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We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013) for calorimetric
measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider
a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is
initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies
in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling
assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump
process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric
and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In
this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter
temperature distribution. We inquire the properties of the temperature probability distribution close and at the
steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter
coupling constant.

DOI: 10.1103/PhysRevA.97.052107

I. INTRODUCTION

The measurement of thermodynamic quantities in an open
quantum system poses considerable experimental challenges.
The main reason is that one needs to find a way to monitor
all the active degrees of freedom in the system and its
environment.

The proposal of [1] is to detect quanta of energy absorbed
or emitted by a driven quantum system by measuring the
temperature variation of the environment surrounding it. More
precisely, Ref. [1] considers an integrated quantum circuit
including a superconducting qubit and a resistor element. A
superconducting qubit is a two level artificial atom constructed
from collective electrodynamic modes of a macroscopic su-
perconducting element [2,3]. Superconducting qubits can be
coupled with other linear circuit elements like capacitors,
inductors, and transmission lines. This fact renders in principle
the possibility to monitor energy exchanges of the qubit by
constantly monitoring the temperature of a resistor element
in the circuit. Hence the realization of the experiment [1]
essentially hinges upon the feasibility of measuring the tem-
perature of the calorimeter sufficiently accurate over time
scales shorter than the thermal relaxation time of the qubit.
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Recent developments of nanoscale radio-frequency thermom-
etry permit one to envisage the accomplishment of this goal.
Already a decade ago, Ref. [4] demonstrated the feasibility of
measuring the temperature of the normal metal side of an SIN
(superconductor–insulator–normal metal) tunnel junction ther-
mometer with a bandwidth of up to 100 MHz. More recently,
Refs. [5,6] showed that SIN thermometry can operate down
to temperatures of 100 mK and detect a 10 mK temperature
spike in a single-shot measurement. This is not yet sufficient
for calorimetric measurements of single microwave photons in
a superconducting quantum circuit, but makes the prospect of
realizing the experiment [1] in the near future very concrete.

The aim of the present contribution is to theoretically
explore features of the temperature process in [1]. We take
as a starting point the theoretical qubit-calorimeter model
introduced in [7]. Accordingly, we describe the dynamics
of the qubit-calorimeter system by a generalized quantum
jump process [8,9]. The generalization consists in treating
as a dynamical variable the temperature of the calorimeter
together with the components of the state vector of the qubit.
The derivation of the quantum jump process then follows
from the usual set of assumptions presiding over the validity
of the Markovian approximation (see for example [10]) and
the hypothesis that in between interactions with the qubit
the calorimeter behaves as a Fermi gas in local equilibrium.
In other words, the calorimeter is modeled by a collection
of grand-canonical ensembles parametrized by a temperature
evolving in time according to a prescribed dynamics. Ex-
tended statistical ensembles characterized by a dynamically
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determined temperature come naturally about, for example, in
the study of energy exchanges between a single electron box
tunnel coupled to metallic reservoir [11], and in macroscopic
statistical physics for example as a tool to optimize Monte
Carlo methods [12].

As a step towards increased realism, we advance the model
of [7] in two ways. First, we suppose that the qubit is strongly
coupled with a periodic control field. Drawing on [13], we
obtain the corresponding stochastic Schrödinger equation for
the qubit. Second, we include in the model normal-metal
electron-phonon interactions between the calorimeter and
the environment. Electron-phonon interactions bring about a
drift and a noise term in the stochastic differential equations
governing the calorimeter temperature [14–16].

We then inquire as to the behavior of the probability
distribution of temperature Te of the calorimeter by numeric
and analytic methods and for experimentally relevant values
of the parameters. We show that as the duration of the drive
increases the temperature distribution tends to an equilibrium
state. In order to shed more light on the asymptotic stage of
the dynamics, we take advantage of the time-scale separation
between the characteristic relaxation times of the qubit and the
temperature process and show by means of multiscale pertur-
bation theory [17] that the temperature probability distribution
evolves asymptotically according to a Fokker-Planck equation
[18]. The Fokker-Planck equation evinces the general form of
dependence upon the phonon temperature Tp and the qubit-
calorimeter coupling g of the steady-state temperature TS and
the temperature distribution relaxation time to equilibrium τS .

The structure of the paper is as follows. In Sec. II we briefly
sketch the experimental setup of [1]. In Sec. III we introduce
the qubit-calorimeter model whose dynamics in the Markovian
limit we subsequently present in Sec. IV. In Sec. V we inquire
as to the asymptotic behavior of the temperature probability
distribution by multiscale methods. Finally, we report on our
numeric investigation of the model in Sec. VI. We focus on two
regimes. The first regime or “short-time regime” is 10 periods
of resonant frequency. In this time the qubit and temperature
only make a few jumps. The second regime or the “long-time”
regime is of the order of 104 periods of resonant frequency.
On this time scale the system makes many jumps and the drift
term due to the phonons becomes important. In the physically
relevant parametric range, the results of the simulations are in
good agreement with the analytic predictions of Sec. V.

Finally, we defer most of the technical calculations to the
Appendixes.

II. QUBIT-CALORIMETER CIRCUIT

Superconducting qubits are solid-state devices behaving ac-
cording to the rules of quantum mechanics. They combine the
feature, characteristic of atoms, of exhibiting quantized energy
levels with the flexibility of linear circuit elements which can
be connected in more complex networks. The realization of a
superconducting qubit plays upon the properties of Josephson
tunnel junctions [2,19]. Namely, at temperatures sufficiently
low to render thermal noise negligible, Josephson tunnel
junctions maintain quantum coherence of charge transport (i.e.,
are nondissipative) governed by a nonharmonic Hamiltonian
(see e.g. [3,20,21]). Nonlinear separation of the energy levels is

FIG. 1. Visual representation of the quantum integrated circuit
and its mathematical model. (a) The quantum integrated circuit of
[1]. The temperature measurement is performed by embedding an
NIS junction in a resonance circuit. The calorimeter consists of the
electrons in the normal metal. The transmon qubit is formed by a
Cooper pair box embedded in a resonance circuit. This figure is not up
to scale. The Cooper pair box is of the order of 10 μm, the resonance
circuit which it is embedded in is of the order of 1 mm, and the
calorimeter is 1 μm. (b) The qubit-calorimeter experiment as modeled
by the Hamiltonian (1).

essential to prevent qubit operations from exciting transitions
between more than two states in the system.

In Fig. 1(a) we draw a quantum integrated circuit of the type
envisaged in [1]. The circuit contains a transmon qubit [22]. A
transmon qubit consists of a superconducting island coupled
through Josephson junctions and shunted by a capacitor. The
transmon qubit is embedded in a resonance circuit to amplify
its signal. The resistor element in the circuit [bright blue
online in Fig. 1(a)] is the calorimeter, making it into an open
quantum system. In the current work we do not consider the
resonator, but model the qubit to be directly coupled to the
calorimeter. We conceptualize the calorimeter as a gas of free
electrons weakly interacting with an infinite phonon thermal
bath. Phonons describe excitations of the lattice structure of the
normal metal in the resistor and in the circuit substrate. The
phonon bath is maintained at a uniform constant temperature
Tp equal to that of the cryostat. The temperature Te of
the electron gas is in equilibrium with the phonon bath at
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the beginning of the experiment. The drive is an external
periodic control potential initially turned off. When turned on,
the drive excites transitions in the qubit. The temperature of
the resistor varies then in consequence of the single microwave
photons emitted or absorbed by the two-level system. The
actual temperature measurement happens via a normal metal–
insulator–superconductor (NIS) junction [4–6] on the resistor.
This is possible because the conductance G of the NIS junction
depends on the temperature Te of the normal metal, whereas it
is independent of the temperature of the superconductor:

G =
∫
R

dE NS(E)

RT kB Te

fTe
(E − e Vb)

[
1 − fTe

(E − e Vb)
]
.

