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Data Descriptor: A collection of
public transport network data sets
for 25 cities
Rainer Kujala1, Christoffer Weckström2, Richard K. Darst1, Miloš N. Mladenović2
& Jari Saramäki1

Various public transport (PT) agencies publish their route and timetable information with the General
Transit Feed Specification (GTFS) as the standard open format. Timetable data are commonly used for PT
passenger routing. They can also be used for studying the structure and organization of PT networks, as
well as the accessibility and the level of service these networks provide. However, using raw GTFS data is
challenging as researchers need to understand the details of the GTFS data format, make sure that the data
contain all relevant modes of public transport, and have no errors. To lower the barrier for using GTFS data
in research, we publish a curated collection of 25 cities' public transport networks in multiple easy-to-use
formats including network edge lists, temporal network event lists, SQLite databases, GeoJSON files, and
the GTFS data format. This collection promotes the study of how PT is organized across the globe, and also
provides a testbed for developing tools for PT network analysis and PT routing algorithms.

Design Type(s) data integration objective • source-based data transformation objective

Measurement Type(s) Public Transportation

Technology Type(s) digital curation

Factor Type(s) geographic location

Sample Characteristic(s)

City of Adelaide • city • Belfast City • Berlin • Bordeaux • Brisbane •
Canberra • City of Detroit • Dublin • Grenoble • Helsinki • Municipality
of Kuopio • City of Lisbon • Luxembourg City • City of Melbourne •
Nantes • Palermo • Commune of Paris • City of Prague • Rennes •
Roma • Sydney • Toulouse • City of Turku • Venice • City of Winnipeg

1Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto/Espoo, Finland. 2Department
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Background & Summary
Public transport (PT) networks help to provide efficient and sustainable mobility in cities around the
world1. PT network structure and schedules are challenging to plan, as one has to specify both the static
structure of the network as well as the detailed schedules of PT vehicle departures. In particular, planners
should have adequate tools for the analysis and optimization of the PT networks2–6, as well as expertise
on how PT networks are structurally organized across cities7–12. For developing such tools and
quantifying features of efficient public transport systems in different cities, detailed data on PT network
operations are required.

Fortunately, an increasing number of public transport agencies publish their route and schedule data
with the General Transit Feed Specification (GTFS, https://developers.google.com/
transit/gtfs/) as the standard, open format. GTFS specifies how to present PT service supply with
a series of CSV (comma-separated-values) plain text files constituting a GTFS feed. GTFS data is
primarily used for PT passenger routing, but it can also be used for research, for instance for modeling
PT-provided accessibility4,6,13.

GTFS data are increasingly available through the web sites of PT agencies as well as online repositories
such as Transitland (http://transit.land) and TransitFeeds (http://transitfeeds.
com). However, using GTFS data for studying how PT is organized in different cities remains
challenging. The first challenge is that the PT timetable data covering a city are often fragmented into
multiple feeds, each describing the operations of a single PT operator. These multiple feeds must be
merged to cover all relevant modes of transport in the area of interest. The second challenge is the
opposite of fragmentation: sometimes feeds are provided for large areas, such as whole countries, and
city-level data has to be filtered from the feeds spatially, which requires specifying city boundaries. The
third challenge is that GTFS data may contain errors, e.g., in the coordinates of PT stops, or times of
operations. Thus, the data have to go through a set of validation steps before they are used. The fourth
and final challenge is that learning the details of the GTFS standard can be time-consuming and slow
down the adoption of GTFS data; network scientists, for example, are much more familiar with other data
formats.

The above challenges call for easy-to-use, validated data sets on urban public transport networks.
However, to the best of the authors' knowledge, the only such data set is the multi-modal, temporal public
transport network of Great Britain14. To this end, we have published a collection of PT network data sets
for 25 cities in multiple, easy-to-use data formats. The locations of these cities, as well as examples of two
computer-generated route maps are shown in Fig. 1. The provided formats include SQLite databases,
GeoJSON-files usable for GIS-based analysis, static network edge lists and temporal network event lists
commonly used by the network scientists, as well as the GTFS data format.

To compile this collection of PT networks, we first downloaded the relevant GTFS feeds for each of the
25 cities, and then imported these feeds into a database, sometimes merging feeds from multiple sources.
Then, we checked the data for errors, and filtered the databases to match the spatial bounds of the cities.
As GTFS feeds do not always contain information on transfer times between stops, we augmented the
GTFS data with stop-to-stop walking distances using street network data from the OpenStreetMap
project (http://www.openstreetmap.org, https://planet.osm.org).

The primary aim of publishing this collection of extracts is to facilitate comparative research on PT
networks. However, the collection can be used for other purposes too. For instance, the city extracts
can be used as a test bed for developing computational methods for PT network analysis and
routing algorithms15. To make the collection of PT data sets easy to access, we have also launched an on-
line repository http://transportnetworks.cs.aalto.fi that allows interactive and visual
exploration of the data.

