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ABSTRACT
Blazars are known to show periods of quiescence followed by outbursts visible throughout
the electromagnetic spectrum. We present a novel maximum likelihood approach to capture
this bimodal behaviour by examining blazar radio variability in the flux-density domain. We
separate quiescent and flaring components of a source’s light curve by modelling its flux-
density distribution as a series of ‘off’- and ‘on’-states. Our modelling allows us to extract
information regarding the flaring ratio, duty cycle, and the modulation index in the ‘off’-
state, in the ‘on’-state, as well as throughout the monitoring period of each blazar. We apply
our method to a flux-density-limited subsample from the Owens Valley Radio Observatory’s
15 GHz blazar monitoring programme, and explore differences in the variability characteristics
between BL Lacs and FSRQs as well as between γ -ray detected and non-detected sources. We
find that (1) BL Lacs are more variable and have relatively larger outbursts than the FSRQs;
(2) unclassified blazar candidates in our sample show similar variability characteristics as the
FSRQs and (3) γ -ray detected differ from the γ -ray non-detected sources in all their variability
properties, suggesting a link between the production of γ -rays and the mechanism responsible
for the radio variability. Finally, we fit distributions for blazar flaring ratios, duty cycles, and
on- and off-modulation indices that can be used in population studies of variability-dependent
blazar properties.

Key words: methods: statistical – galaxies: active – galaxies: jets.

1 IN T RO D U C T I O N

BL Lac objects (BL Lacs) and Flat Spectrum Radio Quasars
(FSRQs) constitute a subclass of active galactic nuclei (AGN) called
blazars. Blazars are known for their powerful and highly relativis-
tic jets, which are pointed close to our line of sight (Readhead
et al. 1978; Blandford & Königl 1979; Scheuer & Readhead 1979;
Readhead 1980). Due to the alignment of the jet, their emission,
from radio to the highest energy γ -rays, is dominated by relativis-
tic effects such as boosting of the observed flux and compression
of time-scales. They show a compact one-sided core-dominated jet
morphology, as well as apparent superluminal motion of the ra-
dio jet components propagating downstream of the core as seen

� E-mail: liodakis@physics.uoc.gr
† Institute for Theoretical and Computational Physics, formerly Institute for
Plasma Physics.

through very long baseline interferometry observations (Readhead
et al. 1978; Scheuer & Readhead 1979; Readhead 1980). Such ra-
dio components have shown superluminal motions of up to about
50c (Lister et al. 2009, 2013), while they have also been associ-
ated with numerous other phenomena such as the production of
γ -rays and rotations of the optical polarization plane (Marscher
et al. 2008, 2010).

Variability in the radio regime was one of the first identified char-
acteristics of blazars (Dent 1965). Although there are cases of quasi-
periodicity (Carrasco, Dultzin-Hacyan & Cruz-Gonzalez 1985;
Valtaoja et al. 1985; King et al. 2013), generally the variability
is erratic. However, it cannot be fully explained by a stochastic
process, due to the appearance of outbursts, often in several fre-
quency bands simultaneously (Aller et al. 1999; Hovatta et al. 2008;
Fuhrmann et al. 2014; Max-Moerbeck et al. 2014; Blinov et al. 2015;
Angelakis et al. 2016; Hovatta et al. 2016), followed by periods of
relatively low activity. It has been suggested that such outbursts can
be characterized by an exponential rise and decay with the ratio
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of the respective time-scales to be approximately 1.3 (Lähteenmäki
& Valtaoja 1999; Lähteenmäki, Valtaoja & Wiik 1999; Valtaoja
et al. 1999; Hovatta et al. 2009). The time-scale and flux-density
amplitude of an outburst can vary from days to months and from
comparable, to orders of magnitude higher than the quiescent one
(Aller et al. 1999). Thus the radio flux-density curve of a blazar
can generally be described by a quiescent level (the minimum radio
output of the source), and a series of consecutive aperiodic outbursts
on top of that minimum output.

Modelling the variability of blazars has been the subject of several
studies. Valtaoja et al. (1988) attempted to separate the quiescent
from the flaring flux through multiwavelength flux-density curves
(several frequencies from 4.8 to 90 GHz). The authors examined
the spectrum of each source at periods of minimum flux between
outbursts (what they considered as the ‘constant’ flux of the jet),
and subtracted it from the source spectrum during an outburst in
order to obtain the ‘variable’ flux. Lister (2001) chose to model the
blazar flux-density curves (4.8 and 5 GHz) with a shot-noise process
(Lister 2001, and references therein). Using Poisson statistics [and
the exponential profile for the flares described in Valtaoja et al.
(1999), Lähteenmäki et al. (1999) and Lähteenmäki & Valtaoja
(1999)] the authors investigated the variability duty cycles and sam-
ple selection biases due to variability in blazars.

The interest in the subject is well motivated: understanding the
general variability properties of blazars in different frequencies can
provide important information on their emission mechanisms as
well as the location of the emission region. Although rest-frame
time delays between frequencies are necessary to constrain the lo-
cation of emission regions on a source-by-source basis (Fuhrmann
et al. 2014; Max-Moerbeck et al. 2014), differences in the vari-
ability properties at different frequency bands could be indicative
of the spatial connection of their respective emission regions on a
population level.