Here, NS(E) is the normalized Bardeen-Cooper-Schrieffer su-
perconducting density of states, kB is the Boltzmann constant,
and fTe

(E) = [1 + exp(E/kBTe)]−1 is the Fermi-Dirac distri-
bution at temperature Te with E referenced to the chemical
potential [23]. Vb and RT are respectively the voltage bias and
the resistance of the NIS junction.

III. THEORETICAL MODEL

Figure 1 graphically illustrates our mathematical model of
the qubit-calorimeter-phonon interactions. The Schrödinger
picture Hamiltonian of the full quantum system is the sum

H = Hq + Hqe + He + Hep + Hp (1)

of the qubit Hq , the qubit-electron interaction Hqe, the electron
gas He, the electron-phonon interaction Hep, and the phonon
Hp Hamiltonians.

The Hamiltonian of the qubit is

Hq(t) = h̄ ωq

2
σz + κ Vd (t), (2)

where σz denotes the diagonal Pauli matrix. The Hamiltonian
is time nonautonomous owing to the presence of the driving
potential Vd (t). The drive is periodic with frequency ωL and
is strongly coupled with the qubit by the nondimensional
parameter κ . In consequence, it is expedient to resort to Floquet
theory to describe the periodically driven qubit dynamics
[24–26]; see also [27–29] and Appendix A.

The qubit is directly coupled only to the calorimeter via the
Hamiltonian

Hqe = g

√
8πεF

3N

∑
k �=l∈S

(σ+ + σ−)a†
kal. (3)

Here σ+ and σ− are the qubit raising and lowering operators
in the absence of external drive Vd . Similarly, ak and a

†
k are

the annihilation and creation operators of a free fermion with
energy specified by the absolute value k of its wave number k.
The sum in (3) is restricted to an energy shell S close to the
Fermi energy εF of the metal in the resistor. The sum ranges
over nondiagonal terms to avoid trivial renormalization of the
energy levels of the noninteracting Hamiltonians Hq and He.
We choose the numerical prefactor in (3) for computational
convenience. The interaction strength is characterized by the
nondimensional constant g � 1 and εF sets the energy scale.
Finally, N = O(109) is the number of electrons in the shell S.

Of the remaining three terms on the right-hand side of (1),
He and Hp are the free fermion and boson gas Hamiltonians

weakly coupled by a Frölich interaction term Hep [30] (see, for
example, Chap. 9 of [31]). As these Hamiltonians are textbook
knowledge, we defer explicit expressions and quantitative
analysis to Appendix C. Here we discuss the qualitative picture.
Phonons describe small vibrations in the lattice structure of
the metal and its substrate. Phonon self-interactions can be
neglected as the vibration amplitude is small with respect to the
characteristic length of the lattice cell O(k−1

F ) for kF the Fermi
wave vector [32]. Electron self-interactions are reabsorbed
in the parameters of the free-energy spectrum. Namely, the
typical relaxation rate to the Fermi-Dirac energy distribution of
Landau quasiparticle in a metallic wire is of the order of τee ∼
1 ns [33], whereas electron-phonon interactions typically occur
on a τep ∼ 104 ns time scale [5]. Thus, at any instant of time
the state of phonons and electrons is described by quantum
statistical equilibrium ensembles at well defined temperatures
respectively denoted by Tp and Te. Within leading order
accuracy, equilibrium states are perturbed by the deformation
term Hep. In the presence of small differences between Tp

and Te, the perturbation results in a mean energy current J ∝
T 5

p − T 5
e [14,15] with root-mean-square fluctuations O(T 3

p )
[16]. Experiments at sub-kelvin temperatures clearly support
these theoretical estimates.

IV. QUBIT-CALORIMETER PROCESS

Typical transmon qubit relaxation times are of the order of
τR ∼ (2–5)×105 ns [34]. The time scale separation τee/τR ∼
10−5 suggests describing the qubit dynamics in the Born-
Markov approximation. The Markovian approximation is con-
sistent with complete positivity of the state operator if we retain
only secular terms in the evaluation of transition rates [10]. The
rotating wave approximation offers a systematic procedure to
neglect nonsecular terms. It is justified if transitions among
quasienergy levels (see Appendix A) in the qubit occur with
rates much smaller than the corresponding frequency gaps in
the radiation spectrum emitted by the qubit [10,13]. In other
words, we need to work under the hypothesis that characteristic
time scale τqe of the qubit-calorimeter interaction is much
larger than the time τm set by the typical inverse separation
of peaks in the radiation spectrum. In the weak-coupling
limit, Fermi’s golden rule self-consistently yields the estimate
τeq ∼ g−2. We then expect the Markovian approximation to
hold in the presence of a strongly coupled drive in (2) if
τm ∼ κ−1 holds so that τm/τeq ∼ g2/κ � 1. We verify this
assumption in Sec. VI for an explicit, experimentally relevant
drive. Finally, the evaluation of qubit transition rates using the
Fermi-Dirac distribution imposes τeq � τep � τR .

Under the above assumptions [7], we unravel the Markovian
approximation for the qubit dynamics in the form of a Poisson-
stochastic Schrödinger equation [10,13]

dψ(t) = − i

h̄
G(ψ(t))dt

+
∑
|s|�1

∑
|n|�N

(
As,nψ(t)

‖As,nψ(t)‖ − ψ(t)

)
dνs,n(t). (4)

The vector ψ ∈ C2 instantaneously specifies the state of the
qubit. The sums on the right-hand side range over the Lindblad
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operators

As,n = δs,0D1,1,n(|φ1,0(0)〉〈φ1,0(0)| − |φ0,0(0)〉〈φ0,0(0)|)
+ (δs,1 + δs,−1)D 1+s

2 , 1−s
2 ,n

∣∣φ 1+s
2 ,0(0)

〉〈
φ 1−s

2 ,0(0)
∣∣. (5)

By φr,n r = 0,1, n ∈ Z we denote the element of the orthonor-
mal basis in C2×L2[0,2π/ωL] associated to the quasienergy
level

εr,n = εr + nh̄ωL (6)

specified by Floquet theory (see Appendix A and references
therein). For any fixed t , the vector functions φr,0(t), r = 0,1
form an orthonormal basis with respect to the standard scalar
product in C2. The selection rules imposed by the matrix
elements

Dr,r ′,n = 2π

ωL

∫ 2π
ωL

0
dt〈φr,n(t)|σ+ + σ−|φr ′,0(t)〉 (7)

restrict the number of nonvanishing Lindblad operators
([10,13] and Appendix B). The representation (5) holds under
the simplifying but not too restrictive assumption that there is
a one to one correspondence between Lindblad operators and
frequencies in the qubit radiation spectrum

ωs,n = s
ε0 − ε1

h̄
− nωL (8)

for s = 0,±1 and n = 0,±1, . . . ,±N . This assumption is
reasonable if the selection rule (7) yields nonvanishing con-
tribution only for a finite number of transitions, i.e., N < ∞.
In particular, it holds true for the monochromatic drive we
consider in Sec. VI.