Methods
For background, we introduce the structure and contents of a GTFS feed by listing the files in the feed
and their contents in Table 1. As the different modes of PT transport, such as “bus” or “tram”, are
relevant in our data processing pipeline we list also their definitions, numeric codes, and short tag names
in Table 2. For more detailed information on the structure of each file and how they relate to each other,
please see https://developers.google.com/transit/gtfs/reference/.

Our data processing pipeline for producing the city extracts consists of multiple steps, as shown in
Fig. 2. Each of these steps is detailed below.

Step 1: Selecting cities and downloading source data
When selecting the cities whose PT networks are to be included in our collection, we focused on covering
cities of different sizes, from different continents, and from various geographies. The final selection of
cities was, however, heavily affected by the availability of data, as many cities do not yet publish their data
in the GTFS format. In addition, the licensing terms for the source data affected our selection of cities.
Many cities and countries that publish GTFS data provide non-standard custom licenses that can be hard
and time-consuming to interpret, licenses that do not allow modification or redistribution of the data, or
no licensing information at all. Thus, for practical reasons and to guarantee free data reuse for scientific
purposes, we have included only cities for which there was data available under public domain or one of
the commonly used open data licenses, such as the Creative Commons -licenses or the Open Database
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License (ODbL) by the Open Data Commons. All these licenses allow redistributing the data and using it
for scientific purposes. The exact licensing terms for the data of each city are provided alongside each data
extract. The final list of the 25 selected cities is provided in Table 3 and these cities are visualized on the
world map in Fig. 1.

In the process of discovering the GTFS data for each city, we searched the websites of PT agencies as
well as known GTFS data repositories for the download URLs of the GTFS feeds. The data was then
downloaded by Python scripts developed in-house that take care of possible authentication issues, store
the downloaded data in a consistent manner on our premises, and allow for continuous re-downloading
of the data on a weekly basis.

Step 2: Importing data into SQLite databases
In the second step, for each city, we imported the GTFS data into a relational SQLite database. An SQLite
database is a single file that consists internally of different tables, each having their own sets of columns

a

b c
Rome Winnipeg

city

Figure 1. Spatial overview of the included cities, and two example PT network layouts. In panel a, we show

the spatial overview of the cities' locations included in the collection. In panels b and c, we show two example

PT network layouts for the cities of Rome and Winnipeg. In Rome the PT network covers four different modes

of travel (tram, subway, train, and bus), while the PT network of Winnipeg is operated solely based on buses.

Background map courtesy of OpenStreetMap contributors, and Carto. Rome route network data used for

visualization is published by Roma servizi per la Mobilità under CC BY 3.0 IT (https://creativecommons.org/

licenses/by/3.0/it).
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Figure 2. Data processing pipeline for one city. The pipeline for data processing consist of multiple subtasks.

In the figure, the numbers indicate the order in which different tasks are carried out. Please see the main text

for more details on each step and the final data formats.

Mode tag route_type Description Max. speed (km/h)

tram 0 Tram, Streetcar, Light rail. Any light rail or street level system within a metropolitan area. 100

subway 1 Subway, Metro. Any underground rail system within a metropolitan area. 150

rail 2 Rail. Used for intercity or long-distance travel. 300

bus 3 Bus. Used for short- and long-distance bus routes. 100

ferry 4 Ferry. Used for short- and long-distance boat service. 80

cablecar 5 Cable car. Used for street-level cable cars where the cable runs beneath the car. 50

gondola 6 Gondola, Suspended cable car. Typically used for aerial cable cars where the car is suspended from the
cable.

50

funicular 7 Funicular. Any rail system designed for steep inclines. 50

Table 2. PT travel modes as defined by the GTFS standard. The data for “route_type” and “Description”
columns are copied from the “General Transit Feed Specification Reference” (https://developers.google.com/
transit/gtfs/reference/) by Google LLC, licensed under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0).
The column “Mode tag” tells the tag used for different PT modes when producing single-mode network
extracts. The column “Max. speed” tells the speed limit that we use to flag PT trips, where the average speed of
trip distances is unrealistic.

Filename Required Defines

agency.txt Required One or more transit agencies that provide the data in this feed.

stops.txt Required Individual locations where vehicles pick up or drop off passengers.

routes.txt Required Transit routes. A route is a group of trips that are displayed to riders as a single service.

trips.txt Required Trips for each route. A trip is a sequence of two or more stops that occurs at specific time.

stop_times.txt Required Times that a vehicle arrives at and departs from individual stops for each trip.

calendar.txt Required Dates for service IDs using a weekly schedule. Specify when service starts and ends, as well as days of the
week where service is available.

calendar_dates.txt Optional Exceptions for the service IDs defined in the calendar.txt file. If calendar_dates.txt includes ALL dates of
service, this file may be specified instead of calendar.txt.

fare_attributes.txt Optional Fare information for a transit organization's routes.

fare_rules.txt Optional Rules for applying fare information for a transit organization's routes.

shapes.txt Optional Rules for drawing lines on a map to represent a transit organization's routes.

frequencies.txt Optional Headway (time between trips) for routes with variable frequency of service.

transfers.txt Optional Rules for making connections at transfer points between routes.

feed_info.txt Optional Additional information about the feed itself, including publisher, version, and expiration information.