The Owens Valley Radio Observatory (OVRO) 40 m monitoring
programme (Richards et al. 2011, 2014) provides a unique oppor-
tunity for studies of blazar radio variability, thanks to its unprece-
dented sample size and cadence (about 1800 sources observed twice
weekly on average over 8 yr). OVRO data from 2 yr of monitoring
were used in Richards et al. (2011) to examine blazar variability and
amplitudes using a likelihood approach. Modelling each source’s
flux-density distribution by a single Gaussian distribution, the ‘in-
trinsic’ mean flux-density and modulation indices (what one would
have observed in the limit of infinite accuracy and sampling) were
estimated. The authors used these results to uncover a statistically
significant discrepancy between the radio variability (as quantified
by the intrinsic modulation index) of γ -ray loud and γ -ray quiet
sources that were otherwise similar. For this reason, the radio in-
trinsic modulation index has since been used to select γ -ray quiet
sources that are as similar in their radio properties as possible to γ -
ray loud blazars, for monitoring in other frequencies (e.g. Pavlidou
et al. 2014; Angelakis et al. 2016).

The likelihood formalism used by Richards et al. (2011) provides
a robust way to account for observational uncertainties and finite ca-
dence as well as calculate uncertainties for the estimated quantities,
but at the expense of model-independence. In this case, model-
dependence enters through the assumption that a single-Gaussian
is a good description of the distribution of flux densities. If that
assumption is not valid for some sources, this can affect the results
in two ways. First, any estimated quantities that are sensitive to
the assumed underlying family of flux-density distributions may
exhibit systematic offsets. Most importantly, these offsets could not
be accounted for by the calculated uncertainties, which are statis-

Figure 1. Distribution of the 15 GHz flux density of BL Lac. The red line
represents the maximum likelihood fit of the bimodal model whereas the
dashed black is the fit for the single Gaussian model (Richards et al. 2011).

tical and based on the assumption that the underlying distribution
model holds (see e.g. Mouschovias & Tassis 2010). Secondly, im-
portant information regarding the detailed behaviour of the source
(such as bimodality in the flux-density distribution) is lost through
the simplified treatment.

As discussed in Richards et al. (2011), some of the OVRO-40 m-
monitored blazars show a flux-density distribution that can be well
described by a single Gaussian, while others show a bimodal dis-
tribution. To remedy the first of the two problems described above
(i.e. cases where a single Gaussian model is not a good description
of the flux-density distribution), Richards et al. (2011) used, and
reported, only quantities that their method estimates robustly. Such
quantities are the mean flux and the modulation index, in contrast,
for example with the most likely flux of a source. A typical example
of such a source is BL Lac, the flux distribution of which (using the
full 8 yr OVRO data set) is shown in Fig. 1. The maximum likeli-
hood single Gaussian for this data set is overplotted with the dashed
line. As BL Lac is very bright, and the observational uncertainties
are very small compared to the typical flux (<2 per cent), we do not
expect the uncertainties to widen the flux distribution significantly,
or, conversely, the maximum likelihood distribution to be apprecia-
bly narrower than the data. Indeed, this is the case in Fig. 1. The
source exhibits bimodality. For this reason, the maximum likelihood
single Gaussian is not a good description of the underlying flux-
density distribution. As a result, while the single-Gaussian mean and
spread are clearly reasonable representations of the corresponding
parameters of the data distribution, the most-likely flux is missed
by the single Gaussian, and information such as the flaring ratio
(ratio of the mean ‘on’-state flux density to ‘off’-state flux density
R = Son/Soff) is lost. On the other hand, a model that can account
for the bimodality of the sources can recover this important infor-
mation. Such a model is particularly important given the large size,
good sampling, low noise and statistical completeness of the data
set at hand.

In this work, we extend the formalism of Richards et al. (2011)
in order to model the observed blazar variability as an alternation
between a low-flux state and a high-flux state with the possibility
of different degrees of variations about the mean flux of each state.
The physical interpretation of such a model is that blazars spend a
fraction of their time in a state characterized by relatively low or no
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activity, and the remaining time in a state of increased variability
and outbursts. This way we attempt to separate the quiescent and
flaring components of the flux-density distribution of each source,
and examine the general variability characteristics, as well as differ-
ences between different blazar subclasses. The paper is organized
as follows. In Section 2, we present the maximum likelihood for-
malism we developed in order to model the blazar flux-density
distributions. In Section 3, we present the sample used in this work.
In Section 4, we compare the results from our model with that of
a single Gaussian distribution and test the bimodality of the flux-
density distributions of the sources in our sample. In Section 5,
we derive best-fitting distributions of all quantities characterizing
bimodal variability for the blazar population and we compare the
variability characteristics of different blazar subsamples. Finally, in
Section 6 we summarize and discuss our findings and conclusions.

The cosmological parameters we adopt in this work are H0 =
71 km s−1 Mpc−1, �m = 0.27 and �� = 1 − �m (Komatsu et al.
2009).

2 MA X I M U M LI K E L I H O O D A NA LY S I S

At any time of observation the flux density (S) emitted by a source,
given the observational uncertainty (which we assume to be Gaus-
sian), can be described as

P (S|Sobs, σobs) = 1

σobs

√
2π

exp

[
− (S − Sobs)2

2σ 2
obs

]
, (1)

where Sobs is the observed flux density, and σ obs is the error on
the measurement. We model the flux-density distribution of blazars
as a sequence of two states dubbed ‘off’ and ‘on’. Each state can
be assumed to follow a Gaussian distribution similarly to Richards
et al. (2011). The ‘off’-state describes the period of time a blazar
spends in quiescence, while the ‘on’-state the period of time a
blazar spends flaring. Then the probability density function of the
blazar emitting a certain flux density will be given by,

P (S|ft, Soff, Son, σoff, σoff ) = 1 − ft

σoff

√
2π

exp

[
− (S − Soff )2

2σ 2
off

]

+ ft

σon

√
2π

exp

[
− (S − Son)2

2σ 2
on

]
, (2)

where ft is the duty cycle, Soff is the mean flux density of the ‘off’-
state, σ off is the standard deviation of the mean flux density of the
‘off’-state, Son is the mean flux density of the ‘on’-state and σ on is
the standard deviation of the mean flux density of the ‘on’-state.