The evolution law (4) specifies a piecewise deterministic
process. The deterministic evolution corresponds to a first-
order differential equation in C2 governed by the nonlinear
norm preserving drift

G(ψ) = ih̄

2

∑
|s|�1

∑
|n|�N

�(ωs,n,Te)(‖As,nψ‖2 − A†
s,nAs,n)ψ,

(9)

where ‖ · ‖2 = 〈·|·〉 is the squared norm in C2. The deter-
ministic evolution is interrupted at random times by jumps
modeled by the increment dνs,n(t) of statistically independent
Poisson processes for each s,n and fully characterized by the
conditional expectation

E(dνs,n(t)|ψ) = �(ωs,n,Te)‖As,nψ‖2dt. (10)

Here and in (9) the radiation frequency dependence of

�(ω,Te) = g2ω eh̄ω/(kBTe)

eh̄ω/(kB Te) − 1
(11)

stems from the fact that leading-order transitions in the qubit
always involve creating and annihilating an electron in the
calorimeter (see Appendix B for details). For ω > 0 the
calorimeter absorbs energy; for ω < 0 the calorimeter loses
energy. The rates depend on the temperature of the electron
bath Te.

We determine the temperature Te from internal energy E of
the calorimeter using the Sommerfeld approximation; see, e.g.,

Ref. [32]. Under our working assumptions, dE is nonvanishing
only over time scales larger than τeq . We obtain

dT 2
e (t) = 1

Nγ
dE(t), (12)

where

γ = π2k2
B

4εF

. (13)

According to these definitions Nγ/2 is the coefficient of the
linear contribution to the heat capacity.

We identify two main contributions to the right-hand side
of (12):

dE(t) = dEeq(t) + dEep(t).

A jump in the qubit donates h̄ωs,n to the calorimeter. The
corresponding instantaneous change in energy is

dEeq(t) =
∑
|s|�1

∑
|n|�N

h̄ωs,ndνs,n(t). (14)

The increment dEep embodies the contribution of electron-
phonon interactions. We model these interactions as the sum
of a deterministic and a stochastic differential [14–16]

dEep(t)=�V
[
T 5

p −T 5
e (t)

]
dt +

√
10�V kBT 3

p dw(t). (15)

Here dw(t) is the increment of a one-dimensional Wiener
process, � is a material constant defined in Appendix C, V

is the volume of the calorimeter, and Tp is the temperature
of the phonon bath. The drift term in (15) tends to bring
back the calorimeter into equilibrium with the phonon bath
at temperature Tp. The Wiener increment models fluctuations
of the heat current between the calorimeter and the phonon
reservoir. Within leading-order accuracy, we evaluate the char-
acteristic size of heat fluctuations by setting Tp = Te. Under
this approximation the diffusion coefficient in (15) does not
prevent by construction realizations of the temperature process
from acquiring nonphysical negative values. This means that
(12) must be complemented by proper, e.g., reflecting, bound-
ary conditions at Te = 0. These boundary conditions are not
derived from first principles. Physically, however, the barrier
at vanishing temperature can be understood observing that
the energy distribution of a finite-sized free-electron reservoir
vanishes at low energies with a sharp drop to zero at the energy
corresponding to the filled Fermi sea [35].

We are mainly interested in the evolution of the calorimeter
temperature Te. However, in order to obtain numerical results,
it is necessary to simulate both processes: the evolution of the
qubit (4) and the temperature (12) are coupled by (14), (15).
Furthermore, the jump rates of the qubit (11) depend on the
current temperature Te and on the current state of the qubit
by Eq. (10). Quantitative predictions about evolution of the
qubit-calorimeter system call for numeric investigation. It is,
however, remarkable that, in the long-time limit, it is possible
to derive a closed Fokker-Planck equation for the calorimeter
temperature distribution, as we show in the next section.
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V. EFFECTIVE TEMPERATURE PROCESS

To start with, it is expedient to define the process ξ (t) =
T 2

e (t), which by (12), (14), and (15) obeys the Wiener-Poisson
stochastic differential equation

dξ (t) =
∑
|s|�1

∑
|n|�N

h̄ωs,n

Nγ
dνs,n(t)

+ �V
[
T 5

p − ξ 5/2(t)
]
dt + √

10�V kBT 3
p dw(t)

Nγ
.

(16)

In Appendix D we show that the joint probability

Pr (X,t)

= P(X � ξ (t) < X + dX and qubit in Floquet state r)

(17)

defined by (4) and (16) obeys a closed time-autonomous
Chapman-Kolmogorov master equation

Ṗr (X,t) = LXPr (X,t) +
∑

r ′=0,1

∫ ∞

0
dY Krr ′ (X|Y )Pr ′(Y,t)

−
∑

r ′=0,1

∫ ∞

0
dY Kr ′r (Y |X)Pr (X,t). (18)

The differential operation LX represents the effect of electron-
phonon interactions

LXPr (X,t) = −�V

N γ
∂X

((
T 5

p − X5/2
)
Pr (X,t)

)

+
(√

10�V kBT 3
p

)2

2N2γ 2
∂2
XPr (X,t). (19)

The kernel K describes quantum jumps

Krr ′ (X|Y ) =
∑

n�|N |
Gr,r ′,n(Y )δ

(
Y − X + h̄ωr ′−r,n

Nγ

)
, (20)

where

Gr,r ′,n(X) = �(ωr−r ′,n,
√

X)|Dr,r ′,n|2. (21)

Chapman-Kolmogorov master equations of the type (18) are
compatible with the existence of an H theorem; see, e.g.,
Chap. 3.7.3 of [18]. We expect therefore that in the limit of
long duration of the drive, Eq. (19) admits a steady state and
that solutions corresponding to physical initial data relax to
such steady state.

The occurrence of the nondimensional weighting prefactor

ε = 1

N

in (19) evinces the possibility to apply multiscale perturbation
theory [17] to the asymptotic analysis of the master equa-
tion (18). Namely, we expect temperature equilibration to occur
on a much longer time scale compared to the characteristic
qubit relaxation time. Formally, if we posit

Pr (X,t) ≡ P̃r (X,t,εt),

we can couch the time derivative of the probability in terms of
the sum of partial derivatives

dPr

dt
(X,t) = ∂t P̃r (X,t,τ ) + ε∂τ P̃r (X,t,τ ), (22)

with respect to the “fast” variable t and the “slow” one

τ = εt.

In the limit of long duration of the drive it is then reasonable
to assume that the probability becomes stationary with respect
to the fast time dependence

∂t P̃r = 0.

Therefore, under our working assumption,

P̄r (X,τ ) ≡ lim
t↑∞

P̃r (X,t,τ )

satisfies

ε∂τ P̄r (X,τ ) = εL(1)
X P̄r (X,τ ) + ε2L(2)

X P̄r (X,τ )

+
1∑

s=0

(
G(0)

r,s (X)P̄s(X,τ ) − G(0)
s,r (X)P̄r (X,τ )

)

+
∞∑
k

εk

k!

1∑
s=0

∂k
X

(
G(k)

r,s (X)P̄s(X,τ )
)
. (23)

In (23) we use the notation

L(1)
X P̄r (X,τ ) = −�V

γ
∂X

((
T 5

p − X5/2
)
P̄r (X,τ )

)
,

L(2)
X P̄r (X,τ ) =

(√
10�V kpT 3

p

)2

2γ 2
∂2
XP̄r (X,τ ),

and

G(k)
r,s (X) =

∑
|n|�N

(
h̄ωs−r,n

γ

)k

Gr,s,n(X).

We look for solutions of (23) by expanding the probability
distribution in a Hilbert series in powers of ε

P̄r (X,τ ) =
∞∑

n=0

εnP̄ (n)
r (X,τ ). (24)

We readily see that the zero order of the expansion is amenable
to the form

P̄ (0)
r (X,τ ) = Qr (X) F (0)(X,τ ).