Table 1. The contents of a GTFS feed. Despite the .txt filename extensions, all files are comma-separated-
values (CSV) files. This table is an excerpt from the “General Transit Feed Specification Reference”
(https://developers.google.com/transit/gtfs/reference/) by Google LLC,
licensed under http://creativecommons.org/licenses/by/3.0/CC BY 3.0.
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and rows. Due to the optimized structure and indexing, an SQLite database can be efficiently queried
using Structured Query Language (SQL).

The table structure of the created SQLite database matches closely with the original tabular format of
the data. Typically, each of the .txt files was imported into a table having the same name as the original
file without the .txt extension. Additionally, to enable fast querying of the data, we created two
convenience tables: table days enables querying the trips that run on each day, and table
day_trips2 enables fast discovery of trips that take place between two arbitrary time points
expressed in Unix time. Furthermore, we created a new table, stop_distances, which lists the
distances between stops that are at most 1,000 meters apart from each other, when measured using great-
circle distance. Last, we added a metadata table for storing auxiliary data on the feed as well as some
pre-computed statistics.

When importing the data into a database, we changed any extended GTFS route types (describing the
mode of travel) (https://developers.google.com/transit/gtfs/reference/
extended-route-types) into the standard set of route types (tram, subway, rail, bus, ferry,
cable car, gondola, funicular) specified by the GTFS. This transformation was done in order to make
comparisons across cities easier.

For faster querying of the data and storage efficiency, we replaced the original identifier columns
containing strings (*_id) with columns (*_I) having integer keys in all tables, except for the identifiers
(shape_id) of the shapes.txt file. For instance, after the transformation, the main string
identifier of each stop, stop_id, was replaced by an integer-valued column stop_I. However, the
original string identifiers (*_id) were also retained in those tables where the _id field is used as the
primary key mapping a row into a unique entity. Thus, for instance, in the stops table (describing the
details of each PT stop) we preserved the stop_id column, but not in the stop_times table, as this
data is excessively redundant.

Typically, the schedules for each PT route are specified by listing the stop times for each run of a route
in the stop_times.txt file. However, sometimes the operations on a route are specified through the
frequencies.txt file, providing the headway of a route but no departure times at the departure

City Country Stops Links Connections License

Adelaide Australia 7 548 9 257 404 300 CC BY 4.0

Belfast Northern Ireland 1 917 2 181 122 693 ODBL v1.0

Berlin Germany 4 601 12 079 1 048 218 CC BY 3.0 DE

Bordeaux France 3 435 4 039 236 595 ODBL v1.0

Brisbane Australia 9 645 11 738 392 805 CC BY 3.0 AU

Canberra Australia 2 764 3 218 124 305 CC BY 4.0

Detroit USA 5 683 5 948 214 863 CC0

Dublin Ireland 4 571 5 567 407 240 CC BY 4.0

Grenoble France 1 547 1 682 114 492 ODBL v1.0

Helsinki Finland 6 986 9 072 686 457 CC BY 4.0

Kuopio Finland 549 704 32 122 CC BY 4.0

Lisbon Portugal 7 073 8 982 526 179 CC0

Luxembourg Luxembourg 1 367 3 234 186 752 CC0

Melbourne Australia 19 493 21 737 1 098 227 CC BY 4.0

Nantes France 2 353 2 779 196 421 ODBL v1.0 fr

Palermo Italy 2 176 2 561 226 215 CC BY 4.0

Paris France 11 950 14 781 1 823 872 ODBL v1.0 fr

Prague Czechia 5 147 6 754 670 423 CC0

Rennes France 1 407 1 671 109 075 ODBL v1.0

Rome Italy 7 869 10 206 1 051 211 CC BY 3.0 IT

Sydney Australia 24 063 28 815 1 265 135 CC BY 4.0

Toulouse France 3 329 3 793 224 516 ODBL v1.0

Turku Finland 1 850 2 341 133 512 CC BY 4.0

Venice Italy 1 874 2 737 118 519 CC BY 3.0 IT

Winnipeg Canada 5 079 5 846 333 882 PDDL

Table 3. The cities included in the collection, and basic information about their PT network
properties. The columns Stops, Links, and Connections indicate the number of each entity in the daily PT
network extracts. The number of “Connections” corresponds to the number elementary, time-dependent PT
vehicle movements between consecutive stops of a trip during the time span of the daily extract.
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stop. In this case, the travel durations between consecutive stops are nonetheless specified in the
stop_times.txt. To unify the structure of the data in the SQLite database and the data extracts, we
expanded such frequency-encoded route operations into multiple regular trips (route runs), resulting in
additional rows in the trips, days, day_trips2 and stop_times tables.

