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Abstract
A new method is proposed for solving the glottal inverse filtering (GIF) 
problem. The goal of GIF is to separate an acoustical speech signal into two 
parts: the glottal airflow excitation and the vocal tract filter. To recover such 
information one has to deal with a blind deconvolution problem. This ill-
posed inverse problem is solved under a deterministic setting, considering 
unknowns on both sides of the underlying operator equation. A stable 
reconstruction is obtained using a double regularization strategy, alternating 
between fixing either the glottal source signal or the vocal tract filter. This 
enables not only splitting the nonlinear and nonconvex problem into two 
linear and convex problems, but also allows the use of the best parameters 
and constraints to recover each variable at a time. This new technique, called 
alternating minimization glottal inverse filtering (AM-GIF), is compared with 
two other approaches: Markov chain Monte Carlo glottal inverse filtering 
(MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic 
speech signals. The recent MCMC-GIF has good reconstruction quality but 
high computational cost. The state-of-the-art IAIF method is computationally 
fast but its accuracy deteriorates, particularly for speech signals of high 
fundamental frequency (F0). The results show the competitive performance of 
the new method: With high F0, the reconstruction quality is better than that of 
IAIF and close to MCMC-GIF while reducing the computational complexity 
by two orders of magnitude.
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1.  Introduction

We study the estimation and parametrization of the voice source, the excitation waveform 
of speech sounds produced by the vocal folds in the human larynx. This origin of speech is 
called the glottal flow, named after the orifice between the vibrating vocal folds, the glottis 
[16]. We rely on source-filter theory [31] as the mathematical model of human voice produc-
tion. Briefly, a speech signal, denoted by m(t), can be represented as a convolution of three 
functions. The first corresponds to the glottal flow, here denoted by g(t). The second is a vocal 
tract filter function modeling the effects caused by the oral cavity between the vocal folds and 
the lips, denoted in the time domain by f(t). The third function corresponds to the lip radia-
tion effect, the acoustical conversion of the air flow at the lips into a free-field pressure signal. 
Since the latter of the three functions can be estimated as a time derivative [31] and can be 
combined into the first function, the direct problem is formulated through the convolution 
equation

f (t) ∗ g′(t) = m(t),� (1)

where t represents the time variable.
Our study focuses on the estimation of the glottal flow using a computational inversion 

methodology called glottal inverse filtering (GIF). The aim of GIF is to remove the effects of 
the vocal tract and lip radiation from the speech signal, revealing the time-domain waveform 
of the glottal source. GIF can be seen as the inverse problem related to (1): Given the meas-
ured speech signal waveform m(t), find both f(t) and g′(t) = p(t) so that

m(t) + δ = f (t) ∗ p(t),� (2)

for t ∈ [0, 1]. Here δ models additive noise arising from, for instance, the recording environ
ment. Such blind deconvolution problems are known to be ill-posed, or highly sensitive to 
modeling errors and measurement noise. Therefore, regularization is needed for successful 
inversion.

GIF has been used in several areas of speech science such as in studying vocal emotions 
and speech prosody as well as in analyzing pathological speech and singing voices (for a 
review of GIF, see [4]). In the past five years, GIF has also awakened increased interest in the 
speech technology community, particularly among scientists developing text-to-speech (TTS) 
synthesis technologies. Recent studies suggest that the naturalness of TTS systems can be 
improved by using sound excitations that have been computed from natural speech via GIF 
[33]. The improved naturalness of TTS in turn can help, for example, disabled people who are 
not capable of preserving natural vocalization due to a disease, accident, or speech disorder. 
An example is the world-famous physicist Stephen Hawking, who cannot speak without the 
help of speech synthesis software. The development of new TTS technology would benefit 
from computation of realistic glottal excitation signals via GIF.

GIF has been studied in the speech science community dating back to 1959; see overviews 
in [4, 39, 11], and further references in PhD theses [32, 38]. Within the mathematical inverse 
problems community, the first GIF study [35] appeared in 1970. This study was based on 
using Webster’s horn equation  to investigate the shape and the cross-sectional area of the 
vocal tract. In 1986, a GIF technique was suggested in [29] to study the glottal source for both 
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male and female voices. The topic was revived in the 2000’s in [1, 2, 17, 18, 21, 22], based 
on the Schrödinger equation, Klein–Gordon equation and various deterministic computational 
approaches. Uniqueness of GIF is studied in [25]. The first Bayesian inversion approach to 
GIF is described in [6].

State-of-the-art GIF technologies, such as iterative adaptive inverse filtering (IAIF) [3], 
are far too simple to yield reliable glottal flow estimates particularly for speech of high F0  
(e.g. for utterances spoken by women or children) or for voices conveying extreme emotions 
such as anger and hate. Bayesian statistical inversion, however, was shown to improve the 
estimation accuracy of the glottal flow in a recent study proposing a new GIF method called 
Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF) [6]. However, the compu-
tational cost of MCMC-GIF is high due to extensive Markov chain Monte Carlo sampling.

