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Big Data has become the primary source of understanding the structure and dynamics of the society at large
scale. The network of social interactions can be considered as a multiplex, where each layer corresponds to one
communication channel and the aggregate of all of them constitutes the entire social network. However, usually
one has information only about one of the channels or even a part of it, which should be considered as a subset
or sample of the whole. Here we introduce a model based on a natural bilateral communication channel selection
mechanism, which for one channel leads to consistent changes in the network properties. For example, while it
is expected that the degree distribution of the whole social network has a maximum at a value larger than one,
we get a monotonically decreasing distribution as observed in empirical studies of single-channel data. We also
find that assortativity may occur or get strengthened due to the sampling method. We analyze the far-reaching
consequences of our findings.

DOI: 10.1103/PhysRevE.94.052319

I. INTRODUCTION

Over the past decades the information-communication
technology (ICT) has changed in various ways how we
communicate and interact with each other. Yet at the same
time it has revolutionized social sciences [1] by making
available an unprecedented amount of high-quality data of
social interactions of a huge number of people. Through
computational analysis and subsequent modeling one could
get insight into earlier inaccessible properties like the structure
of the interaction network at the societal level [2], the
inhomogeneous dynamics of communication [3–5], and the
laws of collective attention [6], to name a few examples. In
these cases the data is usually in the form of communication
records, e.g., mobile phone calls, text messages, and e-mails
[7–9], as well as social-networking services (SNS), e.g.,
Facebook and Twitter [10,11]. While in each case one has
information about a particular kind of interaction, the general
interest stems also from the assumption that this type of
research can provide insight into the structure and function
of the society as a whole.

It is now understood that a network of human social
interactions should be considered as a multiplex network
where the each edge is categorized by its type [12–14], at least
from two different points of view. Usually one assumes that the
links can be classified according to the nature of relationships
like kinship, friendship, workmate links, etc. Each of these
defines a network, which then serves as a layer of the whole
multiplex network. On the other hand, the interaction can also
be assorted according to the channels used for communication
like face-to-face, mobile phone, social network services, etc.
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Then the layers of the multiplex correspond to different
communication channels. Data is usually available only for
one channel, meaning that from the whole multiplex there
is only one layer we can investigate at a time. Linking data
from diverse channels is in most cases impossible due to their
different origins and for privacy reasons [15].

Having information only about one layer of the multiplex
raises the following questions. To what extent can we, from
the analysis of one particular layer, draw conclusions of the
properties of the whole network? How much are the properties
of the whole network reflected by the partial datasets? The
answers to these questions are of fundamental importance, if
we want to apply the results from the available data to the
whole society. A schematic view of this picture is shown
in Fig. 1. The most apparent problem here is the general
observation that in ICT-provided data about large populations,
wherever they come from, the degree distribution shows a
monotonously decreasing behavior [2,10,16]. This has the
consequence that the most probable degree is one. Then a
simple-minded generalization of this observation would imply
that this statement is true for a number of social contacts of an
individual, which is clearly nonsense.

Dealing with data from only one communication channel
can be interpreted as sampling, such that each layer constitutes
a sample of the whole multiplex network, composed of the
people using a particular channel of communication. The
sampling method changes the properties of the network and
it is an inverse problem [17] to draw conclusions about the
whole system from the partial observations.

We would like to stress the difference from previous studies
on sampling networks [18–20]. These studies focused on the
bias caused by selecting a fraction of the data (or network) for
analysis such that its statistical properties remain unaltered.
While this sampling is a statistical issue and has previously
been studied well, the selection of social links by a single
communication channel is inherently social activity and has
so far not attracted much research attention.
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(a)

(b)

FIG. 1. (a) Schematic representation of the different communi-
cation channels or layers (different colors) on a sample egocentric
network (gray). (b) One of the communication layers on the top of
the original egocentric network. For the selection of the users, we
used the sampling method defined in Sec. III with f0 = 0.25.

Generally speaking, available datasets usually undergo
two-step sampling [21]. The first sampling takes place when
the calling person chooses a communication channel from
various options depending on context or a person with whom
the contact is made. The other sampling occurs when an
observer or a researcher analyzes the dataset. Since it is often
hard to analyze all the logs in an ICT service mainly due to
technical reasons, a fraction of data are randomly sampled
for the analysis and the properties are statistically inferred. In
this paper, we will focus on the former sampling, which is of
fundamental importance since a bias originating from social
activity is not reduced by the amount of data.

In this paper we analyze the relationship between the whole
network and the sampled network using different techniques.
We will show how the sampling may substantially change the
properties of the network, e.g., it can make a monotonic degree
distribution from one with a peak at degree larger than one. We
will demonstrate under which condition the sampled network
reflects the properties of the surrogate network.