If a city's PT operations were described in multiple feeds, we merged the feeds into a single database
while prefixing all *_id columns separately for each feed. Otherwise, the data importing process
progresses as usual.

For some cities, there were multiple stops with identical geospatial coordinates in the original data. To
remove such duplicated stops, we aggregated together all stops that were less than one meter apart from
each other. To do this, we first grouped the stops so that all stops that are less than one meter apart
belong to the same group. Then, for each group, we selected one of the group's stops to represent all stops
in the group. Finally, to remove the duplicated stops, the information on the other, non-representative
stops were removed from stops and stop_distances tables, and their entries in stop_times
were updated to use the representative stop's stop_I identifier.

While the SQLite imports are basically a direct import of the input CSV files, a researcher already
benefits from them for multiple reasons. First, the import step converts semi-structured GTFS data into
highly structured tabular data and catches any obvious inconsistencies. Second, different methods of
representing the same thing (e.g. exact stop times vs. frequencies) are converted to a single, consistent
representation. Third, SQLite is a common, open source format which can be used for ad hoc querying
and data exploration much more easily than the original text files.

Step 3: Spatial and temporal filtering of the data
To ensure ease-of-access and consistency across the provided data extracts, we filter the SQLite databases
both in space and time. The spatial filtering of the data is required for removing long-distance PT
connections reaching far out from each city's urban area. Temporal filtering is performed for two reasons.
First, we aim to cover typical operations, without any irregularities such as local public holidays that take
place on working days. Second, given that PT time tables are commonly scheduled on a weekly basis, we
select a representative one-week time period that should fully capture the provided PT services in a city,

City Latitude Longitude R (km) Download date Extract date

Adelaide − 34.9213 138.5775 40 2016-12-07 2016-12-12

Belfast 54.6001 − 5.9304 30 2017-10-30 2016-09-05

Berlin 52.5190 13.4029 30 2016-12-07 2016-04-25

Bordeaux 44.8412 − 0.5751 30 2016-12-07 2016-12-12

Brisbane − 27.4580 153.0226 40 2016-12-07 2016-12-12

Canberra − 35.2767 149.1254 30 2016-12-14 2017-01-09

Detroit 42.3700 − 83.0807 30 2016-12-07 2016-12-12

Dublin 53.3497 − 6.2566 20 2016-12-07 2016-12-12

Grenoble 45.1772 5.7228 20 2016-12-07 2016-11-14

Helsinki 60.1733 24.9409 30 2016-12-07 2016-12-12

Kuopio 62.8945 27.6807 10 2016-12-07 2016-12-12

Lisbon 38.7096 − 9.1420 30 2017-01-30 2016-11-21

Luxembourg 49.6111 6.1329 20 2016-12-07 2016-11-28

Melbourne − 37.8493 145.0793 50 2016-12-07 2016-12-12

Nantes 47.2133 − 1.5516 20 2016-12-07 2016-12-12

Palermo 38.1186 13.3598 20 2016-12-07 2014-09-22

Paris 48.8619 2.3519 35 2016-12-07 2016-12-12

Prague 50.0846 14.4311 30 2016-12-07 2016-12-12

Rennes 48.1079 − 1.6749 20 2016-12-07 2016-12-19

Rome 41.8963 12.4853 20 2017-10-25 2017-11-06

Sydney − 33.8269 151.0643 50 2016-12-14 2016-12-19

Toulouse 43.6021 1.4428 20 2016-12-07 2016-12-12

Turku 60.4491 22.2671 10 2016-12-07 2016-12-12

Venice 45.4882 12.2416 20 2016-12-07 2016-12-12

Winnipeg 49.8819 − 97.1352 30 2016-12-07 2016-12-12

Table 4. Details of the spatial and temporal filtering parameters for each city. Columns “Latitude” and
“Longitude” indicate the location of the defined city center point, and R is the buffer radius used for spatial
filtering.
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as PT services are commonly planned to be week-periodic and variations in PT services across
neighboring weeks are typically small. This also ensures consistency and comparability of results in future
use of the data set, as the time-period of the data extracts are precisely defined. The final parameters used
for spatial and temporal filtering of the data are provided in Table 4.

Spatial filtering
Spatial filtering of a GTFS feed is challenging for two reasons. First, the non-administrative areal limits of
a city or metropolitan area can be difficult to define, and multiple different definitions exist16. Second, PT
routes can span large areas, which needs to be taken into account when filtering the data.

While one could argue for different definitions of a city area, most likely no spatial filtering approach
is ideal for all use cases. In our spatial filtering approach, we decided to pursue these goals: (i) limit the
spatial extent of the city extracts to the approximate spatial bounds of the city, (ii) include only PT
connections within the spatial bounds of the city, and (iii) cause minimal artifacts in the resulting data
extracts, and the PT network structure, due to cutting of PT trips.