The quantity Qr (r = 0,1) is the population of the Floquet
state φr,0(0) at thermal equilibrium temperature

√
X. In vector

notation, the explicit expression of the equilibrium Floquet
level population is

Q(X) = 1

G
(0)
1,0(X) + G

(0)
0,1(X)

[
G

(0)
0,1(X)

G
(0)
1,0(X)

]
. (25)

The function F (0) has the interpretation of the leading-order
contribution to the expansion in powers of ε of the probability
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density of the squared temperature X:

F (X,τ ) =
∑
r=0,1

P̄r (X,τ ) =
∞∑

n=0

εnF (n)(X,τ ). (26)

In Appendix E we show that, within O(ε2) accuracy, the
probability density F evolves according to the Fokker-Planck
equation

∂τF (X,τ ) + ∂XJ (X)F (X,τ ) = ∂2
X

S(X)F (X,τ )

2N
, (27)

with the drift

J (X) = �V

γ

(
T 5

p − X5/2
) + j (1)(X) + j (2)(X)

N
(28)

and positive-definite diffusion coefficient

S(X) =
(√

10�V kpT 3
p

)2

γ 2
+ �(1)(X) + �(2)(X). (29)

The j (i), �(i), i = 1,2 terms embody the average effect of the
fluctuating qubit-calorimeter energy flux close to equilibrium.
Specifically, upon defining

Z =
[

1
1

]
, (30)

we find that

j (1)(X) = −〈Z|G(1)(X) Q(X)〉, (31a)

j (2)(X) = 1

λ(X)
〈Z|G(1)(X)JZ〉〈JQ(X)

∣∣L(1)
X Q(X)

〉
+ 1

λ(X)
〈Z|G(1)(X)JZ〉〈 Q⊥|∂X(G(1)(X) Q(X))〉

− ∂X

(
〈Z|G(1)V 〉〈 Q⊥|G(1)(X) Q(X)〉

λ(X)

)
, (31b)

where

λ(X) = −(G1,0(X) + G0,1(X)). (32)

J is the 2×2 symplectic matrix proportional to the σy Pauli
matrix

J = −iσy =
[

0 −1
1 0

]
, (33)

Q⊥(X) is defined as

Q⊥(X) = 1

λ(X)

[
G

(0)
1,0

−G
(0)
0,1

]
= JQ, (34)

and we use the C2 scalar product notation, e.g.,

〈Z|G(1)(X) Q(X)〉 ≡
1∑

r,s=0

G(1)
r,s (X) Qs(X).

Similarly, we find

�(1)(X) = 〈Z|G(2)(X) Q(X)〉, (35a)

�(2)(X) = 2
〈Z|G(1)(X)JZ〉〈JQ|G(1) Q(X)〉

λ(X)
. (35b)

In Appendix E we prove that the contributions (35) to the
diffusion coefficient are indeed positive definite.

The drift and diffusion coefficients (31) and (35) depend
upon the detailed form of the potential driving the qubit. At
arbitrarily low temperatures and if the matrix elements (7)
restrict the number of permitted transitions to N ∼ O(1),
we can nevertheless extricate some general properties of the
diffusion process (27). Under these hypotheses, we expect that

j (1)(X) + j (2)(X) = g2O(h̄ωL) + O(N−1).

Consequently, the temperature probability distribution tends
to a stationary value peaked around the temperature value at
which the drift (28) vanishes:

T 5
S ≈ T 5

p + g2

�V
O

(
h̄ω2

L

)
. (36)

We assume that the terms on the right-hand side are of the same
order, as it occurs in the simulations in Sec. VI. The same line
of reasoning suggests capturing the behavior of the bulk of the
temperature distribution by means of the Ornstein-Uhlenbeck
process obtained by setting

J (X) ≈ dJ

dX

(
T 2

S

)(
T 2

S − X
)

(37)

and

S(X) ≈ S
(
T 2

S

)
. (38)

From the Ornstein-Uhlenbeck approximation we can immedi-
ately estimate the average steady-state temperature as T� ≈ TS

and the relaxation time to equilibrium as

τS ≈
(

dJ

dX

(
T 2

S

))−1

. (39)

Finally, neglecting completely thermal contributions to qubit-
calorimeter energy exchanges leads one to infer the relation

TS ∼
(

T 5
p + g2 O

(
h̄ω2

L

)
�V

)1/5

(40)

between the peak of the equilibrium temperature distribution
and the qubit-calorimeter coupling constant. If we suppose that
(31) depends weakly on the temperature, Eq. (36) yields

τS ≈
(

5�V

2γ
T 3

S

)−1

∼
[

5�V

2γ

(
T 5

p + g2 O
(
h̄ω2

L

)
�V

)3/5
]−1

. (41)

VI. SIMULATIONS

In order to obtain quantitative predictions, we consider in
(2) the driving potential

Vd (t) = h̄ωq(eiωLtσ+ + e−iωLtσ−). (42)

The advantage of this choice [36,37] is that we can derive ana-
lytic expressions for the Floquet states φi,n and the quasiener-
gies εi , i = 0,1. The matrix elements (7) permit transitions
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corresponding to only six Lindblad operators [10,13]

A0,1 = sin θ

2
(|φ1,0(0)〉〈φ1,0(0)|−|φ0,0(0)〉〈φ0,0(0)|), (43a)

A1,1 = sin2 θ

2
|φ1,0(0)〉〈φ0,0(0)|, (43b)

A−1,1 = cos2 θ

2
|φ1,0(0)〉〈φ0,0(0)| (43c)

and their adjoint conjugates. In (43) we set

cos θ = ωq − ωL

ν
(44)

with

ν = |ε0 − ε1|
h̄

=
√

(ωq − ωL)2 + 4κ2ω2
q . (45)

The operators (43b) and (43c) have the same effect on the
qubit but describe respectively the transfer of h̄ωL and −h̄ωL

amounts of energy from the drive to the calorimeter through
the qubit. Inspection of (45) also evinces that at resonance

ωq = ωL,

the condition securing the validity of the rotating wave approx-
imation takes the particularly simple form [10]

κ � g2.

Hence the use of the Floquet representation of the qubit
dynamics is well justified when the qubit is strongly coupled
to the drive.

We integrate numerically the qubit-calorimeter dynamics
for parameter values as in [38,39]. We take the level spacing
of the qubit h̄ωq = kB×1 K, the volume of the calorimeter
V = 10−21 m3, � = 2×10−9 W K−5m−3, and the phonon
temperature Tp = 0.1 K. Further we take γ = 1500kB/(1 K)
and the drive coupling constant κ = 0.05.

At the beginning of the simulations the driven qubit and the
calorimeter are in thermal equilibrium with the phonon bath.
The qubit is in a thermal state at temperature Tp. From the ther-
mal distribution we draw the initial Floquet state for the qubit.

We use the following algorithm for the numeric integration
of the dynamics. We discretize time into steps of size dt =
(100ωq)−1. and update the qubit state and temperature from
time t to t + dt in three steps: (1) we compute the jump rates for
the Poisson processes for the qubit state ψ and the temperature
of the calorimeter Te at time t , (2) we let a random number
generator determine whether the qubit makes a jump or not,
and (3) we update the qubit state ψ and temperature Te using
Eqs. (4) and (16). We repeat steps (1)–(3) for the duration of
the qubit driving horizon.

We study the temperature behavior of the qubit-calorimeter
system in two different regimes. We first look at a short-time
regime of 10×2π/ωq . In this regime the qubit only makes
a few jumps. Secondly, we look at the long-term temperature
behavior. After waiting sufficient time the temperature process
converges towards a steady state.

Figure 2 shows distribution of the temperature after 10
periods of resonant driving. The temperature distributions are
sharply peaked around values reachable via quantum jumps

FIG. 2. Temperature distributions after 10 periods of resonant
driving for different values of the qubit-calorimeter coupling g. The
distributions are obtained from histograms over 2×105 realizations.
The parameters used for the numerics are h̄ωq = kB×1 K, V = 10−21

m3, � = 2×10−9 W K−5 m−3, γ = 1500kB/(1 K), driving coupling
constant κ = 0.05, and the phonon temperature Tp = 0.1 K.

from the initial temperature Tp. On this time scale the dynamics
is dominated by quantum jumps. Figure 2(a) shows how for
low coupling the temperature only makes a few jumps. As the
coupling increases more jumps occur. The distribution shifts
and becomes broader; see Fig. 2(c).