In the current study, we introduce a deterministic approach called alternating minimization 
glottal inverse filtering (AM-GIF), based on the general analysis published in [8, 9]. It requires 
an initial estimate p(0) for the derivative of the glottal flow signal, and it solves the inverse 
problem iteratively as follows:

	 (a)	given m(t) and a fixed p(k), find a regularized solution f  (k+1) for (2);
	(b)	given m(t) and a fixed f  (k+1), find a regularized solution p(k+1) for (2).

The proposed AM-GIF method matches closely the reconstruction quality of MCMC-GIF 
while reducing the computational cost significantly.

We study the new method under ideal simulated conditions. The signals considered have 
precise periodicity, and we deal with boundary conditions in a mathematically convenient 
way. Natural speech signals are not so regular, and additional steps are needed for applying 
our results in practice. However, we expect the core properties of the alternating minimization 
algorithm to carry over to real-world signals.

This paper is organized as follows. In section 2, we present an overview of the source-
filter theory, including the main concepts and two mathematical models for the source signal. 
Section 2 is aimed at readers not familiar with the topic and can be omitted by other readers. 
The inverse problem is defined in section 3, with a description of the novel AM-GIF approach. 
Moreover, section 3 explains two baseline methods, IAIF and MCMC-GIF. Numerical experi-
ments and comparisons are presented in section 4. Finally, the conclusions of the study are 
drawn in section 5.

2.  Source-filter theory

Speech carries information about phonemes, the basic units of spoken language. Among pho-
nemes, the current study, like almost all previous GIF investigations, focuses on non-nasalized 
vowels. This category of speech sounds has been prevalent in GIF studies for two reasons: 
non-nasalized vowels are always voiced (i.e. generated by the vibration of the vocal folds) and 
their vocal tract lacks coupling to the nasal tract, thereby justifying the use of all-pole type of 
models [27] for the vocal tract.

2.1.  Source-filter theory in the frequency domain

According to source-filter theory [13, 36], speech can be interpreted as a linear combination 
of three processes:

S(z) = U(z)V(z)L(z),

I R Bleyer et alInverse Problems 33 (2017) 065005
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where S(z), U(z), V(z), and L(z) denote the z-transforms of the measured speech signal, glottal 
flow, vocal tract, and the lip radiation effect, respectively.

This linear model has been widely used due its relative simplicity, for both speech synthesis 
and analysis. Source-filter theory describes, as its name suggests, speech as a two-stage pro-
cess consisting of the sound source, which is filtered by a filter function.

The output speech waveform S is often described in the complex frequency domain, as 
stated in the previous equation. Furthermore, it is possible to combine two or more filters into 
a single one by, for example, representing the vocal tract filter as V(z)  =  P(z)O(z), where P and 
O are the transfer functions at the pharynx and at the oral cavity respectively. In this article, 
the vocal tract is treated simply as a single transfer function, V.

The speech signal is in practice recorded using a free-field microphone that measures the 
pressure signal, not the air flow. According to [16, p 259], the acoustical conversion from the 
flow at the lips into a pressure signal in the free field, the so-called lip radiation effect, can 
be approximated at low frequencies to correspond to a fixed first-order derivative in the time 
domain. In the frequency domain, this derivative can be modeled by an FIR (finite impulse 
response) filter with a single zero

L(z) = 1 − αz−1,

where 0.96 � α < 1. Moreover, it is often useful to combine L and U into a single filter, even 
though the lip radiation effect occurs physically at the lips when the flow signal has already 
passed through the vocal tract. This is equivalent to applying the lip radiation effect to the glot-
tal flow by differentiating the glottal flow U [16]. Let us denote the differentiation process as 
G′(z) = L(z)U(z) and let us refer the process output as the glottal flow derivative.

Finally, we can display the two-stage mathematical model as our direct problem

S(z) = G′(z)V(z),

where G′ is the derivative of the glottal flow U. Note also the close relation to equation (1) 
introduced in the time domain.

2.2.  Source models

Anatomically speaking, the lungs power an airstream outwards, pushing the air through 
the narrow opening between the vocal folds, called the glottis, producing puffs of air. The 
vocal folds are composed of twin infoldings of mucous membrane, stretched horizontally, 
which vibrate3, and therefore the puffs of air are produced pseudo-periodically in time. 
Mathematically speaking, we are interested in a function g : [0, 1] → R+ that models the vol-
ume of air traveling through the glottis at a specific time t, technically known as the glottal 
flow or the glottal source.

Several parametric models of the glottal flow have been proposed in the literature, and this 
article discusses two of them: the Rosenberg–Klatt (RK) model and the Liljencrants–Fant 
(LF) model.

The Rosenberg–Klatt model is a straightforward glottal flow model. It models the shape 
of the glottal airflow signal within one fundamental period using a cubic polynomial function 
that is defined by one time-domain parameter, in addition to the length of the glottal cycle, and 
an amplitude-domain scaling factor [23]. This model was originally proposed by Rosenberg 

3 The vocal folds usually vibrate from 100 to 300 times per second (i.e. from 100 Hz to 300 Hz), depending on 
gender and speaking style.
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[34] and later modified by Klatt who also used the parametric waveform as an excitation in 
speech synthesis [23].