Marginalizing over all possible flux densities S [limits of the inte-
gral from −∞ to ∞, see Venters & Pavlidou (2007) and, Richards
et al. (2011) for a detailed derivation of the integral], the likelihood
of observing ft, Soff, Son, σ off and σ on given a flux density Sobs and
error σ obs is,

lobs = 1 − ft√
2π(σ 2

off + σ 2
obs)

exp

[
− (Soff − Sobs)

2

2
(
σ 2

off + σ 2
obs

)
]

+ ft√
2π

(
σ 2

on + σ 2
obs

) exp

[
− (Son − Sobs)2

2
(
σ 2

on + σ 2
obs

)
]

. (3)

The first term of equation (3) describes the ‘off’-state, while the
second the ‘on’-state. For a number of observations N (j = 1, 2,
3...N), the likelihood function is,

L =
N∏

j=1

lobs,j ⇒ logL =
N∑

j=1

log lobs,j. (4)

Figure 2. OVRO radio (15 GHz) light curve of BL Lac. The dashed line
marks the mean flux density of the ‘off’-state while the dotted line the mean
flux density of the ‘on’-state. The dark grey and light grey shaded areas
are the 1-standard deviation of the ‘off-state’ and ‘on’-state flux densities,
respectively.

We use the Simplex algorithm (also known as Nelder–Mead, Nelder
& Mead 1965) implemented in the scipy.optimize.minimize PYTHON

package to minimize the negative log-likelihood, and thus to maxi-
mize the likelihood. After several trials with different methods and
minimizing routines implemented in various programming environ-
ments, the Simplex algorithm was proven to be the most consistent
and stable, given the task at hand.

Given the complexity of the likelihood function, in order to avoid
numerical instabilities and possible sensitivity to initial conditions,
we perform the minimization 103 times, each time with random
initial conditions, and choose as the best-fitting parameter esti-
mates those that gave the minimum function value. Fig. 1 shows the
maximum likelihood fit of our method to the 15 GHz flux-density
distribution of BL Lacertae while Fig. 2 shows the OVRO light
curve. The vertical lines mark the mean flux densities of the ‘off’-
and ‘on’-states and the grey shaded areas their 1-standard deviation.

To derive the error on our estimated parameter values, we use the
Fisher information matrix. The information matrix gives a measure
of the amount of information every parameter carries on the curva-
ture of the likelihood at the best-fitting values. From the information
matrix, we calculate the variance–covariance matrix. The error on
each parameter estimate is the square root of the corresponding
diagonal element of the variance–covariance matrix. It is possible
that the matrix is not positive definite. Since the likelihood is mul-
tiparametric, this would suggest that two or more parameters are
anticorrelated. In such a case, we estimate the error of that parame-
ter using a slice of the likelihood surface parallel to the axis of the
parameter of interest, with the values of the other parameters set at
their best-fitting values (i.e. a slice passing through the maximum
likelihood point). Using that slice, we determine the values of the
parameters that reduce the likelihood by factor e−1/2 (in a Gaussian
slice, this would be the ±1σ points). These two values set the 1σ

uncertainty on that parameter.
The method described above can provide robust results as long as

the number of observations is sufficiently large. In the application
of our method (see Section 3) the number of observations per source
is 421 on average with a standard deviation of 89 (minimum 217
and maximum 1108).
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Figure 3. Source count distribution for the OVRO sources. The red dashed
line marks the flux limit at 0.354 Jy.

3 SA MPLE

We apply our method to data from the OVRO 15 GHz blazar moni-
toring programme1 (Richards et al. 2011). OVRO has been monitor-
ing a sample of >1800 blazars in support of the Fermi Gamma-ray
Space Telescope (Fermi, Acero et al. 2015) with an approximate ca-
dence of twice per week since 2007. The monitoring programme be-
gan using the 1158 sources from the Candidate Gamma-ray Blazar
Survey complete sample (Healey et al. 2008). Since then, however,
to facilitate monitoring of additional sources detected by Fermi, the
sample has increased by approximately 1/2 of its original size. In
order to maintain the statistical integrity on the sample under inves-
tigation while taking advantage of the additional γ -ray sources that
were added later, we construct a new statistically complete sam-
ple (a flux-density-limited one), as follows: we use the maximum
likelihood mean flux density from Richards et al. (2014) to plot the
source count distribution for all OVRO monitored sources (Fig. 3).
The flux limit is set at 0.354 Jy which is where the distribution shape
starts to deviate from a power law. The final sample consists of 584
sources; 435 FSRQs, 81 BL Lacs and 68 other sources (which we
dubbed U-R), 17 of which are classified as radio galaxies and 51
as possible blazar or unidentified. We follow the classification of
Richards et al. (2011, 2014) (and references therein) i.e. objects with
broad emission lines in optical are classified as FSRQs whereas ob-
jects with weak or even no emission lines are classified as BL Lacs.
We have included data from 2008 January 5 to 2016 February 14.

4 SINGLE G AU SSIAN VERSUS BIMODA L

Using the method described in Section 2, we fit the flux-density
distribution of every source in the flux-limited subsample defined
above, in order to extract their variability properties. It is not neces-
sary that the flux-density distribution of a source is described well
by an ‘off’–‘on’ model. It is very well possible that a source resides
in either state for the entire duration of the monitoring period, which
is roughly 8 yr. In this case, the maximum likelihood best-fitting
model is degenerate. Models with duty cycle ft = 1, ft = 0, or two
identical states with ft = 0.5 are mathematically possible and de-
scribe the same single Gaussian distribution. For this reason, in this

1 http://www.astro.caltech.edu/ovroblazars/

Table 1. Mean parameter values and probabilities for the Wilcoxon and
K–S test that the S and m parameters estimated by the two models (single-
Gaussian and bimodal) are consistent (drawn from the same distribution).

