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ABSTRACT

Context. Period estimation is one of the central topics in astronomical time series analysis, in which data is often
unevenly sampled. Studies of stellar magnetic cycles are especially challenging, as the periods expected in those cases
are approximately the same length as the datasets themselves. The datasets often contain trends, the origin of which
is either a real long-term cycle or an instrumental effect. But these effects cannot be reliably separated, while they can
lead to erroneous period determinations if not properly handled.
Aims. In this study we aim at developing a method that can handle the trends properly. By performing an extensive
set of testing, we show that this is the optimal procedure when contrasted with methods that do not include the trend
directly in the model. The effect of the form of the noise (whether constant or heteroscedastic) on the results is also
investigated.
Methods. We introduced a Bayesian generalised Lomb-Scargle periodogram with trend (BGLST), which is a probabilistic
linear regression model using Gaussian priors for the coefficients of the fit and a uniform prior for the frequency
parameter.
Results. We show, using synthetic data, that when there is no prior information on whether and to what extent the
true model of the data contains a linear trend, the introduced BGLST method is preferable to the methods that either
detrend the data or opt not to detrend the data before fitting the periodic model. Whether to use noise with other than
constant variance in the model depends on the density of the data sampling and on the true noise type of the process.

Key words. methods: statistical, methods: numerical, stars: activity

1. Introduction

In the domain of astronomical data analysis the task of pe-
riod estimation from unevenly spaced time series has been a
relevant topic for many decades. Depending on the context,
the term period can refer to, for example, rotational period
of the star, orbiting period of the star or exoplanet, or the
period of the activity cycle of the star. Knowing the precise
value of the period is often very important as many other
physical quantities are dependent on it. For instance, in the
case of active late-type stars with outer convection zones,
the ratio of rotational period and cycle period can be in-
terpreted as a measure of the dynamo efficiency. Therefore,
measuring this ratio gives us crucial information concerning
the generation of magnetic fields in stars with varying ac-
tivity levels. In practice, both periods are usually estimated
through photometry and/or spectrometry of the star.

For the purpose of analysing unevenly spaced time se-
ries, many different methods have been developed over the
years. Historically one of the most common is the Lomb-
Scargle (LS) periodogram (Lomb 1976; Scargle 1982). Sta-
tistical properties of the LS and other alternative peri-
odograms have been extensively studied and it has become
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a well-known fact that the interpretation of the results of
any spectral analysis method takes a lot of effort. The sam-
pling patterns in the data together with the finiteness of the
time span of observations lead to a multitude of difficulties
in the period estimation. One of the most pronounced diffi-
culties is the emergence of aliased peaks (spectral leakage)
(Tanner 1948; Deeming 1975; Lomb 1976; Scargle 1982;
Horne & Baliunas 1986). In other words one can only see
a distorted spectrum as the observations are made at dis-
crete (uneven) time moments and during a finite time. How-
ever, algorithms for eliminating spurious peaks from spectra
have been developed (Roberts et al. 1987). Clearly, differ-
ent period estimation methods tend to perform differently
depending on the dataset. A comparison of some of the
popular methods is provided in Carbonell et al. (1992).

One of the other issues in spectral estimation arises
when the true mean of the measured signal is not known.
The LS method assumes a zero-mean harmonic model with
constant noise variance, so that the data needs to be centred
in the observed values before doing the analysis. While ev-
ery dataset can be turned into a dataset with a zero mean,
in some cases owing to pathological sampling (if the em-
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pirical mean1 and the true mean differ significantly), this
procedure can lead to incorrect period estimates. In the lit-
erature this problem has been addressed extensively and
several generalisations of the periodogram, which are in-
variant to the shifts in the observed value, have been pro-
posed. These include the method of Ferraz-Mello (1981),
who used Gram-Schmidt orthogonalisation of the constant,
cosine, and sine functions in the sample domain. The power
spectrum is then defined as the square norm of the data
projections to these functions. In Zechmeister & Kürster
(2009) the harmonic model of the LS periodogram is di-
rectly extended with the addition of a constant term, which
has become known as the generalised Lomb-Scargle (GLS)
periodogram. Moreover, both of these studies give the for-
mulations allowing nonconstant noise variance. Later, using
a Bayesian approach for a model with harmonic plus con-
stant, it has been shown that the posterior probability of
the frequency, when using uniform priors, is very similar to
the GLS spectrum (Mortier et al. 2015). The benefit of the
latter method is that the relative probabilities of any two
frequencies can be easily calculated. Usually in the models,
likewise in the current study, the noise is assumed to be
Gaussian and uncorrelated. Methods involving other than
white noise models are discussed in Vio et al. (2010) and
Feng et al. (2017). A more thorough overview of important
aspects in the spectral analysis is provided in VanderPlas
(2017).