An example of the glottal flow and its derivative, generated by the RK model, is shown 
in figure 1. Note that the parametric flow pulse consists of two distinctive phases: the open 
phase (OP) and the closed phase (CP). The former represents the smooth increase of airflow 
as the membranes of the vocal folds open up (from bottom to top) and a faster decrease of the 
volume of air when the vocal folds close, completing one cycle. The latter represents a phase 
when the glottis is completely closed and there is no air passing through the vocal folds.

The Liljencrants–Fant model requires four parameters in addition to the length of the glot-
tal cycle to create the shape of a glottal flow derivative [15]. It is one of the most widely used 
parametric time-domain models of the glottal source.

Compared to the RK model, the LF model describes different phases of the glottal cycle 
more in detail, introducing the so-called return phase, a phase between the instants of maxi-
mum closing discontinuity and glottal closure. Figure 2 describes the LF model in different 
segments: tp is the instant of the maximum airflow (zero derivative), te is the instant of the 
maximum excitation (with amplitude Ee) or the instant when the vocal folds collide, ta is the 
length of the interval [te, te + ta] that measures the effective duration of the return phase, and 
tc is the instant when the vocal folds reach the maximum closure and the airflow is reduced 
to its minimum. The interval before te is the OP, between te and tc is the return phase, and the 
section between tc and the end of the cycle is the CP.

A detailed definition of the LF model as a time-domain function can be found in [14]. 
Fitting a given glottal flow with the LF model is not straightforward since it requires solving 
nonlinear equations.
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Figure 1.  The glottal flow (left) and its derivative (right) generated by the RK model, 
with parameters Q  =  0.7 and fundamental frequency F0  =  120 Hz.
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Figure 2.  The glottal flow derivative generated by the LF model.
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2.3. The vocal tract as a filter

The vocal tract consists of cavities that have a strong perceptual effect on the produced speech 
sound. The vocal tract comprises the oral and nasal cavities that, together with the articula-
tors—such as the tongue, soft palate, and lips—filter the produced glottal flow into its final 
form as an acoustical speech signal that we recognize as a certain phoneme. Mathematically, 
sounds are usually represented through a waveform (time-pressure) or spectrogram (time-
frequency). The latter enables studying the locations of the formants, the spectral peaks of the 
sound, caused by the vocal tract resonances [12].

The vocal tract can be modeled as a linear time-invariant (LTI) system, defined in the com-
plex z-domain using a transfer function H(z):

H(z) =
∑M

n=0 b(n)z−n

∑N
n=0 a(n)z−n

=
B(z)
A(z)

.

Note that the roots of the numerator polynomial B are also the roots of H and they correspond 
to the antiformants (zeros), whereas the roots of the denominator polynomial A correspond 
to the formants (poles). Figure 3 shows the relation between the poles of the transfer function 
inside the unit disc and the corresponding formant locations.

In general, the pole-zero transfer function H is simplified in speech technology into an 
all-pole filter, that is, a filter for which M  =  0 (i.e. the transfer function has only poles in the 
z-domain outside the origin). This is justified because (a) all-pole models give an accurate fit 
to most speech sounds, particularly for vowels and (b) all-pole models are typically easier to 
solve than pole-zero models.

3. The inverse problem: GIF

In this section we describe three approaches to GIF. The first one, the novel AM-GIF method, 
is based on time-frequency domain analysis using the wavelet transform and the inverse 
problem is solved under a deterministic setting. The second approach, the recently proposed 
MCMC-GIF algorithm, is based on frequency domain analysis using the z-transform and the 
inverse problem is solved under a stochastic setting. The third one, the state-of-the-art IAIF 
method, is based on linear prediction (LP) analysis and the problem is solved using a straight-
forward signal processing approach. Numerical experiments will be reported in section 4.

−30

−20

−10

10

20

30

1,000 2,000 3,000 6,000 7,000 8,0005,0004,000

Figure 3.  The transfer function: the location of the first three poles inside the unit disc 
(left) and the location of the first three formants F1, F2, and F3 (right) for the vowel [a]. 
The poles closer to z  =  1 (ω = 0) correspond to a low-frequency formant and the poles 
closer to z  =  −1 (ω = π) correspond to a high-frequency formant.

I R Bleyer et alInverse Problems 33 (2017) 065005



7

3.1. The AM-GIF approach

Tikhonov-type inversion is a common approach to solve an ill-posed inverse problem in the 
deterministic setting, whenever a stable solution is needed in the case of noisy data. If, how-
ever, there are uncertainties in both the operator and the measured data, the problem should be 
addressed with a more general approach [7].