II. EMPIRICAL OBSERVATIONS

We first summarize some general empirical findings or
stylized facts in social networks from different ICT datasets
[7,10,11,22]. Here we have chosen to analyze two datasets:
One is the mobile phone call (MPC) dataset [2] and the other
is the Hungarian social networking service iWiW [22]. For the
MPC network, we consider a link between two users existing
provided that it is mutual [2], and for the iWiW network when
the friendship was recognized by both users.

Figure 2 summarizes degree distributions P (k) and the
average degree of neighbors knn(k) of the users with degree
k, which are measured for the MPC and iWiW networks,
respectively. For both networks, the degree distribution is
found to decrease monotonically. This decrease is slow for
a range of small k, then followed by a fast decay that is either
exponential or follows a power law with very large decay
exponent [2]. Both networks show assortativity, characterized
by an increasing knn(k) as a function of k. In this paper we
focus on these two properties.

The decreasing P (k) and the increasing knn(k) are generally
observed for ICT datasets, despite their diverse origins. For
example, the average degree for the MPC network is small,
i.e., of the order of 10, while for the Facebook network it is
large, i.e., of the order of 100 [10]. Furthermore, the growth
mechanisms of the networks differ from each other. Some
require invitation, e.g., in case of iWiW, while others require
paid subscription as in case of MPC. However, the stylized
facts across various datasets imply that there could exist a
common underlying mechanism.

It is reasonable to assume that very few people have only
one social contact, thus the maximum of the distribution should
not be at unity [23]. This implies that the degree distribution
should first increase and then decrease, which we call a peaked
degree distribution. We argue that the discrepancy between
this plausible picture and most empirical findings from the
ICT datasets can be attributed to the selection method of a
single communication channel from the whole network of
social interaction between people.

In order to support our motivation, we briefly argue the fol-
lowing. As it takes time and effort for people to build up a net-
work on a communication channel, people with larger activity
may develop their egocentric networks in a particular channel
more similarly to their real egocentric networks. For example,
for the MPC network, an activity of a user can be defined as
the total number of calls. Then the degree distribution only for
users with activity larger than some threshold value is expected
to be more similar to the real degree distribution. Figure 2(a)
shows that the degree distributions for users with activity above
sufficiently large thresholds show peaked behavior, whereas
the degree distribution for all users is monotonically decreas-
ing. This may indicate that the discrepancy of overweighting
the low-degree nodes comes from the low-activity users. Since
we do not have activity records for the iWiW network, as a
proxy for it we use the active period defined by the number of
days between the first and last logins. We find the same trans-
formation from monotonically decreasing to peaked degree
distribution, as shown in Fig. 2(b). As the egocentric networks
of users with large activity are expected to be more similar
to the real egocentric networks of users, the observed peaked
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FIG. 2. Empirical results of the mobile phone call (MPC) dataset (left) and the Hungarian social networking service iWiW dataset (right).
Degree distributions for users with activity larger than some threshold values (top) and the average degree of neighbors of users with degree
k (bottom). For the degree distributions, frequencies are divided by the total number of nodes in each dataset, i.e., the curves for “all” are
normalized while the others are not.

distribution for such users can be considered as evidence for
the peaked degree distributions in the entire social network.

Another important property of social networks is assortative
mixing, which is usually attributed to the link formation
mechanism related to homophily [24]. As we do not know
the underlying social network exactly, we cannot confirm this
at the societal scale. However, we will consider this property
here.

III. SAMPLING METHOD

It is important to stress that ICT datasets report dynamics
of a single communication channel, while people in general
use many different means of communication. The natural
relationship network of humans is thus a multilayer system, in
each layer of which there are only links that represent a single
communication channel. Therefore, the data related to a single
layer can be considered as a special sampling of the entire
network. In order to understand this sampling we model how
people choose a communication channel or an ICT service to
make contacts with other people.

People have diverse interests and preferences for commu-
nication and they show different usage patterns of services
such as the frequency of visits or the variation of the time
spent using the service. For example, users that have invested
a considerable amount of time to build up their friendship
network would show a higher preference to use the service.

The degree of preference of a user to choose a service
can be described by an affinity quantity, denoted by fi for
user i.