Parameter Single Bimodal Wilcoxon K–S
(mean) (mean) (per cent) (per cent)

S 1.11 1.11 90.0 99.5
m 0.18 0.20 0.28 1.26

section we compare the results of our model and the single Gaussian
model as in Richards et al. (2011) (fit to the 8 yr data set) in order
to understand which model best describes the data, and identify
all sources with such degeneracy. For the purposes of our analysis,
we use the Kolmogorov–Smirnov test (K–S test) and the Wilcoxon
rank-sum test (Wilcoxon test). The K–S test gives the probability
of two samples being drawn from the same distribution, while the
Wilcoxon test gives the same probability but with the alternative
hypothesis that the values of one sample are systematically larger
than those of the other. For any probability higher than 5 per cent,
we accept that neither test can reject the null hypothesis that the
two samples are drawn from the same distribution. Only 52 sources
(8.9 per cent) can be well described by a single-Gaussian model.
For the purposes of the population studies (see Section 5), we have
excluded these sources from our analysis. The excluded sources
also account for cases where the source has no significant variabil-
ity, since the flux-density distribution of such a source would be
consistent with a single narrow Gaussian distribution.

We next proceed to a comparison between the overall mean flux-
density and modulation index (in contrast to the mean and modula-
tion index of the individual variability states) of the bimodal model
with the corresponding qualities of the single-Gaussian model, in
order to evaluate any systematic effects on these quantities due to
the single-Gaussian assumption.

From the definition of the mean and variance, the mean flux
density of the bimodal distribution is equal to,

〈S〉 = (1 − ft)Soff + ftSon, (5)

and the variance is

Var = [
(1 − ft)

(
σ 2

off + S2
off

) + ft

(
σ 2

on + S2
on

)] − 〈S〉2. (6)

Using equations (5) and (6) the overall modulation index is equal to
〈m〉 = √

Var/〈S〉. We calculate the overall mean flux-density and
intrinsic modulation index for each of our sources, and compare it
with the corresponding values from a single Gaussian model from
Richards et al. (2011). In order to estimate uncertainties on 〈S〉 and
〈m〉, we use the uncertainties estimated by the likelihood analysis
for ft, Son, Soff, σ on and σ off, and standard error propagation.

For the mean flux density the mean of the two samples is the
same with both tests, while both K–S and Wilcoxon tests allow for
the hypothesis that the samples are drawn from the same distribu-
tion (Table 1). Fig. 4 shows the distribution of the overall 〈S〉 for
the single Gaussian (solid black line) and bimodal (dashed green
line) models and Fig. 5 shows the comparison of the two mod-
els for individual sources (upper panel) and the distribution of the
fractional difference (〈SGaussian〉 − 〈SBimodal〉)/〈SBimodal〉, between
models (lower panel). It is clear that the mean is very robust against
the single-Gaussian assumption. The distribution of fractional dif-
ferences is symmetric about zero, indicating that there is no bias in
the mean introduced by the single-Gaussian assumption.

For the modulation index, Fig. 6 shows the distribution of the
overall 〈m〉 for both models and Fig. 7 shows the comparison of the
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Figure 4. Distribution of the maximum likelihood 〈S〉 for the single Gaus-
sian and bimodal models.

Figure 5. Upper panel: Bimodal MLE 〈S〉 versus single Gaussian MLE
〈S〉. The dashed line corresponds to y = x. Lower panel: Distribution of the
fractional difference between the bimodal 〈S〉 and single Gaussian 〈S〉.

Figure 6. Distribution of the intrinsic modulation index for the single Gaus-
sian and bimodal models.

Figure 7. Upper panel: Bimodal MLE 〈m〉 versus single Gaussian MLE
〈m〉. The dashed line corresponds to y = x. Lower panel: Distribution of the
fractional difference between the bimodal MLE 〈m〉 and single Gaussian
MLE 〈m〉.

two models for individual sources (upper panel) and the distribution
of their fractional difference (lower panel). Both K–S and Wilcoxon
test indicate disagreement between the two estimates, although not
at extremely high significance (Table 1). The scatter between mod-
els is larger than with the 〈S〉 (Fig. 7). However, for most sources
the values are consistent within uncertainties, and the fractional
difference (lower panel of Fig. 7) is generally less than 20 per cent
with the exception of very few sources. For this reason, we do not
expect the single-Gaussian assumption to have had a strong impact
on the statistical comparison between populations in Richards et al.
(2011) and Richards et al. (2014). It is nevertheless worth noting
that the single-Gaussian assumption introduces a negative bias in
the modulation index: the distribution of fractional difference be-
tween models is not symmetric about zero (mean ≈ −0.09, median
≈ −0.04) with the single-Gaussian model tending to underestimate
the modulation index and the overall variability of the sources.

The discrepancy originates from the fact that, for a source well
described by a bimodal distribution (e.g. Fig. 1), a single Gaussian
model would favour the dominant peak (in that case the ‘off’-state)
and attempt to accommodate the alternate state in the tail of the
distribution. That is why although the 〈S〉 derived by the two models
are consistent, the 〈m〉 are not.