The operator on the left-hand side of (1) will be denoted throughout this section as a linear 
convolution operator between Hilbert spaces U → H, as follows:

p(t) ∗ f (t) =
∫ 1

0
po(t − s) f (s)ds� (3)

where 0 � t � 1 and po ∈ U  is called the characterizing function for the convolution operator.
Note that we are interested in recovering the unknown f, but at the same time the character-

izing function po is not precisely known for real data, only mathematical models are available, 
as discussed in section 2.2. Therefore, solving (1) for the operator (3) should be seen as a blind 
deconvolution problem. Moreover, parametric models such as the RK and LF models could be 
good approximations for po, knowing a priori the glottal opening time. We assume the noise 
levels of the measurements (mδ , pε) to be known:

∥∥m − mδ

∥∥
H � δ,� (4a)

and
∥∥ po − pε

∥∥
U � ε.� (4b)

The framework of the AM-GIF proposed here is based on the core idea of the double  
regularized total least squares (dbl-RTLS) method. In short, dbl-RTLS is a deterministic 
approach introduced recently in [8] to solve inverse problems with noise in both data and opera-
tor, as stated in (4). Using this method, we aim at solving the following minimization problem

minimize( p, f )

{
1
2

(∥∥ p ∗ f − mδ

∥∥2
H + τ

∥∥ p − pε

∥∥2
U

)
+

α

2

∥∥Lf
∥∥2
U +

β

2

∥∥ p
∥∥2
U

}

�

(5)

where the term inside the parentheses measures the total discrepancy, τ is a fixed scaling 
parameter, L is a linear bounded operator, and α > 0 and β > 0 are regularization parameters. 
The amplitude of measurement noise determines the choice of α and β: Higher noise requires 
larger parameter values. For further properties and generalizations of the dbl-RTLS approach, 
see [8].

To overcome the drawback caused by the non-linearity and non-convexity in minimizing 
(5) with respect to the pair (p, f  ) at the same time, we follow the alternating minimization 
strategy, which has been successfully adopted in solving optimization problems over two 
variables. This strategy has been implemented for blind-deconvolution [40], and also used as 
standard for solving the dbl-RTLS problem [9].

The AM-GIF algorithm for equation (5) is an iteration scheme. Going from a current iterate (
p(k), f (k)

)
 to a new pair 

(
p(k+1), f (k+1)

)
 involves two steps. First, keeping p(k) fixed, define 

f  (k+1) as the solution of

minimizef

{
1
2

∥∥ p(k) ∗ f − mδ

∥∥2
H +

α

2

∥∥Lf
∥∥2
U

}
.� (6a)

Second, keep f  (k+1) fixed and define p(k+1) as the solution of

I R Bleyer et alInverse Problems 33 (2017) 065005
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minimizep

{
1
2

(∥∥ p ∗ f (k+1) − mδ

∥∥2
H + τ

∥∥ p − pε

∥∥2
U

)
+

β

2

∥∥ p
∥∥2
U

}
.� (6b)

The convergence of this method is proved in [9, section 3].
Splitting the minimization (5) into two steps transforms a seemingly formidable challenge 

into two standard problems. Namely, step (6a) is just Tikhonov regularization, and (6b) is an 
example of the regularized total least squares method, see [19, 26].

We need a computational implementation of the convolution operator defined in (3). 
Assuming that p is periodic, one could follow the time-domain approach of [30] and rewrite 
equation (3) as matrix convolution. This yields a square circulant matrix with many desirable 
properties: full column rank, invertibility, and a circulant inverse [30]. One could also model 
(3) in the frequency domain using fast Fourier transform. However, this can be unstable if the 
operator is not precisely known.

We chose to implement the convolution operator in the wavelet domain [10, 28, 37, 41].

3.1.1.  Convolution and the wavelet transform.  Let us denote the wavelet family by {ϕλ}λ∈Λ, 
which constitutes an orthonormal basis for a Hilbert space, where the index set Λ is defined by

Λ = {1} ∪
{
( j, l) | j ∈ N0, 0 � l � 2 j − 1

}
.

Furthermore, we denote

ϕλ =

{
φ if λ = 1
ψj,l if λ = ( j, l).

Here φ is the scaling function and ψ0,0  is the mother wavelet. Any function f ∈ U  can be 
decomposed as

f =
∑
λ∈Λ

〈
f , ϕλ

〉
ϕλ, where

〈
f , ϕλ

〉
=

∫ 1

0
ϕλ(s) f (s)ds.

We denote the coefficient sequence of f ∈ U  by F( f ):

F : U −→ �2

f �−→ F( f ) := {
〈

f , ϕλ

〉
}λ∈Λ.� (7)

In other words, we represent the signal f by the sequence x  =  F( f ) which belongs to �2. For 
numerical reasons we have to truncate the summation of j at a certain fixed index J, called the 
maximal level.

The next goal is to express convolution equation (3) in the wavelet domain to obtain the 
desired data function m by applying the direct operator entirely in the wavelet context. We first 
compute an operator C that depends only on J and on the choice of the wavelet family.

Let y := F( p) and x := F( f ) be the coefficients from the characterizing and input function 
respectively. Then the coefficient of d := F(m) is determined via C(y, x) as

C : �2 × �2 −→ �2

(y, x) �−→ d = C(y, x).