Figure 3. Spatial filtering of a GTFS feed based on stop coordinates. The city area is defined by a center

point and an associated buffer radius. Only PT connections within the defined city area are included. Each line

and color corresponds to a different PT trip (= one run of a PT route). When necessary, a trip is split into

multiple parts so that only those parts of the trip are retained which run within the defined city area. Here, the

red PT trip is split into two parts, as it temporarily exits and then re-enters the defined city area.

a b c

Figure 4. The importance of spatial filtering. The figure shows the PT routes of Dublin's GTFS source data

before and after the spatial filtering. In panels a and b, we can see that the train routes present in one of the

source feeds extend well beyond the city borders of Dublin. In panel c, we show the situation after spatial

filtering, where the non-urban parts of the railway and bus networks have been removed. Note that, there are

also some minor changes in the routes that reside within the buffer radius used for Dublin (20 km). These

differences are not present in the actual data but are due to the visualization approach, which shows for each

PT route the spatial shape of only one run of the route for efficiency reasons. Notably, the Dublin Area Rapid

Transit (DART) route splits into two branches northeast from the city center. Due to the chosen visualization

approach, this is now seen as a small discrepancy in the rail networks extending east from the city center,

although this discrepancy is not present in the actual data.
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To this end, we adopted the following approach. First, we defined the extents of each city heuristically
based on the stop locations and on satellite imagery. Note that while we could have also used
administrative boundaries of the city, these may not properly reflect how the PT network is planned. For
each city, we then selected a central point and a radius around this central point that should cover all the
continuous and dense parts of the city and its PT network. The central point was selected to be
approximately at the center of the city area, if the shape of the urban city area was approximately round.
If the city area was very asymmetric, the central point was chosen to be at the city center, e.g. close to to
the main railway center. Then we preserved all PT operations residing within this buffer area.

If a PT trip (= one run of a PT route) temporarily exited the buffer area, but later returned back, we
split the trip into two or more subtrips, with each subtrip going through only stops that reside within the
defined city area. In this case, the original trip is replaced in the SQLite database by the split trips, which
were assigned a trip_id of the form [original_trip_id]_splitted_part_{i},
where {i} stands for the ordinal number of the split trip. We chose to split trips that go outside the
defined city area in order to prevent artifactual PT connections, which would have been emerged, e.g., if
we would have only removed the stop time entries occurring outside the defined city area. We illustrate
the spatial filtering approach in Fig. 3. An example where spatial filtering was especially necessary is
showcased in Fig. 4

All trips that had only one entry in the stop_times table were removed from the trips table along
with the corresponding entries in the stop_times table. Finally, all other tables' rows which are no
longer “referred to” by any other tables are removed from the SQLite database.

Temporal filtering
The dates for the temporal filtering were chosen based on the number of daily trips of the included feeds.
We ensured that there was a clear weekly periodicity in the feeds, so that working days have roughly the
same number of trips and that weekends have a different schedule. Then we selected the dates for the
week-long and day-long extracts, where we aimed for a typical work week without major exceptions in
the PT operations, such as national holidays. To this end, we ensured that all weekdays have at least 90%
of the maximum number of daily PT trips during the time span of the week-long extract. This enabled us
to select the extract time spans in a semi-automatic manner, as illustrated in Fig. 5. If a city's timetable
data consisted of multiple GTFS sources, we also ensured that each of the feeds was valid for the dates
selected.

After the week- and day-extract start dates have been selected, our temporal filtering process preserves
all PT trips in the GTFS data that depart within the precise timespan of the selected week or day. The
precise time-span for the weekly extracts was set to range from 03:00:00 on Monday to 02:59:59 on the
next Monday, and for the daily extracts from 03:00:00 on Monday 02:59:59 on the next day. We chose
3AM to be the “cutting point” as at this hour of day there were typically very few number of PT trip
departures in all of the included cities. Note, that while the data contains no PT events before the
beginning of the defined time-span, there can be PT events taking place after the end of the defined time-
span, as some trips starting before the end of the time-span are still operating after the end of the
time span.

In practice, the filtering process required removing entries from the calendar, calendar_-
dates, days, and day_trips2 tables, and adapting the service information in the calendar,
calendar_dates and trips tables for the preserved trips. Finally, all other tables' rows which are
no longer being “referred to” by any other tables are removed from the SQLite database.