Figure 3 shows the first and second moment of the distribu-
tion of the temperature distributions like those shown in Fig. 2
for different driving frequencies. As expected, the average
temperature peaks around resonant frequency and is higher
for stronger coupling between the qubit and calorimeter.

On time scales of the order 104 periods the qubit-
temperature process exhibits convergence towards a steady
state. Figure 4 illustrates this phenomenon. The (red) noisy line
is a realization of the qubit-temperature process. The smooth
(blue) line is the evolution of the average temperature obtained
from the analytic approximation, i.e., the evolution by the
drift term of Eq. (27). Figure 5 shows the average value of
the temperature process in the steady state versus the driving
frequency, which we use as an estimate for TS . The full line
is an estimate of the same quantity as obtained by imposing
the vanishing of the drift (28) and thus solving numerically the
transcendental equation

J (XS) = 0. (46)

We notice that for Te = 0 the solution of this equation takes
the form

T 5
S = T 5

p + g2

�V

(
h̄ω2

L sin2(θ )

+ h̄(ωL + ν)3 sin4(θ/2) + h̄(ωL − ν)3 cos4(θ/2)

(ωL + ν) sin4(θ/2) + (ωL − ν) cos4(θ/2)

)
.

(47)
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FIG. 3. First moment (top) and the standard deviation (bottom)
for the distribution of the temperature after 10 2π

ωq
duration of driving.

Both the mean and standard deviation peak for resonant driving and
higher coupling. The parameters used for the simulations are in the
caption of Fig. 2.

The long-time behavior of the temperature is most interesting
around the resonant frequency. For the rest of our numerical
analysis we focus on resonant driving.

In Fig. 6 we compare the value for TS from Eq. (47)
(full line) with the average steady-state temperature obtained
from direct numerical simulations (dots). We find good agree-
ment with the g dependence predicted by (40). Furthermore,
we compare the relaxation time prediction of the Ornstein-
Uhlenbeck approximation with the numeric observation. The
inserted plot in Fig. 6 shows α = τ−1

S ; it demonstrates that the
data are consistent with the g dependence predicted by (41)
and (47).

In Fig. 7 we plot the stationary value of the temperature for
different values of the qubit-electron coupling g. We construct
the histograms by sampling a single realization of the qubit-
temperature process after convergence to the steady state. The
full (red) line is the stationary solution of the Fokker-Planck
equation (27). In Fig. 7 we also report the values of the standard
deviation and skewness as obtained from the numerics. In the

FIG. 4. Long-time behavior of the temperature; the noisy (red)
line is a single realization of the qubit-temperature process given
by Eqs. (4) and (12) for g2 = 1/100. The smooth (blue) line is the
evolution of the average temperature by the effective temperature
process (27). The parameter values are the same as in Fig. 2.

stationary state the average value T� of the temperature is close
to the temperature TS specified by the solution of (46). The
square root of the variance of the temperature process ranges
from 0.004 K to 0.005 K.

Finally, Fig. 8 shows a log-log plot of the power spectrum
of the temperature process. We obtain the data by following
the evolution of a single realization of the temperature process
after it has reached the steady state. The spectrum exhibits a
decay consistent with a fit equal to −2 of the slope. This is in
agreement with the Ornstein-Uhlenbeck approximation (37),
(38) of the drift and diffusion coefficients in the Fokker-Planck
equation (27). We find in such a case the expression of the

FIG. 5. Mean value of the temperature in the steady state. The
data come from a single realization after it reached the steady state
as shown in Fig. 4. The full lines are the estimate of the stationary
temperature obtained from the solution of (46). The parameter values
are the same as in Fig. 2.
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FIG. 6. Mean value of the temperature in the steady state for
different values of g2 at resonant driving. The (blue) dots give an
estimate for the stationary temperature obtained from the simulations.
The full (blue) line is the solution obtained from the analytic
approximation, the g law from Eq. (47). (Inserted plot) The inverse
of the relaxation time α = τ−1

S . The (red) dots are obtained from the
average of 103 realizations of the qubit-calorimeter process by fitting
to the temperature curve. The full (red) line is the g law from Eqs. (41)
and (47). The parameters used for the simulations are in the caption
of Fig. 2.

power spectrum

S(ω) = S2
(
T 2

S

)
τ 2
S

1 + ω2τ 2
S

,

where τS is the relaxation time of the process.

VII. CONCLUSION AND OUTLOOK

In summary, we present a theoretical model of calorimetric
measurements in an integrated quantum circuit consisting
of a superconducting qubit and a normal-metal absorber
element. The joint evolution of the population of the qubit

. . . . . . . .

FIG. 7. Probability density functions for the qubit-temperature
steady state for different values of the coupling g2. The (blue)
histogram is generated from the numerical simulations. The full
(red) line is the solution of Eq. (27). The values for the vari-
ance σ = (E[Te(t) − E(Te(t))]2)1/2 and the skewness ξ = (E[Te(t) −
E(Te(t))]3)/σ 3 obtained from the numerics are given in the figures.
The parameters used for the simulations are in the caption of Fig. 2.

FIG. 8. Power spectrum, for g2 = 10
100 . The spectrum decays

with an ω−2 asymptotic law consistent with the Ornstein-Uhlenbeck
approximation (37), (38).

state and the calorimeter temperature is governed by the
Chapman-Kolmogorov master equation (18). Standard meth-
ods of asymptotic analysis reduce this equation to an effective
Fokker-Planck equation for the probability distribution of the
calorimeter temperature alone. In the asymptotic regime, we
are able to make experimentally testable predictions about the
dependence of statistical indicators of temperature fluctuations
upon the qubit-calorimeter coupling constant.

The engineering of quantum integrated circuits of increas-
ing tunability is in a phase of rapid development [40–42]. In
particular, very recently, Ref. [43] has shown the realizability
of a quantum heat valve to observe tunable heat transport
between mesoscopic heat reservoirs at different temperatures.
The laboratory implementation is a resonator-qubit-resonator
assembly in which the qubit is capacitively embedded between
two superconducting transmission lines each terminated by
a normal metal resistor elements acting as mesoscopic heat
reservoirs at different temperatures. The study of the heat flow
in the presence of resonator elements thus appears as a natural
direction towards which to extend the ideas of the present work.
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APPENDIX A: TIME SCALES IN THE MODEL

Let H (t) = H (t + Tp) be a Tp-periodic self-adjoint matrix
acting on Cd . Floquet theory, see e.g. [13,24–29,36], links up
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solutions of the initial value problem

(H (t) − ih̄∂t )ψ(t) = 0,

ψ(0) = ψ̄,

with the spectral problem

(H (t) − ih̄∂t )φr,n(t) = εr,nφr,n(t),

φr,n(t + Tp) = φr,n(t),

in the Hilbert space H = Cd×L2[0,Tp]. Namely, if we denote
by F the fundamental solution of (A1),

ψ(t) = F(t,0)ψ̄, ∀ ψ ∈ Cd , (A1)

and by {er}dr=1 the orthonormal basis (Floquet’s states) in Cd

diagonalizing the monodromy matrix

F(Tp,0)er = e− iεr Tp
h̄ er , (A2)

then, for r = 1, . . . ,d and n ∈ Z, the identities

φr,n(t) = e
i
h̄

(εr+ 2πn
Tp

)t
Ft,0er , (A3a)