The major work is to compute the operator C. Once accomplished, for a fixed interval, 
the maximal wavelet level J, and the number of samples N, one could vary the character-
izing function or the input function. So the computation of the convolution operator remains 
straightforward via a few matrix-vector multiplications. More precisely, the operator C is a 
sequence of square matrices {Cµ}µ, where 1 � µ � 2J+1, in such a way that the sequence 
coefficient {dµ}µ is computed by

I R Bleyer et alInverse Problems 33 (2017) 065005
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ytCµx = dµ.

The detailed computation of the sequence of matrices {Cµ}µ is explained in appendix.
For a fixed characterizing function p, the sequence of matrices can be combined into a 

unique square matrix A whose μth row A(µ, :) is given by

A(µ, :) = ytCµ,� (8)

where 1 � µ � 2J+1. Now the computation of the wavelet coefficient sequence d  =  F(m) 
takes the form of a single matrix-vector multiplication

Ax = d.
Analogously, for a fixed input function f one can define the matrix

B(µ, :) = Cµx� (9)

and so

By = d

solves the forward convolution problem for a fixed function f.

3.1.2. The AM-GIF algorithm.  Now we can rewrite algorithm (6) by taking advantage of the 
wavelet decomposition. We now have convenient matrix machinery for the appropriate opera-
tors for fixed p and f:

A : �2 −→ �2

x �−→ Ax = d,

and

B : �2 −→ �2

y �−→ By = d.

As seen in figure 4, both A and B are sparse matrices due to the compact support of the Haar 
wavelet basis.

Note that the wavelet coefficients dδ of the measured data mδ may contain errors arising 
from measurement noise.

The first step of the AM algorithm (6a) in the time domain, for a fixed p, is equivalent to 
the minimization of the following functional:

minimizex

{
1
2

∥∥Ax − dδ

∥∥2
2 +

α

2

∥∥Lx
∥∥2

2

}
,� (10a)

that is, recovering the wavelet coefficients.
Whereas the second step of the alternating minimization algorithm (6b) in the time domain, 

for a fixed f, is equivalent to the minimization of the following functional:

minimizey

{
1
2

(∥∥By − dδ
∥∥2

2 + τ
∥∥y − yε

∥∥2
2

)
+

β

2

∥∥y
∥∥2

2

}
� (10b)

where yε = F( pε).
For the first step it is well-known that the solution of the above problem (10a) satisfies

(A∗A + αL∗L) x̄ = (A∗dδ)

where the adjoint operator is the transpose matrix.
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It is easy to see that the minimization of (10b) and

minimizey

{
1
2

∥∥By − dδ
∥∥2

2 +
(τ + β)

2

∥∥y
∥∥2

2 − τ
〈
y , yε

〉}

have the same solution, satisfying the equation

(B∗B + (β + τ)I) ȳ = (B∗dδ + τyε) ,

as one reads optimality condition for the previous minimization problem. A summary of this 
procedure can be seen in Algorithm 1.

Algorithm 1. The AM-GIF algorithm

Require: Load matrix C; Set scaling parameter τ;
  1: Compute the wavelet coefficients dδ = F(mδ) and yε = F( pε);
  2: Set starting point, e.g. ȳ = yε
  3: repeat
  4:    Set y �→ ȳ
  5:    Compute matrix A as A(µ, :) = ytCµ

  6:    Find regularization parameter α
  7:    Solve (A∗A + αL∗L) x̄ = (A∗dδ)
  8:    Set x �→ x̄
  9:    Compute matrix B as B(µ, :) = Cµx
10:    Find regularization parameter β
11:    Solve (B∗B + (β + τ)I) ȳ = (B∗dδ + τyε)
12: until Convergence
13: return coefficients x̄ and ȳ; reconstruct functions f̄  and p̄

nz = 129631
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Figure 4.  The sparse structure of the matrices for one cycle of the AM strategy, with the 
maximal level J  =  8 for the Haar wavelet basis. (a) Matrix A (characterizing function). 
(b) Matrix B (filter function).
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3.2. The MCMC-GIF approach

The MCMC-GIF method was introduced in [6]. In Bayesian inversion, robustness against 
modeling errors and measurement noise is achieved by complementing measurement data 
by a priori information. The measurement process is described probabilistically in the form 
of a likelihood model. Further, any a priori information about the unknown quantities is rep-
resented as prior probability distribution. The product of the likelihood and prior yields the 
posterior distribution. The solution of the ill-posed inverse problem takes the form of stable 
computation of the mean of the posterior distribution by Monte Carlo integration.

In the MCMC-GIF approach, the vocal tract model is assumed to be an all-pole filter. Each 
jth complex pole of the filter (see figure 3, left side) is parametrized by a pair (rj, θj) from its 
complex representation zj = rj exp(iθj) where rj and θj are, respectively, the radius and angle 
of the pole in the z-domain. The glottal airflow is parametrized with the open quotient param
eter of the RK model [34], denoted by Q in the following. Therefore, the inverse problem can 
be expressed as the recovery of the (combined) parameters vector

�v := [r1, θ1, r2, θ2 . . . , rN , θN , Q]T

from a given measurement m, where N denotes the number of poles.
The computational procedure is based on an initial estimate of the vocal tract filter, here given 

by the IAIF method. Next, the algorithm refines the vocal tract model parameters within the 
MCMC-GIF method in order to obtain a more accurate glottal flow estimate. This GIF method 
is known for its good performance in the estimation of the glottal flow from high-pitched signals.