Figure 5. Temporal filtering is required for selecting a representative week and day. The daily variations in

PT trip counts for Rome show the regular weekly pattern in the provided GTFS data. On 1st of November, the

All Saints Day, we can see a drop in PT services due to the public holiday. Because of this, the next full week

after All Saints' Day is selected as the representative week.
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Step 4: Computing walking distances between stops
As GTFS data format does not require one to provide transfer times or walking distances between stops,
we computed stop-to-stop distances for each city to enable accurate modeling of walking transfers
between stops. To limit the number of stops pairs, we computed stop-to-stop distances only between
stops that were less than 1 km apart from each other. To this end, we used data from OpenStreetMap
covering the whole planet (https://planet.osm.org/, OpenStreetMap contributors). For the
actual routing, we used the open source GraphHopper routing library https://github.com/
graphhopper/graphhopper, and augmented the SQLite databases with these results. After the
walk routing had been performed, all pairs of stops that were found unreachable by the OpenStreetMap-
based pedestrian routing were removed from the stop_distances table. This would be the case e.g. when
one of the two stops resided on an island, from which there is no bridge to the mainland, where the other
stop resides. In few cases, where OpenStreetMap is lacking accurate data, the routing can cause PT stops
to become unconnected in the walking network or the walking distance to become artificially large.
However, the accuracy and coverage of OpenStreetMap data is typically so good that it can be used for
reliable pedestrian and bike routing in public transport journey planners.

Step 5: Data validation
At this stage, we performed validation steps for the SQLite database. Please see Section “Technical
Validation” for more information.

Step 6: Creating extracts from the city databases
As a final step of our pipeline, we extracted data from the database, and created the extracts described in
Section “Data Records”.

Code availability
Alongside the data, we share also our software and scripts for the full data processing pipeline. All code
has been written for Python 3.5 and has been tested to work on both Mac and Linux. This code for
downloading the original data and processing of the data into the city-sized extracts is available at
https://github.com/CxAalto/gtfs_data_pipeline17. Internally, this pipeline heavily
uses our in-house developed Python package gtfspy (https://github.com/CxAalto/
gtfspy)18. The Java code for running the pedestrian routing is provided alongside the gtfspy Python
package. Both software resources are available under the MIT license (https://opensource.
org/licenses/MIT).

File Description

week.sqlite An SQLite database covering the operations for a week.

week.gtfs.zip A spatially and temporally filtered GTFS feed covering the operations taking place during a
week.

network_temporal_week.csv Describes the PT operations on the level of elementary connections taking place during one full
week.

network_nodes.csv Information on the nodes for the network extracts.

network_[mode].csv Static networks for each PT mode specified by the GTFS standard. Includes statistics for each
link computed based on the operations on a Monday.

network_combined.csv A combined static network of all PT modes. Includes statistics for each link computed based on
the operations taking place on a Monday.

network_walk.csv A combined static network of all PT modes. Includes statistics for each link computed based on
the operations taking place on a Monday.

network_temporal_day.csv Describes the PT operations on the level of elementary connections taking place on a Monday.

stops.geojson Information on the nodes in GeoJSON format.

sections.geojson Each stop-to-stop section in GeoJSON format.

routes.geojson Public transport routes in GeoJSON format.

stats.csv Simple statistics describing the PT operations on a Monday.

notes.txt Additional information such as the feeds' download dates, original source URLs, and time zone.
We describe here also specialties of the data set, such as missing modes of PT.

license.txt License information for the feed.

[x]_legal_code.txt Legal code for the provided data license.

Table 5. Data provided for each city. See the main text for more detailed description of each file.
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Data Records
For each city, we provide the extracts listed in Table 5, which are then discussed in more detail. For long
term archival, a bulk copy of all data is provided at Zenodo (Data Citation 1). In addition, we have also
launched our own data repository http://transportnetworks.cs.aalto.fi that allows
for interactive exploration and visualization of the data sets. Some of the provided data sets (week.
sqlite, week.gtfs.zip, network_temporal_week.csv) cover the operations of the full
week, while the rest cover operations during on typical working day (Monday).

Week extracts
● week.sqlite: The week.sqlite database is our master SQLite database for each city. This
database has pre-built indices that allow efficient querying of data for many use cases. For more details
on the structure of the SQLite database, see the Section “Step 2: Importing data into SQLite databases”
under Methods.

● gtfs.zip: gtfs.zip is a GTFS export of the week.sqlite database covering the operations
taking place during one week and has been spatially filtered to match the city bounds. Note that here
any operations that were originally coded using the frequencies.txt file are expanded into the
stop_times.txt files and thus no frequencies.txt file is present.

● network_temporal_week.csv: To allow easy investigation of the data using temporal
network methodology19, we provide a week-long temporal network extract listing the elementary PT
connections, or events, that describe the progression of a PT vehicle from a stop to its next stop along
the route. Note that the rows in the file are not sorted by the departure time of the events, and that the
values for trip_I repeat across the days. For more detailed description of the contents, see Table 6.

Day extracts
The network and GeoJSON extracts are aggregations of one working day (Monday). The precise
descriptions of the contents of each file are provided in Table 6, and Table 7 describes data type for each
data field. Below, we outline the content of each of the extracts.

Network extracts: All data related to the network extracts are provided as comma-separated-values
files (.CSV) where semicolon (";") is used as the delimiter. Below we list the contents of each file.

● network_nodes.csv:
Information on the PT stops that function as the nodes of the network.