εr,n = εr + 2πn

Tp
(A3b)

solve the spectral problem (A1). The eigenvalues (A3b) are the
quasienergies; see Eq. (6) in the main text. The eigenvectors
(A3a) form a complete basis ofH. Setting the quantum number
n to zero conventionally specifies the first Brillouin zone. Note
also that

φr,n(0) = er (A4)

for all r,n.
An immediate consequence of the completeness of the φr,n’s

is that any solution of (A1) admits the expression

ψ(t) =
d∑

r=1

∑
n∈Z

φr,n(t)e− iεr,nt

h̄ 〈〈φr,n|ψ̄〉〉. (A5)

In (A5) 〈〈· · · 〉〉 is the widely adopted physics notation for scalar
product over H, i.e., for any f,g, ∈ H,

〈〈φr,n|ψ̄〉〉 ≡ 〈f,g〉H =
∫ Tp

0

dt

Tp
〈f (t)|g(t)〉,

whereas

〈f (t)|g(t)〉 = 〈f (t),g(t)〉Cd

is the usual Dirac’s notation for the scalar product over Cd .
Finally, the insertion in (A1) of the completeness relation in
Cd in terms of the Floquet basis {er}dr=1 combined with the
definition (A3a) of eigenstates of the spectral problem in the
first Brillouin zone yields the identity

ψ(t) =
d∑

r=1

φr,0(t)e
iεr,0 t

h̄ 〈er |ψ̄〉.

This is the so-called Floquet’s representation of solutions of
(A1). As the coefficients 〈er |ψ̄〉 do not depend upon time, their
absolute square value admits the interpretation of population
probability of the Floquet state r . See [27–29] for details.

APPENDIX B: QUBIT-ELECTRON INTERACTION

Let us consider the closed qubit-calorimeter dynamics. The
Dirac’s picture Hamiltonian is

H̃qe = F†(t,0)e
iHet

h̄ Hqee
− iHe t

h̄ F(t,0), (B1)

with F the flow (A1). The Hamiltonian is the sum of tensor
products of operators independently acting on the Hilbert space
of the qubit and of the electrons. The operator acting on the
qubit Hilbert space always admits the representation

F†(t,0)(σ+ + σ−)F(t,0)

=
1∑

r,s=0

ei
εr,0−εs,0

h̄
t |φr,0(0)〉D̃r,s(t)〈φs,0(0)|,

where

D̃r,s(t) = 〈φr,0(t)|σ+ + σ−|φs,0(t)〉.
The completeness for any t in C2 of the Floquet basis
immediately implies

D̃0,0(t) = −D̃1,1(t).

Furthermore, D̃r,s(t) is a 2 π/ωL periodic function the Fourier
series whereof is amenable to the form

D̃r,s(t) =
∑
n∈Z

eiωLntDr,s,n, (B2)

with Dr,n,s defined by (7). The advantage of the Floquet
representation is to couch the time dependence of the Dirac
picture Hamiltonian into the form of a sum over purely
oscillating exponentials as in the case of bipartite isolated
systems.

In the weak-coupling scaling limit, at leading order we con-
sider transitions occurring for nonvanishing matrix elements of
(B1) satisfying the resonance condition

ηk − ηl = εr,0 − εs,0 + nh̄ωL,

where ηk , ηl are energy levels of the free electron Hamilto-
nian. These considerations [10] fix the form of the Lindblad
operators (5).

Finally, to explain the Bose-Einstein distribution appearing
in (11), we observe that the emission of h̄ω energy from the
qubit to the calorimeter occurs with rate

R(ω) ∝ g2

N2

∑
i j

fTe
(ηi)

[
1−fTe

(ηj )
] sin

( ηi−ηj−h̄ω

h̄
t
)

ηi −ηj −h̄ω
, (B3)

where t is the duration of the interaction, ηi denotes the ith
electron energy level, and

fTe
(η) = 1

e(η−μ)/(kBTe) + 1
(B4)

is the Fermi-Dirac distribution at temperature Te. In the large N

limit, we approximate the double sum over the electron energy
levels with a double integral. The integrand is then amenable to
further simplifications. The weak-coupling scaling limit yields

sin
( ηi−ηj −h̄ω

h̄
t
)

ηi − ηj − h̄ω

t↑∞→ h̄πδ(ηi − ηj − h̄ω).
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Moreover, the low-temperature limit permits one to set the
energy density of states to a constant value in the region where
the integrand is sensibly different from zero [44]. Finally, we
can extend the range of integration to the full real axis. The
upshot is

R(ω) ∝ g2
∫
R

dE fTe
(E)

(
1 − fTe

(E − h̄ω)
)
.

We avail ourselves of the identity

fTe
(E)

(
1 − fTe

(E − h̄ω)
)

= eh̄ω/(KBTe)

eh̄ω/(KBTe) − 1

(
fTe

(E − h̄ω) − fTe
(E)

)
(B5)

to couch the integral into the form

R(ω) ≈ g2eh̄ω/(kBTe)

eh̄ω/(kBTe) − 1

∫
R

dE(f (E − h̄ω) − f (E)) (B6)

and, upon noticing that

dR
dω

(ω) ≈ − g2eh̄ω/(kBTe)

eh̄ω/(kBTe) − 1

∫
R

dE
1

h̄

d

dE
f (E − h̄ω),

we finally get into

R(ω) ≈ g2h̄ω eh̄ω/(kBTe)

eh̄ω/(kBTe) − 1
.

APPENDIX C: ELECTRON-PHONON INTERACTION

For reader convenience, we summarize here the calculation
of the first two moments of the energy flux between the phonon
and the electron reservoirs. We perform the calculation under
the following hypotheses [15].

(i) The electron gas

He =
∑

k

ηkc
†
kck

is initially at equilibrium at a uniform temperature Te � TF

with TF the Fermi temperature. The energy of an electron
having wave number k is

ηk = h̄k2

2m
, k = ‖k‖.

(ii) The phonon gas

Hp =
∑

k

h̄ωkb
†
kbk

is initially at equilibrium with a uniform temperature Tp �
TD with TD the Debye temperature [32]. In this temperature
limit, phonons obey a linear dispersion relation

ωk = vsk,

with vs the speed of sound and k = ‖k‖ for k the phonon
wavelength.

(iii) The interaction between the phonons and the electrons
in the material is given by

Hep = κ
∑
k,q

ω1/2
q (c†kck−qbq + c

†
kck−qb

†
q). (C1)

The sum in (C1) ranges over energies sufficiently close to the
Fermi surface.

(iv) Scattering processes with outcoming phonons with
wave numbers in a different Brillouin zone than incoming ones
are negligible (no “umklapp” [32]).

(v) The dimensions of the metal are much longer than
the average phonon wavelength. This means that sums over
wave numbers can be replaced by integrals over approximately
constant density of states D for phonons and N for electrons.

Following [16] we evaluate the average heat current in terms
of the current operator J defined by

J = d

dt
Tr

(
He − Hp

2
ρ t

)
≡ Tr(Jρ t ). (C2)

Here ρ t is the state operator of the phonon-electron system in
Schrödinger’s picture. The Liouville–von Neumann equation
yields

J = − iκ

2h̄

∑
k,q

ω1/2
q �k,q(a†

kak−qcq − a
†
k−qakc

†
q),

with �k,q = ωq + ηk − η‖k−q‖. Turning to Dirac’s picture and
writing J̃ for heat current in said picture, within leading-order
accuracy in the weak-coupling limit [10] the average heat
current

J = i Tr
∫ t

0
ds[H̃pe(s),J̃(t)]ρ0 + h.o.t.

is amenable [14,15] to the difference J = Ja − Je of two terms
physically corresponding to the absorption and the emission
of one phonon by the electron gas. Under the aforementioned
hypotheses (i)–(v), the absorption term is [15]

Ja = C

∫
d3q nTp

(ωq)
(
nTe

(ωq) + 1
)
h̄2ω2

qI (ωq), (C3)

while emission is

Je = C

∫
d3q

(
nTp

(ωq) + 1
)
nTe

(ωq)h̄2ω2
qI (ωq), (C4)

with

I (ωq) =
∫

d3k
(
fTe

(ηk−q) − fTe
(ηk)

)
δ(ηk − η‖k−q‖ − h̄ωq).