3.3. The IAIF Approach

The IAIF method was proposed more than 20 years ago [3] and it is still in use due its simplic-
ity and fast computation.

The method relies on the assumption that the glottal flow is obtained by canceling the 
effects of the vocal tract and lip radiation from the speech measurement with an iterative 
structure. The theory of speech production via a chain of filters was introduced in section 2.1. 
According to [3] the vocal tract transfer function is modeled after eliminating the average glot-
tal contribution. Then the glottal excitation is obtained by canceling the effects of the vocal 
tract and lip radiation by inverse filtering. This approach is based on LP analysis [27] in order 
to estimate the vocal tract filter function.

4.  Numerical experiments

In this section, we will examine two vowels segments produced by adult speakers: the vowel 
[i], similar to the vowel sound in the English word meet, and the vowel [a], similar to the 
vowel sound in bath. These two vowels were chosen because they represent very different 
articulations: the former has a low first formant (F1) and high second formant (F2), whereas 
the latter has a high F1 and low F2.

All the computations were performed using Matlab version 2014b.

4.1.  Simulation of the data

The forward problem (1) was computed with the following two functions, the synthetic glot-
tal flow: created with sampling frequency fs  =  16 kHz, computed using the LF model with the 
following parameters tp  =  0.47, te  =  0.65, ta  =  0.01, and tc  =  1; and the vocal tract transfer 
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Figure 5.  Reference glottal flow and three estimated glottal flows computed by IAIF, 
MCMC-GIF and AM-GIF for three values of F0 (100 Hz, 200 Hz, 250 Hz) and for two 
vowels ([a] and [i]). (a) (a) Vowel [a] (top) and vowel [i] (bottom) with F0  =  100 Hz. 
(b) (b) Vowel [a] (top) and vowel [i] (bottom) with F0  =  200 Hz. (c) (c) Vowel [a] (top) 
and vowel [i] (bottom) with F0  =  250 Hz.
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function, computed using 20 poles for the all-poles vocal tract filter (see section 2.3), provided 
by the MCMC-GIF method from a male voice sample where F0  =  100 Hz. We repeat the lat-
ter process for both the vowel [a] and [i]. For each fixed articulation, we evaluate the forward 
problem with glottal airflow pulses of three different F0 values: 100 Hz, 200 Hz, and 250 Hz. 
These three F0 values correspond roughly to average pitch in the speech of men, women, and 
children, respectively.

Finally, note that the forward problem is computed via the LF model, which has more 
degrees of freedom than the RK model. Therefore, the LF pulse is able to better capture the 
dynamics of the natural glottal airflow. In doing so, we also avoid the ‘inverse crime’, since 
the inversion does not utilize the LF model in any form. In this article, the computations were 
done using the noise level ε = 0.2873 for F0  =  100 Hz, ε = 0.3404 for F0  =  200 Hz and 
ε = 0.3753 for F0  =  250 Hz, and the noise level δ = 0.0001 for all frequencies, as white 
noise.

4.2.  Inversion by AM-GIF

Algorithm [alg:amgif]1 is relative easy to implement and fast. Most of its CPU time is 
required to pre-compute the C matrix, but it can be stored and loaded for future experi-
ments, with the same wavelet maximal level J. In the numerical tests, we set J  =  8 for the 
Haar wavelet basis. Some additional sub-routines (available in the Matlab wavelet toolbox 
as cwtft and icwtft) are required to compute the wavelet coefficients and the inverse 
transformation.

Once matrix C is available, matrices A and B are computed for each step respectively 
through (8) and (9). Each step requires solving a linear system in order to recover the wavelet 
coefficients of both the filter and characterizing function. For the former, we need an opera-
tor L to enforce the shape of the filter function (fading out to zero in the time domain). For 
the latter reconstruction we use the classical regularization term with the identity operator. 
Moreover, for the minimization problem (10b), the required approximation yε = F( pε) is 
indeed fundamental. In our experiments, the best reconstruction quality was obtained by a 

Table 1.  Estimation errors computed with three measures—the L2 relative error norm 
(top), H1–H2 (middle), and the NAQ (bottom)—comparing the three GIF methods 
(IAIF, AM-GIF, MCMC-GIF) using two vowels ([a], [i]) and three values of F0 (100 
Hz, 200 Hz, 250 Hz).