On the other hand, if we compare the overall 〈m〉 from the bi-
modal model (maximum likelihood estimate, MLE) with a standard
sample 〈m〉 (ratio between sample standard deviation and sample
mean, Fig. 8) we find that they are in good agreement within uncer-
tainties. The Wilcoxon test yields a 45 per cent and the K–S test a
87 per cent probability of consistency respectively. In order to arrive
to such result, two conditions need to be met. First, the model we
have assumed (bimodal) has to be a good description of the underly-
ing distribution of the sources, and second the observational errors
have to be relatively small compared to the intrinsic variability of the
sources. The latter is expected for the sources in our sample, because
of the two filters we have used: a relatively high flux-density limit
(which ensures that fractional observational uncertainties are low),
and the rejection of sources well described by a single-Gaussian
(which ensures that the remaining sources are significantly vari-
able). To test whether this is indeed the case we perform the same
analysis, but for the fainter sources observed by OVRO that were
not bright enough to be in our flux-density-limited subsample.
For the fainter sources (〈S〉 ≤ 0.354 Jy, the flux-density limit) the
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Figure 8. Upper panel: Bimodal likelihood 〈m〉 versus sample 〈m〉. The
dashed line corresponds to y = x. Lower panel: Distribution of the fractional
difference between the bimodal MLE 〈m〉 and sample 〈m〉.

Figure 9. Upper panel: Bimodal MLE 〈m〉 versus sample 〈m〉 for the
sources below the flux-density limit. The dashed line corresponds to y = x.
Lower panel: Distribution of the fractional difference between the bimodal
MLE 〈m〉 and sample 〈m〉 for the sources below the flux-density limit.

observational errors are relatively larger and will contribute more
to the overall variance. We find that the fractional difference in-
creases (Fig. 9), with both tests (Wilcoxon, K–S) rejecting the null
hypothesis that the two estimates of 〈m〉 are drawn from the same
distribution, as expected. Thus, for the brightest and most variable
sources, the ability of the maximum likelihood approach to take er-
rors into account does not provide a significant improvement on the
overall estimate of 〈m〉 over the simple direct standard deviation-
over-mean estimate from the data. However, even for these sources
the model introduced in this work has the advantages that (a) it
allows us to separate quiescent and flaring states; and (b) it provides
information on the variability of each state, flaring ratio and duty
cycle on a source-by-source basis.

5 VARIABILITY PRO PE RT I ES

5.1 Overall variability properties of the sample

The distribution of the flaring duty cycle ft, the flaring ratio R, the
intrinsic modulation index in the ‘off’-state, moff and the intrinsic

Figure 10. Distribution of the fraction of time spent on the on-state (duty
cycle) for the different populations (BL Lacs, FSRQs, U-Rs).

Figure 11. Distribution of the flaring ratio R for the different classes (BL
Lacs, FSRQs, U-Rs).

modulation index in the ‘on’-state, mon for the entire sample, are
shown in Figs 10, 11, 12 and 13 respectively with the black solid
line. Table 2 shows the sample mean and standard deviation for
these quantities.

It has been shown in Richards et al. (2011) that intrinsic modula-
tion index follows a mono-parametric exponential distribution. This
appears to be true for the individual ‘on’- and ‘off’-state modulation
indices as well as the flaring ratio, while the duty cycle appears to
be consistent with a uniform distribution for the flux-limited sub-
sample. Parametrizing such quantities could prove a useful tool in
modelling blazars at the population level.

For the duty cycle, we test with the use of the K–S and Wilcoxon
tests whether it is consistent with a uniform distribution in the [0,
1] interval. Both tests cannot reject the null hypothesis that the
duty cycle and a uniform distribution in the [0, 1] range, are drawn
from the same distribution (14 per cent and 19 per cent probability
of consistency, respectively). For this test, we have not excluded any
sources based on their consistency with a single-Gaussian model.

For the flaring ratio and modulation indices, the mean of the
exponential distribution (K0, where K is the parameter to be fitted)
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Figure 12. Distribution of the intrinsic modulation index for the off-state
for the different populations (BL Lacs, FSRQs, U-Rs).

Figure 13. Distribution of the intrinsic modulation index for the on-state
for the different populations (BL Lacs, FSRQs, U-Rs).

Table 2. Mean values for the duty cycle, flaring ratio and
‘off’- and ‘on’-state modulation indices for the entire sample.

Parameter ft R moff mon

Mean 0.47 1.56 0.10 0.10
Standard deviation 0.26 1.55 0.08 0.08

given a set of observations (Kobs, i) with Gaussian uncertainty σ obs, i,
can be calculated using,

li = 1

2K0
exp

[
−Kobs,i

K0

(
1 − σ 2

obs,i

2K0Kobs,i

)]

×
{

1 + erf

[
Kobs,i

σobs,i

√
2

(
1 − σ 2

obs,i

K0Kobs,i

)]}
, (7)

from Richards et al. (2011), where li is the likelihood and erf is the
error function. The error on the quantities to be fitted is calculated
through integration of the normalized likelihood. For the modula-
tion indices, we exclude all values of m < 0.06 and re-normalize

Table 3. MLE exponential distributions for R, mon,
moff, for the entire flux-density limited sample.

Quantity Mean Error on mean

R 1.485 ±0.006
moff 0.080 ±0.004
mon 0.089 ±0.004

Table 4. Mean parameters and Wilcoxon and K–S test probability values
that the two population are consistent.

Parameter BL Lacs FSRQs Wilcoxon K–S
(mean) (mean) (per cent) (per cent)

ft 0.46 0.47 92.3 86.1
R 1.71 1.55 0.3 0.8
moff 0.11 0.10 32.8 64.6
mon 0.14 0.10 10−3 0.2

the likelihood accordingly (see equation 30 and the corresponding
discussion in Richards et al. 2011).