Let us now assume that agents i and j know each other and
that they try to communicate, and for that purpose they have to
choose a communication channel. In general, the agents have
different personal affinities toward different communication
channels. When they are choosing a channel they tend to
avoid those that are inconvenient for the other, because it could
risk the success of communication. For example, writing an
urgent e-mail to someone who is checking it weekly is not
a good idea. Alternatively, waiting for someone to appear on
an instant messaging channel, if login is irregular, could be
meaningless. So, naturally, everyone tends to choose those
channels to communicate with an acquaintance for which both
of them have relatively high affinity. Hence, we assume the
probability that a link between i and j is made over a given
communication channel is a symmetric function of fi and
fj , pij (fi,fj ), as introduced in Refs. [25,26].

Our strategy to investigate the effect of sampling is as
follows. Since the real, underlying social network is unknown,
we generate surrogate networks with the given properties,
such as peaked degree distributions. To these networks we
apply a sampling method that mimics the usage of a single-
communication channel. We note here that ICT dataset may
cover only part of the population due to competing services.
Random selection of nodes or links does not change the
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basic characteristics of the degree distribution, whether it is
monotonously decreasing or peaked.

We assume that the affinity distribution P (f ) is a decreasing
function (see, e.g., Refs. [2,27]). This implies that a large
fraction of people rarely spend time using the service, while
there are a relatively small number of enthusiastic users. As for
the affinity distribution, we choose an exponential function,

P (f ) = 1

f0
e−f/f0 , (1)

where f0 is the average affinity and it serves as a control param-
eter. Each user is assigned an affinity value that is randomly
drawn from P (f ), which implies that the correlation between
affinities of neighboring users is ignored for simplicity. The
effect of such correlations existing in reality can be studied for
future work.

We then sample links in the surrogate network with a
probability as a function of affinities of users connected by
the link. For neighboring users i and j , the probability of
sampling a link ij is defined as follows:

pij = min{fi,fj ,1}. (2)

The set of sampled users consists of users that have at least
one sampled link. An example of a sampled network from
an egocentric network is presented in Fig. 1. We would like
to note that our model takes into account only two point
correlations. As expected, then all higher-order correlations,
such as clustering, are systematically lost by this sampling.

Here we assume the minimum rule for pij since a link
is often established in a communication channel when both
nodes i and j accept to use it. As we will see in Sec. V, this
rule is not only a natural consequence of mutual acceptance,
but it is the most representative rule for a broader class of
rules that reproduce the observed stylized facts. In addition,
the minimum rule is analytically solvable as shown in the next
Sec. IV.

We now consider three kinds of surrogate networks: random
regular graphs (RR) with degree k0, Erdős-Rényi random
graphs (ER) with average degree 〈k〉, and weighted social
networks using link deletion (WSN) with average degree 〈k〉.
We will use the WSN studied in our previous work [28].
All three networks show peaked degree distributions. The RR
and ER do not show assortative mixing, while the WSN was
devised to produce high clustering, community structure, and
assortative mixing, as observed in real networks based on ICT
data.

IV. RESULTS

A. Degree distribution

Monotonically decreasing degree distributions are found
for sampled networks in all the surrogate networks, as depicted
in Fig. 3. For the RR case, degree distributions of the sampled
networks are flat up to the crossover degree ≈f0k0, followed by
exponentially decaying behavior. Similar patterns are observed
for the ER and WSN cases with crossover degrees ≈f0〈k〉.

We can analytically calculate the degree distribution of
the network sampled from the regular random graph with

FIG. 3. Degree distributions of the sampled networks with ana-
lytic curves obtained using Eq. (7). (a) The surrogate networks are
regular random graphs (RR, ×) or Erdős-Rényi random graphs (ER,
�) with a network size of N = 104 and the degree of k0 = 150 (RR) or
the average degree of 〈k〉 = 150 (ER). Analytic solutions for several
values of f0 (curves) perfectly fit the simulation results (symbols).
The simulation results are averaged over 50 independent runs. (b)
The surrogate network is a weighted social network using the link
deletion model of Ref. [29] with parameters N = 104 and 〈k〉 ≈ 47.8.
Using f0 = 0.3, we find that the size of the sampled network is 9287
and that its average degree is 〈k〉 ≈ 7.7. Since the surrogate network
has a high average degree, most of the nodes remain in the sampled
network even after majority of links are removed.

degree k0. Since the affinities between neighboring nodes are
uncorrelated, the probability of sampling a link involving the
node i with affinity fi is obtained as

ps(fi) =
∫ ∞

0
pijP (fj )dfj = f0(1 − e− min{fi ,1}/f0 ). (3)

Then we obtain the probability that the node i has exactly ki

links in the sampled network as

q(ki |k0,fi) =
(

k0

ki

)
ps(fi)

ki [1 − ps(fi)]
k0−ki . (4)
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The degree distribution of the sampled network is calculated
as

Qk0 (k) =
∫ ∞

0
q(k|k0,fi)P (fi)dfi

≈ 1

f0(k0 + 1)
I( f0

1−f0
)(k + 1,k0 − k + 1), (5)

where Ix(a,b) denotes the regularized β function. Here we
used the approximation that min{fi,1} = fi for all i, which is
the case for the sufficiently small value of f0. This analytical
solution perfectly fits the simulation results, as shown in
Fig. 3(a).