● network_walk.csv:
This file describes the stop-to-stop walking distances between network nodes (stops). In the file we
provide both euclidean (straight-line) distances and the values computed using Open Street Map
routing. Note that links exist only between stop pairs where the straight-line distance d is smaller than
1000 meters, and there is a footpath connection between the stops.

● network_[mode].csv:
To enable easy investigation on the role of different PT modes, we provide a file network_
[mode].csv describing the operations for each mode of PT. Here, the [mode] part of the file
name is one the values listed under the column “Mode tag” in Table 2. For instance, the tram network

Extract stop_I latitude longitude stop_name from_stop_I to_stop_I n_vehicles duration_avg route_I_counts route_type d d_walk dep_time_ut arr_time_ut trip_I route_I route_name

network_nodes.csv ✓ ✓ ✓ ✓

network_walk.csv ✓ ✓ ✓ ✓

network_[mode].csv ✓ ✓ ✓ ✓ ✓ ✓

network_combined.csv ✓ ✓ ✓ ✓ ✓ ✓ ✓

network_temporal_day.
csv

✓ ✓ ✓ ✓ ✓ ✓

network_temporal_week.
csv

✓ ✓ ✓ ✓ ✓ ✓

stops.geojson ✓ ✓ ✓ ✓

sections.geojson ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

routes.geojson ✓ ✓ ✓ ✓ ✓

Table 6. Information contained by network and GeoJSON extracts.
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of a city would be provided in file network_tram.csv. If there are no operations for a mode of
PT, then no network_[mode].csv file is provided.

● network_combined.csv:
The file network_combined.csv contains the combined set of links of the mode-wise networks
(network_[mode].csv). Note that there can be multiple links between two stops that
correspond to different modes of travel, differentiated by the route_type field.

● network_temporal_day.csv:
Similarly to the network_temporal_week.csv, we provide a listing of temporal network
events for the specified Monday matching the other Monday-related data extracts. Note that the rows
in network_temporal_day.csv are not sorted by the departure time of the events.

Column Data type Explanation

node_I integer The id used for a PT stop.

latitude float Latitude expressed in WGS 84 coordinate system.

longitude float Longitude expressed in the WGS 84 coordinate system.

stop_name string Name of the stop as presented to PT passengers as presented in the original GTFS data.

from_node_I integer From node's / stop's identifier.

to_node_I integer To node's / stop's identifier.

n_vehicles integer Number of PT vehicles that have traveled between two stops within a time interval.

duration_avg integer Travel time between stops averaged over all PT vehicles rounded to one second accuracy.

route_I_counts list (string) A list of route_I's and the number of times each route has operated between two stops. For the network extracts,
this data is formatted as a string where each element is written as ``route_I:count'' and different routes are
separated by a comma. An example value for this field is thus ``1:3,2:131,10:93''. For the GeoJSON extracts, we
provide these values as part of the JSON object's attributes. Please note that the definition of a route varies across
the cities provided, and that routes can have deviations from their main paths for instance when traveling to and
from a depot.

d integer Straight-line distance between two stops expressed in meters.

d_walk integer Distance between two stops computed using OSM data expressed in meters.

dep_time_ut integer Departure time of an elementary PT connection in a temporal network expressed in Unix time (number of
seconds after 1.1.1970 00:00:00 UTC).

arr_time_ut integer Arrival time of an elementary PT connection in a temporal network expressed in Unix time.

trip_I integer Identifier for a trip.

route_I integer Identifier for a route.

route_name string Name of a route as shown to passengers.

Table 7. Explanations for fields used in the network and GeoJSON extracts.

Variable name Description

n_stops The number of stops used at least once.

n_connections Total number of elementary connections.

n_links The total number of stop pairs between which at least one elementary PT
connection takes place.

network_length_m The sum of all links' (excluding walk) great circle distances, expressed in meters.

link_distance_avg_m Average link distance: network_length / n_links.

vehicle_kilometers Vehicle kilometers traveled.

buffer_center_lat Latitude of the center point used for spatial filtering.

buffer_center_lon Longitude of the center point used for spatial filtering.

buffer_radius_km The radius of the buffer circle used for the spatial filtering.

extract_start_date The starting date of the weekly extract, and the date used for the daily extracts.

Table 8. Contents of a stats.csv file describing PT operation statistics for one day.
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GeoJSON extracts: To enable the data to be used in popular GIS-software and web-mapping tools, we
provide also GeoJSON files for the stops, sections (i.e. PT network links) between the stops, and routes.
All coordinates in the GeoJSON files are expressed in the WGS84 coordinate system.

● stops.geojson:
Information on the public transport stops.

● sections.geojson:
All stop-to-stop sections with data on operations.

● routes.geojson:
In this file we provide the stop coordinates for each route. Here, a distinct route is specified by the
GTFS standard using the field route_id. Note that even if a route would operate in two directions,
only one direction of the route is included. Also, the GTFS standard allows routes to go through
different stops on different trips. Here, we provide the coordinates of stops of the trip that has the
longest scheduled duration.