Table 3 shows parameters of the best-fitting distributions for
each of the aforementioned quantities that can be used as inputs to
population models for blazars that require some treatment of source
variability and/or activity state, such as the derivation of luminosity
functions from single-epoch surveys. From the fits we have excluded
sources J1433−1548, J1823+7938, J1808+4542, J1852+4019 for
being outliers (either of R or m), preventing the maximum likelihood
method to achieve a good fit. In subsequent sections, we focus on
the comparison of variability properties between blazar subclasses.

5.2 FSRQs versus BL Lacs

Fig. 10 shows the distribution of the fraction of time spent on the
‘on’-state (the blazar flaring duty cycle) for the whole sample (black
solid line), BL Lacs (red dotted line), FSRQs (green dashed line)
and U-Rs (blue dashed-dotted line). The distribution is similar to
a uniform one with no apparent difference between BL Lacs and
FSRQs. This is also confirmed by the K–S test and the Wilcoxon
test.

We next explore the flaring ratio of the flux density of the ‘off’-
and ‘on’-states which is unaffected by redshift effects. This way we
are not limited by the redshift completeness of our sample.

Fig. 11 shows the ratio of the ‘on’-to-‘off’-state (R) for the differ-
ent populations. The BL Lacs appear to have larger R (on average)
than the FSRQs (Table 4). Both tests reject the null hypothesis that
the samples are drawn from the same distribution with the values
of one (BL Lacs) being systematically larger than the other. This
would suggest that while flaring the BL Lacs reach, on average,
higher flux densities on the on-state relatively to their off-states
than the FSRQs.

Although the ratio R is different for the BL Lacs and FSRQs,
the individual flux densities of the ‘off’- (Fig. 14) and ‘on’-states
(Fig. 15) appear to be similar with the K–S (45 per cent for the ‘off’
and 46 per cent for the ‘on’-state) and Wilcoxon (83 per cent for the
off and 32 per cent for the on-state) tests unable to reject the null
hypothesis, suggesting that the BL Lacs exhibit relatively larger
outbursts than the FSRQs.

We also explore the characteristic variability of the populations
using the intrinsic modulation index defined as m = σ/S (Richards
et al. 2011). Figs 12 and 13 show the distribution of m for the ‘off’-
and ‘on’-states, respectively.
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Figure 14. Distribution of the off-state flux densities for the different pop-
ulations (BL Lacs, FSRQs, U-Rs).

Figure 15. Distribution of the on-state flux densities for the different pop-
ulations (BL Lacs, FSRQs, U-Rs).

For the ‘off’-state, the two tests cannot reject the null hypothesis
that the two samples are drawn from the same distribution. However,
for the ‘on’-state, the mean for the BL Lacs is significantly larger
than the FSRQs both tests rejecting the hypothesis that the two
samples are drawn from the same distribution. The fact that the mean
‘on’-state modulation index value is larger for the BL Lacs suggests
that while flaring their flux-density distribution is on average wider.
On the other hand, for the FSRQs, there is no difference of the
intrinsic modulation index between the two states. We conclude
that the BL Lacs are relatively more variable during outbursts than
the FSRQs. All the mean parameter and probability values are
summarized in Table 4.

5.3 Blazars versus unidentified

Comparing the blazar sample (FSRQs + BL Lacs) against the U-R
sources we find very interesting similarities. The duty cycle is sim-
ilar, with neither test rejecting the null hypothesis that the samples
are drawn from the same distribution (Table 5). The mean flaring
ratio R is mildly (but significantly) larger for the blazars than for

Table 5. Mean parameters and Wilcoxon and K–S test probability values
that the two populations are consistent.

Parameter Blazars U-Rs Wilcoxon K–S
(mean) (mean) (per cent) (per cent)

ft 0.47 0.50 32.9 13.3
R 1.57 1.44 0.08 0.01
moff 0.10 0.08 9.0 30.8
mon 0.11 0.10 46.7 33.1

Table 6. Mean parameters and Wilcoxon and K–S test probability values
that the two populations are consistent.

Parameter BL Lacs U-Rs Wilcoxon K–S
(mean) (mean) (per cent) (per cent)

ft 0.46 0.50 34.4 33.9
R 1.71 1.44 0.007 0.009
moff 0.11 0.08 0.3 0.4
mon 0.14 0.10 5.9 27.0

the U-Rs, in both states the blazars have larger mean modulation
index, yet both tests are unable to reject the null hypothesis that the
two samples are drawn from the same distribution (Table 5).

We also compare individual classes (i.e. FSRQs, BL Lacs) versus
U-Rs. Comparing the FSRQs none of the above results changes in
any significant manner, which is to be expected since the FSRQs
dominate the blazar sample (75 per cent of the sample). For the BL
Lacs the results are somewhat different. The duty cycle as well
as the ‘off’-state modulation index are similar, with both tests not
being able to reject the null hypothesis that the two samples are
drawn from the same distribution. However, both tests reject the null
hypothesis for the flaring ratio R and for the ‘on’-state modulation
index (Table 6).

If the unidentified and blazar candidate sources in the U-R sample
were unidentified BL Lacs due to the absence of spectral lines, we
would expect the opposite results, i.e. the BL Lac sample to be more
consistent with the U-R sample in the variability characteristics. In-
stead the FSRQs appear to be consistent with the U-Rs suggesting
that the majority of the sources in the U-R sample are either uniden-
tified FSRQs or radio galaxies with jets pointed close to our line
of sight, yet not close enough to be considered a blazar (often re-
ferred to as misaligned blazars). The latter would suggest that the
FSRQs and the radio galaxies share similar variability characteris-
tics. All the mean parameter and probability values are summarized
in Table 5.