The first part of the degree distribution is flat, which can be
calculated. The function q(ki |k0,fi) may have a very strong
peak and can be approximated by a Dirac δ function:

q(ki |k0,fi) � δ[k0ps(fi) − ki], (6)

which gives rise to constant P (k) up to k0f0, and after which
it is zero. In Appendix A, other P (f ) functions are analyzed
to show that the exponential function is a borderline between
the case when Qk0 (k) is always decreasing and the case when
it has a peak at k > 1.

We now consider the case of ER graphs. The degree
distribution of the surrogate network is binomially distributed,
denoted by P0(k). The probability that a node originally having
k0 links will keep k links is Qk0 (k) independently of the rest
of the network so we can get the degree distribution for any
uncorrelated network by a weighted sum of Eq. (5):

P (k) =
∞∑

k′=0

P0(k′)Qk′(k). (7)

We calculate P (k) numerically to compare it with the sim-
ulation results, as shown in Fig. 3(a). Similarly, one can
obtain P (k) of the sampled network in the case of WSN [see
Fig. 3(b)].

So far we have considered surrogate networks with degree
distributions decaying faster than exponential, whereas heavy-
tailed degree distributions are observed in many ICT datasets.
In order to consider more realistic situations, we generate
surrogate networks with log-normal and Lévy distributions
of degree, where we used μ = ln 200 and σ = ln 2 for
log-normal distribution, and μ = 0 and c = 150 for Lévy
distribution. Both distributions have peaks at values larger
than 1. Then, using Eq. (7), we find that degree distributions
in the sampled networks using f0 = 0.1 are heavy-tailed but
yet monotonically decreasing.

Based on the above analysis and simulations we conclude
that the monotonically decreasing degree distribution in most
ICT datasets could be the consequence of the sampling method
applied to the real social network showing the peaked degree
distribution. Our conclusion is robust with respect to the
variation of details of the method as will be shown in Sec. V.

We have found a mechanism transforming the ground-truth
peaked degree distribution to the observed monotonically
decreasing one. This raises the question whether the activity
thresholding that resulted in an opposite direction, i.e., from
monotonically decreasing degree distribution to the peaked
one would work also for the model. For this, we need to find an
appropriate proxy for activity, and affinity seems to be a good

10-4
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 0  10  20  30  40  50  60  70

P
(k

)
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f > 0.05
> 0.2  
> 0.6  

FIG. 4. The degree distributions in the sampled networks from
ER for nodes with affinity larger than the indicated values.

candidate since low (high) activity, i.e., low (high) preference
for a channel would imply low (high) activity on that channel.
We indeed find peaked degree distributions in the sampled
networks when considering only nodes with affinity larger
than some threshold value in Fig. 4. This peaked behavior
compares favorably with the empirical observations as shown
in Fig. 2, both in a linear or logarithmic scale.

B. Assortativity

Here we investigate the effect of the proposed sampling
method on the assortative mixing of the sampled networks.
Figure 5(a) shows that the assortative mixing turns out to
be present in the sampled networks even when the nodes in
the surrogate network are completely uncorrelated. When the
surrogate network shows assortative mixing, e.g., in the case of
WSN, the assortativity is observed as expected; see Fig. 5(b).

We first calculate the correlation of affinities between
neighboring nodes in the sampled networks. Similarly to
the definition of knn(k), we define the average affinity of
neighboring nodes of a node i with affinity fi , denoted by
fnn(fi). Let us denote by aij = 1 the event that a link ij in the
surrogate network is sampled. The affinity distribution of fj

for the neighbor j of the node i in the sampled network can
be written as a conditional probability P (fj |fi,aij = 1). Then
we get

fnn(fi) =
∫ ∞

0
fjP (fj |fi,aij = 1)dfj

= 1

ps(fi)

∫ ∞

0
fjP (fj )pijdfj

= 2f0 − min{fi,1}
emin{fi ,1}/f0 − 1

, (8)

which turns out to be an increasing function of fi . Note that
ps(fi) in Eq. (3) is the probability of the event that aij = 1 for
a given affinity fi . This result holds irrespective of a structure
of the surrogate network. The positive correlation between
affinities of neighboring nodes appears even when there is no
such correlation in the surrogate networks.
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FIG. 5. Average degrees of neighboring nodes knn(k) as a function
of the degree of the node in the sampled networks. (a) The surrogate
networks are Erdős-Rényi random graphs used in Fig. 3(a). Blue
squares show the result for all nodes, while others show the results
only for nodes whose affinity is in the annotated ranges, respectively.
Analytic solutions in Eqs. (11) and (12) are also depicted for
comparison. (b) The assortativity knn(k) for the network sampled
from a weighted social network with link deletion used in Fig. 3(b).
In the inset, knn(k) for the surrogate network is plotted for comparison.
In all cases, the simulation results are averaged over 50 independent
runs.