(a) L2 relative error norm for vowel [a] (left) and vowel [i] (right)

100 Hz 200 Hz 250 Hz 100 Hz 200 Hz 250 Hz

IAIF 0.007 50 0.094 13 0.079 39 0.008 43 0.035 71 0.258 36
AM-GIF 0.004 25 0.005 44 0.000 33 0.031 89 0.010 98 0.021 28
MCMC-GIF 0.041 40 0.059 80 0.061 30 0.006 48 0.037 65 0.058 04

(b) H1–H2 error for vowel [a] (left) and vowel [i] (right)
100 Hz 200 Hz 250 Hz 100 Hz 200 Hz 250 Hz

IAIF 0.06 dB 0.76 dB 0.79 dB 0.10 dB 5.27 dB 6.14 dB
AM-GIF 0.08 dB 0.11 dB 0.32 dB 2.41 dB 3.09 dB 1.53 dB
MCMC-GIF 0.03 dB 0.01 dB 1.25 dB 0.34 dB 1.09 dB 1.26 dB

(c) NAQ error for vowel [a] (left) and vowel [i] (right)
100 Hz 200 Hz 250 Hz 100 Hz 200 Hz 250 Hz

IAIF 0.8% 0.5% 8.3% 2.2% 25.9% 7.7%
AM-GIF 1.4% 4.5% 4.8% 0.6% 12.9% 4.9%
MCMC-GIF 0.8% 0.01% 4.9% 2.0% 3.2% 5.0%
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hybrid approximation. The hybrid approximation was obtained by splitting the signal into two 
parts: the CP and the OP. In the CP, we used the RK model. In the OP, we used the structure 
given by our first reconstruction of the filter function.

To solve both linear systems we used ldl Matlab’s built-in factorization. Overall, the 
algorithm also required scaling and regularization parameters, which were heuristically cho-
sen and fixed for all cycles.

4.3.  Inversion by MCMC-GIF

The MCMC-GIF algorithm is based on a modern variant of the Metropolis-Hastings algorithm 
called DRAM [20]. The implementation used in the present study was taken from the MCMC 
Matlab package [24]. MCMC-GIF requires an initial guess for the vocal tract filter, which 
is provided by the IAIF method. MCMC-GIF has shown good performance, particularly for 
voices of high pitch. However, the computational cost is high: running the MCMC-GIF algo-
rithm typically takes several hours using a single core processor. During each experiment the 
MCMC-GIF algorithm produced 105 samples. The CPU time could be reduced with parallel 
coding and by reducing the number of samples.

4.4.  Inversion by IAIF

The IAIF algorithm [3] can be easily implemented, mainly with two build-in Matlab func-
tions: the lpc and filter. IAIF is the fastest of the three GIF methods compared in the 
current study and it requires just a few parameter settings (for further details, see REFN). The 
estimation quality of IAIF is generally good for speech signals of low pitch but the method 
suffers from poor performance in the estimation of the glottal flow of high-pitched speech.

4.5.  Comparison of the GIF approaches

Figure 5 displays the numerical reconstructions of the glottal flow for both [a] and [i] and for 
all three F0 values. The numerical errors are displayed in table 1.

In order to quantify the obtained glottal airflows, two special measurements that are widely 
used in the speech processing community were adopted in addition to the standard error meas-
ured according to the norm of the space (table 1(a)). The first one, H1–H2, measures the spec-
tral tilt of the glottal flow. It is defined in the dB scale as the difference between the amplitude 
of the first and second harmonic of the glottal flow spectrum. The second one, the normalized 
amplitude quotient (NAQ), was introduced in [5]. It measures the relative time duration of 
the glottal closing phase from the ratio of the peak flow and the negative peak amplitude of 
the glottal flow derivative, normalized with respect to the length of the fundamental period. 
Estimation errors measured by H1–H2 and NAQ are displayed in tables 1(b) and (c).

5.  Conclusion

A non-invasive inversion method, called AM-GIF, was proposed for the estimation of the glot-
tal flow and vocal tract of a given speech waveform.

The complexity of solving the blind deconvolution problem involves recovering two vari-
ables through a nonlinear and nonconvex minimization, which is a nonlinear ill-posed inverse 
problem. A double regularization strategy was successfully applied, solving instead two linear 
and convex problems. Additionally, in order to reconstruct the functions with more desirable 
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properties, the alternating minimization technique gave broader control in each step, tailoring 
constraints and specific regularization parameters. We also remark on the crucial role of the 
approximation pε and the insight to create a hybrid signal, reflecting the reconstruction quality 
of the glottal flow.

One of the main benefits of the developed alternating minimization technique is to preserve 
the good quality of the MCMC-GIF method for high-pitched signals using a fraction of the 
computation time. With high F0, the new AM-GIF method was found to yield reconstruction 
quality close to MCMC-GIF and better than IAIF while reducing the computational burden 
of MCMC-GIF by two orders of magnitude. The new method clearly showed a much better 
fit to the reference in the closed phase of the glottal cycle. This happened particularly for the 
vowel [i] when the pitch was high, which, importantly, represents difficult material for all GIF 
methods (due to combination of low F1 and high F0). The objective measures, the NAQ and 
H1–H2, respectively focus mainly on the temporal and spectral properties of the glottal clos-
ing phase. Hence, they are unable to take into account the behavior of the flow waveform in 
the glottal open phase where GIF-AM shows, as demonstrated visually by figure 5, the best 
fit to the LF pulse.