Metadata
license.txt
The licensing terms of each city extract are described in license.txt -files. The legal code of the
referenced licenses are provided in an additional file [x]_legalcode.txt, where [x] stands for an
abbreviation of the license name under which the data is provided.

notes.txt
In notes.txt we state how comprehensively the each city extract covers the PT services available
within the city area. Sometimes we also provide minor additional remarks regarding the feed.

stats.csv
The statistics file containing the following summarizing the operations taking place on a Monday. The
details of the provided statistics are listed in Table 8.

a b

Figure 6. Validating the coverage of the data extracts using publicly available PT route maps. In the figure,

we compare the official route map of Helsinki to a computer-generated map created based on the static

network extract for Helsinki. In panel a, we show an excerpt of the official PT transportation map of Helsinki

city center published in early 2018 (routes and layout: Helsinki Region Traffic, background map

OpenStreetMap). The blue, green, orange, and purple lines correspond to bus, tram, subway, and train routes,

respectively. In panel b, we show the computer-generated map used for validation purposes (background map

OpenStreetMap). Note that on the computer-generated map, the lines do not follow the actual paths taken by

the PT vehicles, but connect the two stops directly. By comparing the two maps, we can see that both maps

contain same modes of PT and most PT lines can be found in both maps. However, given that the maps cover

slightly different time frames, there are also some differences in the maps due to changes in the PT network.

One such example is the new continuation of the subway line east from the city center.
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Technical Validation
Our validation process consists of two major steps: automated data validation through various sanity
checks and comparison of the data to openly available information on the PT network structures. The
first step of our automated data validation is to check that the importing of the GTFS files into SQLite
databases has been successful and there are no missing data.

For detecting actual errors in the schedule data, we computed for each city the number of cases (in the
week.sqlite database) where:

1. distance between consecutive PT stops on a trip is longer than 20 km;
2. five or more consecutive stops on a trip have the same scheduled arrival time;
3. trip duration is longer than 2 hours;
4. travel duration between consecutive stops is larger than 30 minutes;
5. the average speed of a PT trip is unrealistically high with respect to the PT mode in question. The

mode-wise threshold speeds used for detecting unrealistically fast PT trips are listed in Table 2.

Most feeds raise warnings for at least some of these features. For instance, it is typical that five or more
consecutive stops along a trip have been sloppily scheduled to have same arrival time, when the PT
vehicle is heading towards its depot. Sometimes, on the other hand, these warnings are simply false
alarms. Regardless whether such warnings are due to errors in the source data or are just peculiarities of
the city's PT operations, researchers using the data should be aware of them. Therefore, we report the
numbers of the above-issued, computer-generated warnings in file week_db_timetable_war-
nings_summary.log.

After the creation of the data extracts, we perform a visual sanity check of the data for each city. At
this stage, we visualize all PT routes of each city on top of a map using an associated web-mapping tool
(https://github.com/CxAalto/gtfspy-webviz) and assess whether the locations of the
PT routes seem viable with respect to the surrounding land use, and that the spatial filtering process has
been successful. In addition, we use the web-mapping tool to animate the movement of PT vehicles in
time, and check that there are no striking peculiarities in the data, such as a PT vehicles suddenly jumping
between distant locations.

Finally, we compare the computer-generated PT network visualizations to the publicly accessible
information about the PT network and operations provided in each city, such as network maps and
timetables. This process is illustrated in Fig. 6 where the official PT route map of Helsinki and a
computer-generated route map based on the static PT network extracts are compared. Out of the 25
cities, we found all relevant urban public transport modes for 14 cities (Adelaide, Berlin, Brisbane,
Canberra, Dublin, Helsinki, Kuopio, Luxembourg, Melbourne, Paris, Rome, Turku, Sydney, Winnipeg).
For 9 cities (Belfast, Bordeaux, Grenoble, Nantes, Palermo, Prague, Rennes, Toulouse, Venice) only
commuter trains or regional buses are missing from the data. For Detroit and Lisbon, services in a part of
the city area are missing. For Lisbon data on the tram network is also missing. We report the above-listed
cases in the notes.txt -file provided alongside each city extract.

Usage Notes
The spatially and temporally filtered GTFS data can be analyzed using many pieces of software. Of these,
we mention our in-house-developed Python package gtfspy which was the core software block for
creating these data extracts, and is interoperable with the provided week.sqlite databases. The
package provides methods e.g. for computing various PT network statistics, as well as performing routing
and accessibility analyses on the network.

The GeoJSON extracts can be easily analyzed and visualized using GIS-software such as QuantumGIS,
as well as various web mapping tools.

Regarding the network data formats, there are multiple network analysis libraries available, such as the
popular networkx library (http://networkx.github.io/) that can be directly used for
analyzing the data. Note that when using these data for network analyses, the nodes (PT stops) have been
minimally spatially aggregated. Thus, e.g. large bus or metro stations with multiple platforms often result
in multiple network nodes, which should be taken into account especially when performing static
network analyses.
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