This correlation is expected to persist also in knn(k) since k

and f are positively correlated. For the RR case with degree
k0, knn for a node i with affinity fi can be obtained as follows:

knn(f =fi) = k0

ps(fi)

∫ ∞

0
ps(fj )pijP (fj )dfj . (9)

The integral part is exactly solved using Eqs. (1)–(3) as

f 2
0

(
3

4
− e−ai/f0 + 1

4
e−2ai/f0 − ai

2f0
e−2/f0

)
, (10)

where ai ≡ min{fi,1}. Since the expected degree of a node
with affinity f is k0r(f ), we replace f in Eq. (9) using the
assumption of ps(f ) = k

k0
to get for k < k0f0:

knn(k) = k0f0

2
+ k

4
+ k2

0f
2
0 e−2/f0

2k
ln

(
1 − k

k0f0

)
, (11)

or otherwise

knn(k) = k0f0

3
4 − e−1/f0 + (

1
4 − 1

2f0

)
e−2/f0

1 − e−1/f0
. (12)

From this solution, one can obtain the extreme values of knn(k),
i.e., when the degree or the affinity is extremely small or large.
If the affinity of a node i is very small, we get knn ≈ k0f0

2 . On
the other hand, if the affinity is very large, one gets knn ≈ 3k0f0

4 .
We confirm numerically that these solutions apply also to the
ER case, as shown in Fig. 5(a).

In Fig. 5(a), we have plotted knn(k) for nodes whose f is in
a given range. The assortative behavior mostly disappears as
in the surrogate network, implying that the assortativity in the
sampled network is attributed to the dependence of knn on f

but not on the assortativity of the surrogate network.
Assortative mixing is also observed for the networks

sampled from the WSN, as shown in Fig. 5(b). This is
not surprising because the surrogate network shows already
assortativity. We note that knn(k) for the surrogate network is
concave, while the sampled network shows a slightly convex
curve in the log-linear plot. We think that sampling enhances
assortativity as compared to that of the surrogate network. This
implies that the sampling plays a crucial role in the observed
assortativity. An important lesson from this study is that the
assortativity observed from sampling does not assure that the
original (multiplex) network is assortative.

C. Node strength

The effect of sampling on the strength distribution of nodes
and the strength-degree correlation was tested using the WSN
as a surrogate network. The original strength distribution is
peaked as seen in Fig. 6(a), and the strength-degree correlation
in Fig. 6(b) shows a rather flat and then increasing behavior
which is the result of the WSN model [29].

After the sampling, the low-degree nodes in the sampled
network are not necessarily the ones that had low degree in
the original network. The value of affinity has a much larger
influence on the sampled degree of a node than its original
degree. Thus, the link weight will be largely independent of
the sampled degree of the nodes the link is connected to.
This implies a linear relationship between the degree and
strength, which is exactly what was found in Fig. 6(b). Similar
relation was found in the mobile phone dataset presented in
Ref. [7], where a correlation s ∝ kγ with γ � 0.8−0.9 was
obtained. The empirical data shows almost linear strength-
degree correlation, but our model indicates that this result has
no implications for the original social network.

As there is only marginal correlation between the degree
and the link weight, the degree distribution mostly determines
the strength distribution, which is the convolution of the link
weight and degree distributions. As a result, the strength
distribution is a decreasing function instead of being peaked
as shown in Fig. 6(a).

V. GENERALIZATION OF THE MODEL

In this section, we generalize our model and discuss the
robustness of the results we have seen in the previous section.
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FIG. 6. The effects of sampling on (a) the node strength distri-
bution and (b) the average node strength as a function of the degree
when the WSN is used for the surrogate network. Parameter values
for the WSN are the same as in Fig. 3(b).

We will focus on the effects of the affinity distribution and
sampling probability.