5.4 Fermi-detected versus Fermi non-detected blazars

There are 267 sources in our flux-density-limited sample
(50 per cent) that have been associated with Fermi detected sources.
Out of the 267 sources, 186 are FSRQs, 62 are BL Lacs and 19 are
U-Rs. Fig. 16 shows the distribution of the duty cycle. The solid
black line is for the Fermi-detected and the dashed green for the
Fermi-non-detected sources. The distributions are very similar in
shape with the Wilcoxon and K–S test suggesting the two samples
being drawn from the same distribution (Table 7). The high prob-
ability of consistency, as well as the almost identical mean values,
suggests that there is no difference in the time the two samples spent
in either state.

However, their flaring ratio R (Fig. 17) is rather different.
Both tests rejected the null hypothesis of consistency between
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Figure 16. Distribution of the fraction of time spent on the on-state (duty
cycle) for the Fermi-detected and non-detected sources.

Table 7. Mean parameters and Wilcoxon and K–S test probability values
that the two populations are consistent.

Parameter Fermi Non-Fermi Wilcoxon K–S
(mean) (mean) (per cent) (per cent)

ft 0.47 0.48 65.4 52.8
R 1.60 1.51 10−10 10−8

moff 0.11 0.09 0.009 0.26
mon 0.13 0.09 10−7 0.001

Figure 17. Distribution of the flaring ratio R for the for the Fermi-detected
and non-detected sources.

populations with high confidence (i.e. small probability value). The
mean values combined with the results of the Wilcoxon test suggest
that the Fermi-detected sources have systematically higher ratios,
which translates to them having larger differences in flux density
between states, i.e. more powerful outbursts.

Examining the intrinsic modulation index in the different states
(Figs 18 and 19), we find that in both the ‘off’-state and the ‘on’-
state, both tests rejected the null hypothesis. In both states, the
Fermi-detected sources have larger mean values which means that
on average they are more variable than the Fermi-non-detected

Figure 18. Distribution of the intrinsic modulation index for the off-state
for the Fermi-detected and non-detected sources.

Figure 19. Distribution of the intrinsic modulation index for the on-state
for the Fermi-detected and non-detected sources.

sources. At the same time, there is no difference in the variability
of the two states in the Fermi-non-detected sources, contrary to
the Fermi-detected. This could partially be attributed to the fact
that the majority of the BL Lacs (which are more variable in the
‘on’-state, see Section 5.2) are in the Fermi-detected subsample;
however, the fact that the Fermi-detected are systematically more
variable than the Fermi-non-detected in both states, is in support of
the Fermi-detected being intrinsically more variable than the Fermi-
not-detected sources (see also Richards et al. 2014). All the mean
parameter and probability values are summarized in Table 7.

5.5 Low versus high redshift sources

Richards et al. (2011, 2014) point out that FSRQs show a negative
correlation between radio variability as quantified by their intrinsic
modulation index and redshift (z). They find that sources with z < 1
are more variable in radio than sources with z > 1 suggesting
that the radio variability of FSRQs evolves with cosmic time. The
trend first appeared in the 2 yr data set (Richards et al. 2011), and
persisted in the 4 yr data set (Richards et al. 2014). We use the

MNRAS 467, 4565–4576 (2017)Downloaded from https://academic.oup.com/mnras/article-abstract/467/4/4565/3038258by Bibliotheque Cantonale et Universitaire useron 30 May 2018



4574 I. Liodakis et al.

redshift values from Richards et al. (2014) to separate our sources
into two subsamples according to their redshift. All the FSRQs in
our sample have a known redshift. Separating our samples in low
(z < 1) and high (z > 1) redshift sources, we have 149 and 252
sources, respectively.

For the duty cycle and the intrinsic modulation index in the ‘on’-
state, both tests agree that the two subsamples are drawn from the
same distributions. For the flaring ratio and the ‘off’-state modula-
tion index, the tests reject the null hypothesis. If instead of z = 1 we
separate our samples according to the mean (z ≈ 1.22) or median
(z ≈ 1.32) value the results of both test vary for all parameters.
Sensitivity to redshift separation makes the individual components
of the analysis (ft, R, moff, mon) unreliable indicators for cosmic
evolution. However, if we compare the overall modulation index
(〈m〉) we find that regardless of redshift separation the two samples
are inconsistent. Separating the samples at z = 1 and z = 〈z〉median

the probability values of both tests are ≤10−3. If we separate the
samples at z = 〈z〉mean the Wilcoxon test yields a 2 per cent, whereas
the K–S test yields a 6 per cent probability of consistency which is
marginally acceptable. Since the mean 〈m〉 values for the two sam-
ples are different (〈m〉mean = 0.185 for the low and 〈m〉mean = 0.177
for the high redshift sources), we conclude that the two samples are
not drawn from the same distribution. On the other hand, if we cor-
rect for the cosmological time dilation (�tobs = (1 + z)�trestframe)
and repeat the analysis, but this time using equal redshift-corrected
observing lengths for all sources, we find no apparent trend of
cosmic evolution. For all the parameters both tests cannot reject
the null hypothesis that the two samples are drawn from the same
distribution. However, we have not taken into account relativistic
compression of variability time-scales, which should be larger for
higher z sources (because of flux-density selection effects) and thus
affect results in the opposite direction to cosmological time dila-
tion. Given the large span of Doppler factors in blazar jets (Hovatta
et al. 2009; Liodakis et al. 2017) even the redshift-corrected ob-
serving lengths will be significantly different from the ‘true’ jet
rest frame observing lengths for each source. Until a large enough
number of Doppler factor estimates is available that will allow us to
confidently correct for the relativistic effects on a source-by-source
basis, we are unable to drawn firm conclusions on the cosmic evo-
lution of FSRQ variability properties.