The GIF algorithm proposed in the current study can be developed further in several direc-
tions. For instance, changing the wavelet family could improve the accuracy of the inverse 
problem solution. In addition, studying more complex regularization terms could help when 
searching for improvements in the overall quality.

Finally, we hope that the current study is capable of awakening the general interest of 
the mathematical inverse problems community in the highly interesting, yet difficult topic of 
human speech production.
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Appendix.  Computation of the operator C

Decompose

p =
∑
η∈Λ

pηϕη and f =
∑
λ∈Λ

fλϕλ,

where pη =
〈

p, ϕη

〉
 and fλ =

〈
f , ϕλ

〉
, computed with the same maximal wavelet level J so 

that they have equal size.
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Combining the previous decomposition with equation (3),

(Kf )(t) =
∫ 1

0
p(t − s) f (s)ds

=

∫ 1

0
p(t − s)

∑
λ∈Λ

fλϕλ(s)ds

=

∫ 1

0

∑
η∈Λ

pηϕη(t − s)
∑
λ∈Λ

fλϕλ(s)ds

=
∑
η∈Λ

pη

∑
λ∈Λ

fλ

∫ 1

0
ϕη(t − s)ϕλ(s)ds

we get

Kf =
∑
η∈Λ

pη
∑
λ∈Λ

fλ (ϕη ∗ ϕλ) .

We are interested to find the coefficients of the function m  =  Kf, denoted by d. Therefore 
we apply the operator F defined in (7)

d = {
〈
Kf , ϕµ

〉
}µ∈Λ.

Let’s give a close look at each component of d

dµ =
〈
Kf , ϕµ

〉

=

〈∑
η∈Λ

pη
∑
λ∈Λ

fλ (ϕη ∗ ϕλ) , ϕµ

〉

=
∑
η∈Λ

pη
∑
λ∈Λ

fλ
〈
ϕη ∗ ϕλ , ϕµ

〉
.

Notice that the summations above are finite, both on η and λ, namely 1 � η � 2J+1 and 
1 � λ � 2J+1. Identically 1 � µ � 2J+1.

For a fixed μ we expand the summation on η in order to get better representation. We 
denote n:  =  2J+1.

dµ = p1

∑
λ∈Λ

fλ
〈
ϕ1 ∗ ϕλ , ϕµ

〉
+ p2

∑
λ∈Λ

fλ
〈
ϕ2 ∗ ϕλ , ϕµ

〉

+ · · ·+ pn

∑
λ∈Λ

fλ
〈
ϕn ∗ ϕλ , ϕµ

〉

Expanding on λ

dµ = p1
(
f1
〈
ϕ1 ∗ ϕ1 , ϕµ

〉
+ f2

〈
ϕ1 ∗ ϕ2 , ϕµ

〉
+ · · ·+ fn

〈
ϕ1 ∗ ϕn , ϕµ

〉)

+ p2
(
f1
〈
ϕ2 ∗ ϕ1 , ϕµ

〉
+ f2

〈
ϕ2 ∗ ϕ2 , ϕµ

〉
+ · · ·+ fn

〈
ϕ2 ∗ ϕn , ϕµ

〉)

...

+ pn
(
f1
〈
ϕn ∗ ϕ1 , ϕµ

〉
+ f2

〈
ϕn ∗ ϕ2 , ϕµ

〉
+ · · ·+ fn

〈
ϕn ∗ ϕn , ϕµ

〉)

This summation is easily understood as a product vector-matrix-vector
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


p1

p2

...

pn




t 


〈
ϕ1 ∗ ϕ1 , ϕµ

〉 〈
ϕ1 ∗ ϕ2 , ϕµ

〉
· · ·

〈
ϕ1 ∗ ϕn , ϕµ

〉
〈
ϕ2 ∗ ϕ1 , ϕµ

〉 〈
ϕ2 ∗ ϕ2 , ϕµ

〉
· · ·

〈
ϕ2 ∗ ϕn , ϕµ

〉
...

...
. . .

...〈
ϕn ∗ ϕ1 , ϕµ

〉 〈
ϕn ∗ ϕ2 , ϕµ

〉
· · ·

〈
ϕn ∗ ϕn , ϕµ

〉







f1
f2
...

fn


 .

Defining the coefficient vectors

y =




p1

p2

...

pn


 , x =




f1
f2
...

fn




and the matrix Cµ, where the element on the row η and column λ is defined as

[Cµ]η,λ =
〈
ϕη ∗ ϕλ , ϕµ

〉
,

where ∗ represents the convolution operator over the whole interval [0,1] and the inner prod-
uct is the standard L2 inner product.

In summary, the sequence d = {dµ}µ is computed by

ytCµx = dµ.

Notice that, depending on the wavelet choice, the matrix Cµ will be symmetric for each μ, 
since the convolution operator is commutative ϕµ ∗ ϕλ = ϕλ ∗ ϕµ, and therefore only half of 
the computation will be required.
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