A. Generalized-mean model

First, we generalize the distribution of affinity, P (f ), to be
a truncated Weibull distribution:

P (f ) =
{

c(f/f0)α−1e−(f/f0)α if 0 � f � 1

0 otherwise,
(13)

where c is the normalization constant. Here we implement
the truncation at f = 1 in the affinity distribution instead
of the sampling probability. Obviously α = 1 gives back the
exponential distribution. When α < 1, a divergence at f = 0
is seen, thus the nodes tend to have a smaller f .

The sampling probability pij is defined as a generalized
mean of fi and fj with exponent β:

pij =
{( f

β

i +f
β

j

2

)1/β
if β 
= 0√

fifj if β = 0.
(14)

The generalized mean includes Pythagoranean means as
special cases such that, for example, when β is 1, 0, or −1,

it is equivalent to arithmetic, geometric, or harmonic mean,
respectively. For any real β, pij is an increasing function of
fi and fj . For larger β, pij is closer to the larger of fi and
fj . In the limits of β → ∞ and β → −∞, pij is equivalent
to max{fi,fj } and min{fi,fj }, respectively. Therefore, the
model in the previous section is a special case with α = 1
and β → −∞.

B. Results for generalized-mean model

We conducted numerical simulations for various β and
α using Erdős-Rényi random graphs with 〈k〉 = 150 as a
surrogate network. In the simulations, we controlled f0 for
each α and β so that the sampled network has an average
degree of 15 ± 0.5, i.e., about 10% of the links are sampled.

First we investigated whether the degree distribution is
monotonically decreasing or not. For this, we define a quantity
P1 as P (k = 1)/ max {P (k)}. If P (k) is monotonically decreas-
ing, P1 must be one while it is less than one when P (k) is a
peaked distribution. As shown in Fig. 7(a), the monotonically
decreasing degree distribution is realized only when β � 0

10-3

10-2

10-1

 0  10  20  30  40  50

P
(k

)

k

α=0.8, β=-1
α=0.8, β= 1

(a)

(b)
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FIG. 7. (a) The fraction of nodes with degree 1 normalized by
the peak value of P (k) in the sampled networks. The horizontal axis
indicates the exponent of the mean β. (b) Typical degree distributions
for positive and negative β. Erdős-Rényi random graphs are used as
the surrogate networks. The results are averaged over five independent
runs.
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FIG. 8. (a) The assortativity coefficient of the sampled networks
as a function of β. (b) Typical degree correlation knn for positive and
negative β. Erdős-Rényi random graphs are used as the surrogate
networks. The results are averaged over five independent runs.

and for sufficiently small values of α. The parameter range of
α for which P1 = 1 gets wider as β decreases, indicating that
for smaller values of β, nodes have low degrees more easily.

On the other hand, when β > 0, there is no parameter
region where monotonically decreasing degree distribution
is realized as P1 quickly drops to zero. This implies that
in this parameter range higher degree nodes are favored
by the sampling probability function. The resulting network
will consist of a number of high-degree nodes. Numerical
results show that β = 0 is a threshold value above which
monotonically decreasing P (k) is precluded. Typical degree
distributions for these two regions are shown in Fig. 7(b).

Let us now investigate assortativity. The assortativity
coefficient r , which is the Pearson’s correlation coefficient
of neighboring degrees, is plotted in Fig. 8. The coefficient is
positive when β < 0, while it is negative when β > 0. Even
though affinity and original degree is independently assigned
to each node, degrees in the neighboring nodes get correlated
by the sampling. Hereafter we call this the sampling-induced
assortativity.

As we have seen in the previous section, the sampling-
induced assortativity originates from the correlation of f

of the neighboring nodes. To understand the dependency of

assortativity on β, we hereafter consider the correlation of
f . When β = 0, we can analytically prove that there is no
correlation of f in the sampled network for any P (f ). The
average affinity of the neighbors of a node with fi, fnn(fi), is
calculated in a similar way as Eq. (8):

fnn(fi) =
∫ 1

0
fjP (fj |fi,aij = 1)dfj (15)

=
∫ 1

0 f
3/2
j P (fj )dfj∫ 1

0 f
1/2
j P (fj )dfj

, (16)

which is independent of fi , stating that there is no correlation
of f in the neighboring nodes as in the surrogate networks.

In contrast, the assortativity is modified by the sampling
when β 
= 0. The differentiation of fnn with respect to fi is

ps(fi)
2 d

dfi

fnn(fi)

=
∫ 1

0
pijP (fj )dfj

∫ 1

0

dpij

dfi

fjP (fj )dfj

−
∫ 1

0

dpij

dfi

P (fj )dfj

∫ 1

0
pijfjP (fj )dfj , (17)

where ps(fi) = ∫ 1
0 pijP (fj )dfj . The sign of this equation

can be evaluated analytically: When β < 0, dfnn/dfi � 0,
while dfnn/dfi � 0 when β > 0. See Appendix B for details.
Therefore, the sign of β determines the bias of the assortativity
in the sampled networks.