The focus of the current paper is on another yet unad-
dressed issue, namely the effect of a linear trend in the data
to period estimation. The motivation to tackle this question
arose in the context of analysing the Mount Wilson time se-
ries of chromospheric activity (hereafter MW) in a quest to
look for long-term activity cycles (Olspert et al. 2017), the
length of which is of the same order of magnitude as the
dataset length itself. In a previous study by (Baliunas et al.
1995) detrending was occasionally, but not systematically,
used before the LS periodogram was calculated. The cycle
estimates from this study have later been used extensively
by many other studies, for example, to show the presence
of different branches of stellar activity (e.g. Saar & Bran-
denburg 1999).

We now raise the following question – whether it is more
optimal to remove the linear trend before the period search
or opt not to detrend the data? Like centring, detrending
the data before fitting the harmonic model may or may not
lead to biased period estimates depending on the structure
of the data. The problems arise either due to sampling ef-
fects or the presence of very long periods in the data. Based
on the empirical arguments given in Sect. 3, we show that it
is more preferable to include the trend component directly
into the regression model instead of detrending the data a
priori or opting not to detrend the data altogether. In the
same section we also discuss the effects of noise model of the
data to the period estimate. We note that the question that
we address in the current study is primarily relevant to the
cases for which the number of cycles in the dataset is small.
Otherwise, the long coherence time (if the underlying pro-
cess is truly periodic) allows us to nail down periods, even
if there are uneven errors or a small trend. A high number

1 We use the terms “empirical mean” and “empirical trend”
when referring to the values obtained by correspondingly fitting
a constant or a line to the data using linear regression.

of cycles allows us to get exact periods even, for example,
by cycle counting.

The generalised least squares spectrum allowing arbi-
trary components (including linear trend) was first dis-
cussed in Vaníček (1971) and more recently Bayesian ap-
proaches including trend component have been introduced
in Ford et al. (2011) and Feng et al. (2017).

2. Method

Now we turn to the description of the present method,
which is a generalisation of the method proposed in Mortier
et al. (2015) and a special case of the method developed in
Feng et al. (2017). The model in the latter paper allows
noise to be correlated, which we do not consider in the cur-
rent study. One of the main differences between the models
that we discuss and the model in Feng et al. (2017) is that
we used Gaussian rather than uniform priors for nuisance
parameters (see below). This has important consequences
in certain situations as discussed in Sect. 2.2. We introduced
a simple Bayesian linear regression model where besides the
harmonic component we have a linear trend with slope plus
offset2. This is summarised in the following equation:

y(ti) = A cos(2πfti−φ)+B sin(2πfti−φ)+αti+β+ ε(ti),

(1)

where y(ti) and ε(ti) are the observation and noise at time
ti, f = 1/P is the frequency of the cycle, and A, B, α,
β, and φ are free parameters. Specifically, α is the slope
and β the offset (y-intercept). Usually A, B, α, β are called
the nuisance parameters. As noted, we assumed that the
noise is Gaussian and independent between any two time
moments, but we allow its variance to be time dependent.
For parameter inference we used a Bayesian model, where
the posterior probability is given by

p(f,θ|D) ∝ p(D|f,θ)p(f,θ), (2)

where p(D|f,θ) is the likelihood of the data, p(f,θ) is the
prior probability of the parameters, where for convenience,
we grouped the nuisance parameters under the vector θ =