(C5)

In writing (C3), (C4) we defined C = 2πDNκ2h̄−1 and we
took advantage of the explicit form of the Fermi-Dirac (B4)
and Bose-Einstein distributions

nTp
(ωq) = 1

eh̄ωq/(kBTp) − 1

and of the identity (B5). We also exploited the fact that the
Dirac δ in (C5) fixes the difference η‖k−q‖ − ηk = ωq to a
k independent value. The integral (C5) is most conveniently
evaluated in polar coordinates

I (ωq)

= 2π

∫ ∞

0
dk k2

∫ 1

−1
dz i(k,z; ωq)δ

(
h̄ωq + ωqkz

mvs

− ηq

)
,

where z is the angle between k and q, and

i(k,z; ωq) = fTe

(
ηk + ηq − ωqkz

mvs

)
− fTe

(ηk).
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Upon evaluating the integral over z we find

I (ωq) = 2πm2vs

h̄4ωq

∫ +∞

Emin

dE
(
fTe

(E − h̄ωq) − fTe
(E)

)
having set E = h̄2|k|2

2m
and

Emin = h̄2

2m

(
ωq

2vs

+ vsm

h̄

)2

.

The remaining integrand is peaked around μ. Under our work-
ing hypotheses (see [14,15]), the chemical potential satisfies
μ � h̄2

2m
( q

2 + vsm

h̄
)2, allowing us to write

I (ωq) ≈ 2πm2vs

h̄4ωq

∫ +∞

−∞
dE

(
fTe

(E − h̄ωq) − fTe
(E)

)
whence

I (ωq) ≈ 2πm2vs

h̄3 .

We thus get into

J = Ja − Je

= 2πm2Cvs

h̄3

∫
d3q

(
nTp

(ωq) − nTe
(ωq)

)
ω2

q . (C6)

The remaining integral is the proportional to the difference
between two averages with respect to the Bose-Einstein dis-
tribution. It can be evaluated by standard techniques; see, e.g.,
Ref. [32]. The final result is

J = �V
(
T 5

p − T 5
e

)
, (C7)

where V is the volume of the metal and [16]

� = 12κ2ζ (5)mk5
B

πkF v2
s h̄

6 , (C8)

with ζ the Riemann zeta functions and kF the Fermi momen-
tum. The definition of � hinges upon setting D = V/(2π )3 for
the phonon density of states.

The evaluation of current correlation function

Ct = Tr U
†
t JUtJρ0,

with

Ut = exp

(
−ı

He + Hp + Hpe

h̄
t

)

proceeds along the same lines as above. We refer to [16] for
details. Within leading accuracy and at Te = Tp we get into∫ ∞

−∞
dt Ct = 10�V kBT 6

p . (C9)

We use this result to weight Brownian fluctuations in the
temperature process.

APPENDIX D: MASTER EQUATION

In this Appendix we derive the master equation (18). We
start by writing the probability (17) in the form

Pr (X,t) = E(|〈er |ψ(t)〉|2δ(ξ (t) − X)), (D1)

where E(.) is the average and er = φr,0(0). We find the master
equation by evaluating

dPr (X,t) = E d(|〈er |ψ(t)〉|2δ(ξ (t) − X)). (D2)

Let us call f (ψt,ψ
∗
t ,ξ ) = |〈er |ψ〉|2δ(ξ − X). The differential

of f is

df (ψ,ψ∗,ξ )

≡ f (ψ + dψ,ψ∗ + dψ∗,ξ + dξ ) − f (ψ,ψ∗,ξ )

=
∞∑

p=1
p=k1+k2+k3

(dξ )k1 (dψ∗)k2 (dψ)k3

k1!k2!k3!
∂

k1
ξ ∂

k2
ψ∗∂

k3
ψ f (ψ,ψ∗,ξ ).

We then use (4) and (16) to express the differentials dψ , dψ∗,
and dξ , in terms of the time differential dt and the increments
dw and dν of the Wiener and Poisson processes. The rules
of stochastic calculus, see, e.g., Ref. [45], impose dw2(t) =
t , dw(t)dνr,n(t) = 0, and dνr,n(t)dνr ′,n′ (t) = δr,r ′δn,n′dνr,n(t).
We thus get into the Itô-Poisson stochastic differential

df (ψ,ψ∗,ξ ) = L†
ξ f (ψ,ψ∗,ξ )dt

+
√

10�V kBT 3
p

γ
∂ξf (ψ,ψ∗,ξ )dw(t)

− i

h̄
(G(ψ)∂ψ − G∗(ψ)∂ψ∗)f (ψ,ψ∗,ξ )dt

+ djumpf (ψ,ψ∗,ξ ). (D3)

L† is the L(2) adjoint of (19) with respect to the Lebesgue
measure

L†
ξ f = �V

Nγ

(
T 5

p − ξ 5/2
)
∂ξf + 10�V kBT 6

p

2N2γ 2
∂2
ξ f.

Furthermore, we can couch

− i

h̄
(G(ψ)∂ψ − G∗(ψ)∂ψ∗) |〈er |ψ〉|2δ(ξ − X)

=
∑
|s|�1
|n|�N

�(ωs,n,ξ )‖As,nψ‖2|〈er |ψ〉|2δ(ξ − X)

−
∑
|s|�1
|n|�N

�(ωs,n,ξ ) Re〈er |A†
s,nAs,n|ψ〉〈ψ |er〉δ(ξ − X)

into the form

−ih̄(G(ψ)∂ψ − G∗(ψ)∂ψ∗)‖〈er |ψ〉‖2δ(ξ − X)

=
∑
|s|�1
|n|�N

�(ωs,n,ξ )‖As,nψ‖2〈er |ψ〉|2δ(ξ − X)dt

−
∑

r ′=0,1
|n|�N

Gr ′,r,n(ξ )〈er |ψ〉|2δ(ξ − X)dt (D4)

having used (5), (7) to derive∑
|s|�1

�(ωs,n,ξ ) Re(〈er |A†
s,nAs,n|ψ〉〈ψ,er〉)

= �(ω0,n,ξ )|D1,1,n|2〈er |ψ〉
+ (δr,0�(ω1,n,ξ )|D1,0,n|2+δr,1�(ω−1,n,ξ )|D0,1,n|2)〈er |ψ〉
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and the definition (21) for Gr ′,r,n(ξ ). The last term on the right-
hand side of (D3) is purely due to jumps,

djumpf (ψ,ψ∗,ξ )

= −
1∑

s= − 1
|n|�N

dνs,nf (ψ,ψ∗,ξ )

+
∑
|s|�1
|n|�N

dνs,nf

(
(As,nψ)

‖As,nψ‖ ,
(As,nψ)∗

‖As,nψ‖ ,ξ + h̄ω

Nγ

)
,

or more explicitly

djumpf (ψ,ψ∗,ξ )

= −
1∑

s= − 1
|n|�N

dνs,n〈er |ψ〉|2δ(ξ − X)dt

+
1∑

s= − 1
|n|�N

dνs,n

|〈er |As,n|ψ〉|2
‖As,nψ‖2

δ

(
ξ + h̄ωs,n

N γ
− X

)
. (D5)

Taking the expectation value of (D3) brings about several
simplifications. To start with, the term proportional to the
increment of the Wiener vanishes owing to the Itô prescription
[45], whereas the identity