To conclude, we find decreasing P (k) only for β � 0. In
the parameter region where decreasing P (k) is realized, the
positive correlation of f is inevitable. These results indicate
that we cannot conclude that the whole social network has
assortative mixing even when we find assortativity in empirical
network taken from one communication channel.

VI. SUMMARY AND DISCUSSION

The question of general interest is to what extent ICT data
can tell us about the structure of the entire social network of
people, as all such data are incomplete and capture only a
part of the whole plethora of social relationships. While each
type of service has different features, we observe universal
properties of the networks generated from any service data.
There is always a different story behind each service, but
there is also commonly observed feature, namely that they
all display a decreasing degree distribution, which cannot be
true for the entire social network and hence must be attributed
to the sampling.

To investigate the effect of sampling method we have
modeled how people are using ICT communication services.
The method is general enough to be applied to various
communication channels. The networks sampled by this
method robustly reproduce the stylized facts of the ICT data:
decreasing degree distributions and assortative mixing, even
when they were absent from the original networks. Thus,
the characteristics of the sampled networks can be strongly
dependent on the sampling method, hence some properties of
the original network are hardly observed.
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This result has an important implication such that properties
observed on a sampled network may not be true for the original
network as turned out to be the case with decreasing degree
distribution. Hence, it can be the sampling rather than the
original network that plays a pivotal role in explaining some
of the empirical network properties. There is, though, a subset
of users with high activity, i.e., users who put much effort in
the given ICT service. Their network properties show features
reminiscent of the true social network so that these users can
be used to some extent to reflect the properties from one layer
to the whole social network. This can also be shown in our
sampling result, where high-affinity nodes show properties
characteristic for the surrogate networks, i.e., peaked degree
distribution and flat knn in case of ER [see Figs. 4 and 5(a)].

We have checked the robustness of our model by studying
more general channel selection functions and affinity distribu-
tions. Here we have shown that there is a class of rules that
result in the universally observed single-channel properties of
monotonic degree distribution and assortative mixing. This
implies that the choice of the communication channel should
follow rules similar to the minimum rule, i.e., a person may be
reluctant to use a communication channel with a friend who
does not like that channel even if that is the person’s favorite.
We note here that we have tested our sampling model on other
networks, e.g., scale-free with similar result.

The sampling model presented in this paper is only one
possible mechanism for link selection. Even though obvious
factors such as three-point correlations are missing from it the
qualitative agreement between the sampling model and the
empirical data is indicative. We did not intend to prove that
the model presented here is the very mechanism for commu-
nication channel selection but we showed that it is enough to
reproduce ICT-related observations from uncorrelated random
networks. Thus, properties measured on those partial networks
may not reflect anything from the original ones, which
emphasizes the importance of the simultaneous investigation
of multiple communication channels. One of the promising
ways to get a more complete picture of human sociality
is “reality mining” [30–32], where several communication
channels including face-to-face encounters are simultaneously
recorded. Empirical research toward such direction is expected
to reveal the relationship between the networks of different
communication channels and the way people choose among
them. This will help us to understand how much of the results
from previous empirical studies concentrating mostly on a
certain communication channel can be applied to the whole
social network.
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APPENDIX A: TRIAL WITH OTHER AFFINITY
DISTRIBUTIONS

We have noted in the main text that the exponential affinity
distribution is a special case for which the degree distribution
of the sampled network starts with a constant value. This
will be proven using the approximation already mentioned,
namely that

q(ki |k0,fi) =
(

k0

ki

)
ps(fi)

ki [1 − ps(fi)]
k0−ki

� δ(k0ps(fi) − ki). (A1)

The degree distribution is, thus,

Qk0 (k) =
∫ ∞

0
q(k|k0,fi)P (fi)dfi

�
∫ ∞

0
δ(k0ps(fi) − k)P (fi)dfi

= P (f ∗)

|k0p′
s(f

∗)| , (A2)

where f ∗ is the solution of the equation k0ps(f ∗) = k.
For P (f ) = 1

f0
e−f/f0 the above equation gives

Qk0 (k) =
{

1
f0k0

if k < k0f0

0 if k � k0f0.
(A3)

The second case happens because ps(f ) > f0.
Let us repeat the calculation for arbitrary P (f ), and we

are interested in the behavior of P (k) for k 
 k0. This latter
assumption implies f ∗ 
 1 since only nodes with low affinity
have low degree. The probability ps(f ) is calculated as

ps(f ) =
∫ ∞

0
min{f,f ′}P (f ′)df ′

=
∫ f

0
f ′P (f ′)df ′ + f

∫ ∞

f

P (f ′)df ′. (A4)

