fig. 6. (a) Shows the employed transmitter with a laptop in order to control
data transmission. (b) Illustrates receiver side with an employed monitor to
control data transmission and (c) shows the corridor which experiments were
executed and the arrow indicates the distance between Tx and Rx

executed measurements in an indoor corridor (Figure 6 (c)).
The height, width and length of the corridor are 2.5 m, 2.2 m
and 27 m respectively and the material of walls is bricks. Tx
and Rx devices have been positioned over the floor at a height
of 0.9 m and 1.5 m respectively and facing each other at a
distance of 20 m.

C. Acceleration sensing

For acceleration sensing we utilize a Samsung Galaxy S5
mobile phone equipped with a triaxial accelerometer at 50 Hz.
We examine acceleration data using only y and z axis since
our data featured low variance in the direction of the x axis
(due to the straight walking movement conducted). Features
in time domain are extracted from the magnitude data which
consists of y and z-axis components and frequency domain
feature is extracted from the z-axis (up and down) data only.

IV. CLASSIFICATION TOOL CHAIN

A. Feature extraction

We apply similar features in all cases considered, but
adapted to the respective recognition systems. In particular,
we exploit both time and frequency domain features and
investigated mean, standard deviation, variance, root of the
mean squared (rms), frequency spectral entropy, kurtosis and
skewness. From these, we manually exploited various combi-
nations in order to identify those which are most characteristic
to describe the respective recognition cases. Best results have
been achieved with mean, variance and entropy features. Also,
several window sizes have been investigated.



For the crowd-size detection from GSM-band system, a
support-vector machine (SVM) has been trained from mean,
variance and entropy features which are generated from non-
overlapping windows.

In the presence detection scenario, we applied the above
features over a window of 60 milliseconds length. In the
OFDM system, this window length translates to 300 OFDM
symbols and 60814µs, due to the gaps in the recording added
to data length.

For the walking-speed detection case from the same proto-
type OFDM system, we again applied the same feature sets.
Empirically we achieved the best result from non-overlapping
windows of 20 milliseconds length. Each window length
includes 100 OFDM symbols, which corresponds to 203.38µs
over time. For the acceleration-based consideration, we again
utilize the same set of features as for the OFDM-based walking
speed detection.

B. Classification

Classification was conducted exploiting both the Matlab
Classification Learner toolbox and python scikit-learn. For the
crowd-size detection, we achieved best results with a SVN
classifier while results for the other cases have been achieved
with a KNN classifier. The choice of different classifiers
has historical reasons as investigations have been started in
different projects. In any case, since optimized toolboxes have
been utilized in both cases, we do not expect significant impact
on the classification results if methods were changed.

Training and testing was conducted in the crowd-size detec-
tion case exploiting data from different days for the respective
training and testing sets. For the presence-detection case, we
exploited five samples for each case (four cases) which we
took one testing set (including 1 sample from each case)
in a different day from training subsets. Consequently, we
applied leave-one-subject-out cross validation. Finally, for the
recognition of walking speed with acceleration and RF-data,
we divided the data into 5 subsets, one for each subject, and
again we employed leave-one-subject-out cross validation.

V. EXPERIMENTAL SETTINGS

A. Crowd-size detection

We chose a restaurant for crowd detection at our campus.
The receiver (Motorola C123 mobile phone) was placed on
the center table near the entrance of the restaurant. The RSSI
were observed and recorded at different days and times of
day. The three cases when the restaurant was empty, moderate
rush and the peak hours were considered. At peak hours the
queue of persons were moving close to the receiver during
the whole observation period. In moderate hours there were
persons moving randomly near the receiver and others farther
away at the sitting area was also not as fully occupied as in
peak hours. The peak time at the restaurant is 12.00 noon when
it is almost overcrowded, while at 03.30 pm the restaurant was
moderately filled. For empty tests we choose 06.00pm in the
evening when the restaurant is totally empty.

Fig. 7. The four cases considered for presence detection covering two
neighboring office rooms.

B. Presence detection

We investigated the detection of presence in indoor environ-
ments in which the transmit and receive devices are separated
by furniture and a wall. In addition, we were careful to conduct
the experiment on days where the offices have been partly
occupied by other subjects to cover natural environmental
noise. In the experiment we distinguish between an office in
occupied or non-occupied state. In the occupied state, a person
was moving freely in the office while in the non-occupied
state, the office was only occupied by occasional other workers
sitting and working in front of their computers. In addition,
we generated special cases in which another subject is walking
in proximity of the transmitter in order to investigate whether
movement farther away from the receive device would impair
the recognition performance. Measurements have been taken
over a number of days and on several times of day. The four
different cases considered are depicted in Figure 7.

1) Office with Rx device is occupied by office workers but
no subject walks or moves in the proximity of Tx and
Rx.

2) A single subject moves freely in the proximity of Tx
(noisy case).

3) A single subject moves freely in the proximity of Rx
while no subject moves near Tx.

4) A single subject moves freely in the proximity of Rx
and another subject moves freely in the proximity of Tx
(noisy case).

We repeated each of the four cases five times over the course
of several days where each recording lasted for at least five
minutes. Both environments are natural office environments
and differed from each other in the furniture installed (cf.
figure 5).

C. Walking speed recognition

In order to detect walking speed, we measured features
from five young healthy persons including three males and two
females aged 23-30. Each person walked the same distance at
three speeds: slow (0.7 meters per seconds (m/s), medium (1.3
m/s) and fast (2.2 m/s)) [20]. The idea behind choosing these
speeds is gait transition from human walking and running.
Individuals have two distinct gaits (walking and running)
and the natural transition point from walking to running is
2.2m/s [18].