A similar effect as the one discussed here and in Richards et al.
(2011, 2014) is true for interstellar scintillation at 5 GHz (Lovell
et al. 2008; Koay et al. 2012). The authors found that interstellar
scintillation is suppressed a higher redshift and that high redshift
sources have steeper spectra (in the 5–9 GHz range). That the inter-
stellar scintillation of high redshift sources is suppressed indicates
either a larger apparent angular size, beyond the expected cosmo-
logical expansion, or a smaller compact fraction in the high redshift
blazars. However, since the OVRO data set is single frequency we
cannot test if a similar effect is present in our sample.

6 SU M M A RY

We have presented a novel five-dimensional maximum likelihood
formalism in order to characterize the variability properties of
blazars and blazar-like sources as a series of two states: an ‘off’-
state describing the low activity periods of a source, and an ‘on’-
state that describes periods of outbursts. We used our method
to fit the 15 GHz flux-density distribution of blazars as seen by
OVRO (Richards et al. 2011), and extract their variability properties
(Table 8). Ta
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For our statistical analysis of the population properties of the
OVRO blazars, as well as for the comparison of the behaviours of
blazar subclasses, we define a statistically complete subset of all
OVRO-monitored sources: a flux-density-limited subsample, based
on average fluxes from Richards et al. (2014). We have tested
whether the model assumed in this work is a good description
of the underlying flux-density distribution of the OVRO-monitored
blazars. If this is the case, then for bright sources (where obser-
vational uncertainties do not widen appreciably the observed flux-
density distribution compared to the intrinsic one) we would expect
the value of m obtained from the sample mean and sample standard
deviation for each light curve to agree well with our likelihood-
derived intrinsic 〈m〉. We have verified that the two are, in fact, in
excellent agreement.

Having established that our model is a good description of the
underlying distribution, we compared the variability characteristics
of different subsamples. Our results can be summarized as follows:

(i) BL Lacs are more variable than the FSRQs. This is consistent
with the finding of Richards et al. (2011, 2014) that BL Lacs have
a higher overall 〈m〉. However, we have now established that BL
Lacs also exhibit stronger outbursts (have a higher flaring ratio),
and that their increase in 〈m〉 is dominated by the ‘on’-state (it is
mon that is significantly higher, while moff is similar in BL Lacs and
FSRQs). Interestingly, Liodakis & Pavlidou (2015) and Liodakis
et al. (2017) find that the Doppler factors of FSRQs are on average,
significantly higher than those of BL Lacs, so this discrepancy must
have its origin in rest-frame properties, rather than differences in
boosting between the two classes.

(ii) Sources classified as blazars (BL Lacs and FSRQs) have
systematically larger flaring ratios (i.e. stronger outbursts) than the
U-Rs with otherwise similar variability characteristics. The variabil-
ity characteristics of U-Rs are similar to FSRQs. Since the majority
of U-Rs are blazar candidates, it would suggest either that they
are unclassified FSRQs most likely due to lack of multiwavelength
observations, or that they are unclassified radio galaxies, which in
turn would suggest that FSRQs and radio galaxies share similar
rest-frame variability characteristics.

(iii) Fermi-detected sources are intrinsically more variable than
the Fermi-non-detected sources. This result agrees with the overall
findings of Richards et al. (2011, 2014); however, the bimodal model
offers an opportunity to trace the origin of this result in the details of
the behaviour of blazars in the flux-density domain. Indeed, Fermi-
detected sources have higher flaring ratios and higher modulation
indices in both states, with the most significant difference being in
the flaring ratio. This results indicates that the mechanisms respon-
sible for the amplitude of radio variations and the γ -ray loudness
of a source may share a physical link.

(iv) The overall intrinsic modulation index (〈m〉) is consistently
(regardless of redshift separation of subsamples) supporting the
negative correlation between radio variability and redshift in FSRQs
reported in Richards et al. (2011, 2014). Once we accounted for
the cosmological time dilation, we found no evidence for such
negative correlation. However, since we are not yet able to take into
account the relativistic effects compressing blazar time-scales, we
are not able to come to firm conclusions regarding a possible cosmic
evolution of variability properties of FSRQs.

We caution the reader that for an analysis such as the one pre-
sented here, there is a dependence of the derived variability param-
eters to the length of the monitoring programme. Short (in time)
monitoring programmes may not be able to sample the entire flux-
density distribution of a blazar. However, given enough time, es-

timates will converge to their ‘true’ values. For our well-sampled
sources, we find that by splitting the monitoring period in half (4 yr)
the difference in the derived variability estimates from the two pe-
riods is <50 per cent in the majority of cases.

The overall radio modulation index as calculated by Richards
et al. (2011) is one of the properties used to select samples for
monitoring of other blazar properties (such as their optopolarimet-
ric behaviour e.g. King et al. 2014; Pavlidou et al. 2014). Given
that we find the bimodal flux distribution to be a much better de-
scription than the single Gaussian used by Richards et al. (2011),
we would advise using the overall 〈m〉 values from this work for
sample characterization.

The tools presented in this work were used to explore the vari-
ability properties of a 15 GHz selected flux-density-limited sample.
They are, however, not restricted to any particular frequency since
the formalism is based on statistics alone and is independent of any
emission mechanism or other physical arguments. Thus, are suit-
able for all wavelengths and sources that can be well described by a
bimodal Gaussian distribution. However, one should keep in mind
that using a large number of observations for the fitting (in our case
421 on average) is critical to ensure robust results for the estimated
parameters and their errors.
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