The derivative is given as

p′
s(f ) =

∫ ∞

f

P (f ′)df ′. (A5)

Using this relation, the degree distribution is obtained as a
function of f ∗:

Qk0 (f ∗) = P (f ∗)

k0
∫ ∞
f ∗ P (f ′)df ′ . (A6)

Since k is an increasing function of f ∗, when Eq. (A6) is an
increasing (decreasing) function of f ∗, P (k) is an increasing
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FIG. 9. Degree distributions P (k) in the sampled networks from
the regular random graph of N = 104 and k0 = 150, using different
functional forms of P (f ). The definitions of P (f ) are given in Table I.
The results are averaged over 50 independent runs.

(decreasing) function of k. Therefore, in order Qk0 (f ∗) to be
constant, P (f ) must be an exponential function.

Equation (A6) allows us to determine if a degree distribution
function starts as decreasing or increasing. In the latter case
it will definitely have a peak. As shown in Fig. 9, simulation
results of degree distributions for different functional forms
P (f ) are consistent with the above argument. The tested
distributions are summarized in Table I.

APPENDIX B: SIGN OF EQUATION (17)

In this appendix, we evaluate the sign of dfnn/fi , which
determines the correlation of f between the neighbors in the
sampled network.

Since the partial derivative of pij with respect to fi is

∂pij

∂fi

= f
β−1
i

f
β

i + f
β

j

pij , (B1)

Eq. (17) is calculated as∫ 1

0
pijP (fj )dfj

∫ 1

0
g(fj )fjpijP (fj )dfj

−
∫ 1

0
g(fj )pijP (fj )dfj

∫ 1

0
fjpijP (fj )dfj , (B2)

where

g(fj ) ≡ f
β−1
i

f
β

i + f
β

j

. (B3)

TABLE I. Different functional forms of P (f ): exponential,
linear, and the Weibull distributions. Definition of the distributions
are summarized as follows. Parameter f0 is controlled for each
distribution so that they have 〈f 〉 = 0.3. The equation Qk0 (f ∗) is
also calculated for f < f0. We can calculate Qk0 (f ∗) for the Weibull

distributions as af a−1

k0f a
0

, which includes an exponential distribution as

a special case. Qk0 (f ∗) is increasing (decreasing) for a > 1 (a < 1).

P (f ) f0 Qk0 (f ∗)

Exponential 1
f0

e−(f/f0) 0.3 1
k0f0

Linear 2
f 2

0
(f0 − f ) for f < f0 0.9 2

k0(f0−f ∗)

Weibull (a = 3/2) a

f0

(
f

f0

)a−1
e−(f/f0)a 0.903 3

√
f ∗

2k0f
3/2
0

Weibull (a = 1/2) a

f0

(
f

f0

)a−1
e−(f/f0)a 0.15 1

2k0
√

f0
√

f ∗

Here we introduce μ(fj ) as

μ =
∫ fj

0
pijP (f )df. (B4)

This is a positive increasing function of fj . When fj changes

from 0 to 1, μ changes from 0 to
∫ 1

0 pijP (f )df ≡ μ1. Using
this notation, Eq. (B2) is∫ μ1

0
dμ(fj )

∫ μ1

0
g(fj )fjdμ(fj )

−
∫ μ1

0
g(fj )dμ(fj )

∫ μ1

0
fjdμ(fj ). (B5)

Chebyshev integral inequality [34] states that the inequality∫ b

a

dμ

∫ b

a

fgdμ �
∫ b

a

f dμ

∫ b

a

gdμ (B6)

holds under the hypothesis that

[f (x) − f (y)][g(x) − g(y)] � 0, (B7)

for all (x,y) ∈ [a,b] × [a,b], and μ is a nonnegative measure.
In other words, the equation holds when f and g have the
same monotonicity. The inverse inequality holds when f and
g have the opposite monotonicity. The proof is obtained by
calculating the following inequality:

1/2
∫ b

a

∫ b

a

[f (x) − f (y)][g(x) − g(y)]dμ(x)dμ(y) � 0.

(B8)
Because g(fj ) is an increasing function of fj when β < 0,

Eq. (B5) is nonnegative for an arbitrary P (f ). When β > 0,
on the other hand, Eq. (B5) is nonpositive.
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Kaski, J. Kertész, and A. L. Barabási, Proc. Natl. Acad. Sci.
USA 104, 7332 (2007).
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