We used a Metronome to help participants maintaining
walking speed during experiments. Participants practiced using
metronome before the experiments [21], [22]. As further



TABLE III
ACCURACY ACHIEVED FOR DIFFERENT SET OF CLASSES OF PRESENCE

DETECTION

Set of classes Accuracy
(A) case 1 and 3 0.928

(B) case 1+2 and 3+4 0.798

orientation, the ground was marked with a tape in distances
of 1 meter and 50cm between transmitter and receiver. We
exploited accelerometer data in order to compare with RF
results. During the experiment, subjects put a mobile phone
into the front pocket of their trousers while walking between
transmitter and receiver.

For acceleration sensing, the phone recorded only acceler-
ation sequences and it was not utilizing the RF interfaces.
The subjects wore the phone in the front pocket of their
trouser, which is a reasonable location for walking speed
estimation, since sensing at the lower spine of the body has
been shown to achieve higher accuracy for walking speed
estimation [23]. Since we aimed to achieve realistic accuracy,
we accepted possible sensor displacement or rotation as natural
measurement noise.

VI. RESULTS

A. Crowd-size detection

For SVM classifier with mean, variance and entropy fea-
tures, we achieved an overall accuracy of 0.809.

B. Presence detection results

For presence detection, we utilized 26 equally distributed
carriers from all 52 carriers1. Table III shows the overall
accuracy achieved for all cases.

Naturally, the best result has been achieved for the non-
noisy recognition cases (A) where no subject caused noise
close to the transmitter. However, movement farther away from
the receiver has only small impact on the recognition accuracy.
We can see this by including the cases where a person has been
moving close to the Tx side. In particular, we combined cases
1 and 2 as well as cases 3 and 4 (cf. figure 7). We observe
that, despite the noise generated by the person in proximity to
the transmitter, the recognition performance is degraded only
gently. The system is robust to such environmental noise and
can still detect the overall situation correctly with an accuracy
of 0.798.

1) Walking speed results: In this case, we investigate the
accuracy for walking-speed recognition from our 5G prototype
system and compare the achieved accuracy with inertial-
measurement-based acceleration sensing and recognition of
walking speed. In addition, we investigated the impact of the
number of carriers considered on the recognition performance.

We exploited various combinations of carriers and carrier
count selected and compared the results achieved to the
accuracy reached for acceleration sensing. For this purpose, we

1see section VI-B1 for a discussion of the impact of the choice of OFDM
carriers

(a) Single carrier (b) 13 carriers

(c) 26 carriers (d) 39 carriers

(e) 52 carriers (f) Acceleration

Fig. 8. Confusion matrices and average accuracy for the recognition of three
walking speeds from OFDM and acceleration data, recognized by a K-NN
classifier for six distinct carrier selections.

constructed six cases in which selected carriers were equally
distributed between all carriers. Case (a) features only a single
carrier (26th, center carrier). Case (b), case (c), case (d)
and case (e) represent thirteen, twenty-six, thirty-nine and 52
carriers, respectively. Case (f), finally, represents acceleration
data. Results are summarized in Figure 8.

The confusion matrix for case (a) (Figure 8 (a)) reveals
that slow speed is well distinguished from fast speed but
medium speed is partly confused with fast speed. The overall
accuracy achieved in this case is 0.662. This single-carrier
case is most similar to traditional RSSI-based recognition but
with higher sampling frequency and sampling accuracy. We
gradually increase the number of OFDM carriers considered
from case (b) to (e) which, in turn is rewarded by an increase
in the recognition accuracy up to 0.946 in the 26-carrier
case. With thirteen carriers (case (b)), already the confusion
between medium and fast speed can be reduced, resulting in
a higher average accuracy of 0.68. However, medium speed
still possesses low accuracy of 75%. This trend continues
with the consideration of further carriers and results in a
rise in accuracy with each additional 13 carriers considered.
Figure 8 (c) displays the third case in which we can observe the



highest accuracies for slow, intermediate and fast speed (94%
and 95% respectively). For the fourth scenario, we considered
thirty-nine carriers and we achieved an average accuracy of
92.66% (Figure 8 (d)). We examine the fifth case by exploiting
all fifty-two carriers over OFDM symbols, which results in
a drop of 0.06 in accuracy (see Figure 8 (e)). We account
this to the overlapping and, due to noise, partly contradictory
information obtained from the neighboring carriers. According
to figure 8 (c), the best result is achieved when we applied
only half of the available carriers (26), leaving a spacing of
one carrier between each considered OFDM carrier.

We also plot the confusion matrix for the acceleration case
(case (f) in figure 8 (f)) for comparison. The overall accuracy
achieved is 0.7033, which demonstrates that we are able to
reach comparable, or potentially better accuracy from RF-
sensing than what is possible from classic acceleration sensing.
As can be seen from figure 8 (e), accuracies of 67% and
72% are observable from slow and medium speed due to their
interference. However, acceleration-based process was able to
infer the speeds with an average accuracy of 70% only.

VII. CONCLUSION

We have investigated environmental perception in RF-based
cellular systems. In particular, we have considered the detec-
tion of presence and person count in existing GSM instrumen-
tation, as well as the detection of presence and walking speed
from a prototypical 5G communication system. We evaluated
the results in real environments achieving accurate detection
capability reaching 80.9%, 92.8% and 95% in three study
cases respectively. The results showed promising performance
in terms of accuracy for ubiquitous motion detection in cellular
systems and from IoT-class devices.
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