E(|〈er |ψt 〉|2Lξ δ(ξ − X)) = LXPr (X,t)

holds in consequence of the properties of the Dirac-δ distribu-
tion. By (10), the expectation value of (D5) yields

E(djumpf (ψ,ψ∗,ξ ))

= −
1∑

s= − 1
|n|�N

E(�(ωs,n,ξ )‖As,nψ‖2〈er |ψ〉|2δ(ξ − X))dt

+
∑

r ′=0,1
|n|�N

E
[
Gr,r ′,n(ξ ) 〈er ′ |ψ〉|2δ

(
ξ+ h̄ωr−r ′,n

Nγ
− X

)]
dt

having also used (5) to evaluate

|〈er |As,n|ψ〉|2 = δs,0|D1,1,n|2|〈er |ψ〉|2
+ (δs,1δr,1 + δs,−1δr,0)|Dr,r−s,n|2|〈er−s |ψ〉|2

and the definition (21) of the rates of the master equation.
If we contrast this last result with (D4) we notice that the
first term on the right-hand side of both expressions mutually
cancel. Gathering all nonvanishing contributions, and recalling
the definitions (20), (21), we obtain

d

dt
Pr (X,t)

= LXPr (X,t)+
∑

r ′=0,1
|n|�N

Gr,r ′,n

(
X− h̄ωr−r ′,n

Nγ

)
Pr ′

×
(

X− h̄ωr−r ′,n

Nγ
,t

)
−

∑
r ′=0,1
|n|�N

Gr ′,r,n(X)Pr (X,t), (D6)

which is (18).

APPENDIX E: TEMPERATURE PROCESS

We analyze here the perturbative solution of (23) up to order
O(ε2).

a. Order ε0. The lowest order satisfies

1∑
s=0

(
G(0)

r,s (X)Qs(X) − G(0)
s,r (X)Qr (X)

) = 0, (E1a)

Q0(X) + Q1(X) = 1. (E1b)

It is helpful to represent the condition (E1a) in the matrix
form

M(X) Q(X) = 0,

where M is the two-dimensional matrix:

M(X) =
[
−G

(0)
1,0(X) G

(0)
0,1(X)

G
(0)
1,0(X) −G

(0)
0,1(X)

]
. (E2)

As required by probability conservation, columns of (E2) add
up to zero. The solution of (E1a) is the thermal state for the
qubit at temperature T = √

X

Qr (X) = G
(0)
r,1−r (X)

G
(0)
1,0(X) + G

(0)
0,1(X)

r = 0,1, (E3)

which in vector notation is (25).
b. Order ε. The first-order correction solves

1∑
s=0

Mrs(X)P̄ (1)
s (X,t)

= −Ḟ (0)(X,t)Qr (X)

+
1∑

s=0

(
L(1)

X δrs + ∂XG
(1)
rs (X)

)
Qs(X)F (0)(X,t). (E4)

By Fredholm’s alternative [17], linear nonhomogeneous equa-
tions generated by a Hilbert expansion (24) are solvable if the
nonhomogeneous term is orthogonal to the kernel of the adjoint
M† of the leading-order linear operator M [17].

The spectral analysis of M shows that the dual zero mode
equation

M†Z = 0

yields (30). We choose the normalization of Z such that (E1b)
can be rewritten as the scalar product

〈Z| Q〉 ≡
1∑

r=0

ZrQr (X) = 1. (E5)

The quantity λ introduced in (32) is the nonvanishing eigen-
value ofM,M†. The corresponding left eigenvector is Q⊥(X),
as defined in Eq. (34),

M†(X) Q⊥(X) = λ(X) Q⊥(X), (E6)
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with J defined by (33), so that

1∑
r=0

Q⊥
r (X)Qr (X) = 〈JQ| Q〉 = 0

as J is real antisymmetric. The right eigenvector is

M(X)V (X) = λ(X)V (X), (E7a)

V (X) =
[−1

1

]
= J Z, (E7b)

normalized so that

1∑
r=0

Q⊥
r (X)Vr (X) = 1.

Finally, we notice that for any X we can write the completeness
relation in C2 of left and right eigenvectors of M as

1 = | Q〉〈Z| + |V 〉〈 Q⊥|. (E8)

Projecting (E4) onto the zero mode (30) yields the solvability
condition

Ḟ (0)(X,t) = L(1)
X F (0)(X,t) + ∂Xj (1)(X)F (0)(X,t), (E9)

with j (1) respectively defined by (26) and (31a). This equation
determines F (0). From the probabilistic point of view F (0) is
within leading-order approximation the probability density for
the squared temperature X. From the geometric slant, F (0) is,
within the same accuracy, the coordinate in the Q, V basis of
the solution of (23):

F (0) = 〈Z|P (0)〉.
The projection of (E4) onto (34) yields

λ

1∑
r=0

Q⊥
r P̄ (1)

r =
1∑

r,s=0

Q⊥
r

(
L(1)

X δrs + ∂XG
(1)
rs

)
QsF

(0).

This equation yields the component along V of

P̄ (1) = F (1) Q + F
(1)
V V ,

where

F (1) = 〈Z|P (1)〉 = P̄
(1)
0 (X,t) + P̄

(1)
1 (X,t),

F
(1)
V = 〈 Q⊥|P (1)〉

λ

= 1

λ

〈
Q⊥∣∣(L(1)

X Q
)
F (0) + ∂X(G(1) Q F (0))

〉
. (E10)

c. Order ε2. The second-order equation is
1∑

s=0

Mrs P̄
(2)
s

= −∂t P̄
(1)
r + L(1)

X P̄ (1)
r

+
1∑

s=0

∂X

(
G(1)

rs P (1)
s

) + L(2)
X QrF

(0)+
1∑

s=0

∂X

(
G(2)

rs QsF
(0)

)
.

The solvability condition is

∂tF
(1) = L(1)

X F (1) + L(2)
X F (0)

+
1∑

r,s=0

(
∂XG

(1)
rs P (1)

s + 1

2
∂2
XG

(2)
rs QsF

(0)

)

or equivalently in the scalar product notation

∂tF
(1) = L(1)

X F (1) + L(2)
X F (0) + ∂X〈Z|G(1) Q〉F (1)

+ ∂X

〈Z|G(1)V 〉〈 Q⊥∣∣(L(1)
X Q)

〉
λ

F (0)

+ ∂X

〈Z|G(1)V 〉〈 Q⊥|∂X(G(1) QF (0))〉
λ

+ 1

2
∂2
X〈Z|G(2) Q〉F (0). (E11)

We get into

∂tF
(1) = L(1)

X F (1) + L(2)
X F (0)

− ∂X

(
2∑

i=1

j (i)F (i)

)
+ 1

2
∂2
X(SF (0)), (E12)

where j (1) and j (2) are respectively specified by (31a), (31b)
and the diffusion coefficient S is defined by Eq. (35) in the
main text.

d. Order O(ε2) accuracy approximation. Let us now define
F (X,t) = F0(X,t) + εF1(X,t), then summing Eq. (E9) and
ε times (E12) reconstruct within O(ε) accuracy the Fokker-
Planck equation (27).

e. Positivity of the diffusion coefficient. By construction the
matrix G(2) has positive components. Hence

�(1)(X) > 0

because it is the sum of positive addends. To prove that

�(2)(X) > 0,

we observe that the two-dimensional matrix G1 has the form

G(1) =
[

m1 m2

−m3 m1

]

for mi � 0 and i = 1,2,3. Hence

�(2)(X) = 2
〈Z|G(1)JZ〉〈 Q⊥|G(1)J−1 Q⊥〉

λ

= 2

( ∑1
r=0 Z2

r mr

)[ ∑1
s=0(Q⊥

s )2ms

]
|λ| � 0.
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