[A,B, α, β]
T. Parameter φ is not optimised, but set to a

frequency-dependent value simplifying the inference such
that cross terms with cosine and sine components vanish
(see Sect. 2.1). The likelihood is given by

p(D|f,θ) =

(
N∏
i=1

1√
2πσi

)
exp

(
−1

2

N∑
i=1

ε2i
σ2
i

)
, (3)

where εi = ε(ti) and σ2
i is the noise variance at time mo-

ment ti. To make the derivation of the spectrum analyt-
ically tractable we took independent Gaussian priors for
A,B, α, β, and a flat prior for the frequency f . This leads
to the prior probability given by

p(f,θ) = N (θ|µθ,Σθ), (4)

where µθ = [µA, µB , µα, µβ ]
T is the vector of prior means

and Σθ = diag(σ2
A, σ

2
B , σ

2
α, σ

2
β) is the diagonal matrix of

prior variances.
2 The implementation of the method introduced in this paper
can be found at https://github.com/olspert/BGLST
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The larger the prior variances the less information is
assumed to be known about the parameters. Based on what
is intuitively meaningful, in all the calculations we used the
following values for the prior means and variances:

µA = 0, µB = 0, µα = αslope, µβ = βintercept,

σ2
A = 0.5σ2

y, σ
2
B = 0.5σ2

y, σ
2
α =

σ2
y

∆T 2
, σ2
β = σ2

y + β2
intercept,

(5)

where αslope and βintercept are the slope and intercept esti-
mated from linear regression, σ2

y is the sample variance of
the data, and ∆T is duration of the data. If one does not
have any prior information about the parameters one could
set the variances to infinity and drop the corresponding
terms from the equations, but in practice to avoid meaning-
less results with unreasonably large parameter values some
regularisation would be required (see Sect. 2.2).

2.1. Derivation of the spectrum

Our derivation of the spectrum closely follows the key
points presented in Mortier et al. (2015). Consequently, we
use the notion of the variables that is as identical as possi-
ble. Using the likelihood and prior defined by Eqs. (3) and
(4), the posterior probability of the Bayesian model given
by Eq. (2) can be explicitly written as

p(f,θ|D) ∝ p(D|f,θ)p(θ)

= p(D|f,θ)N (θ|µθ,Σθ)

=

N∏
i=1

1√
2πσi

k∏
i=1

1√
2πσθi

e−
1
2E ,

(6)

where

E =

N∑
i=1

ε2i
σ2
i

+

k∑
i=1

(θi − µθi)2

σ2
θi

. (7)

Here θi, i = 1, .., k, k = 4, denotes the ith element of θ,
i.e. either A, B, α, or β. From Eqs. (1) and (3) we see
that the likelihood and therefore posterior probability for
every fixed frequency f is multivariate Gaussian w.r.t. the
parameters A, B, α, and β. In principle we are interested
in finding the optimum for the full joint posterior probabil-
ity density p(f,θ|D). But as for every fixed frequency the
latter distribution is a multivariate Gaussian we can first
marginalise over all nuisance parameters, find the optimum
for the frequency f , for example, by carrying out a grid
search, and later analytically find the posterior means and
covariances of the other parameters. The marginal poste-
rior distribution for the frequency parameter is expressed
as

p(f |D) ∝
∫
p(D|f,θ)N (θ|µθ,Σθ)dθ. (8)

The integrals are assumed to be taken over the whole range
of parameter values, i.e. from −∞ to ∞. We introduce the

following notations:

wi =
1

σ2
i

, wA =
1

σ2
A

, wB =
1

σ2
B

, wα =
1

σ2
α

, wβ =
1

σ2
β

, (9)

W =

N∑
i=1

wi + wβ , Y =

N∑
i=1

wiyi + wβµβ , (10)

C =

N∑
i=1

wi cos(2πfti − φ), (11)

S =

N∑
i=1

wi sin(2πfti − φ), (12)

T =

N∑
i=1

witi, (13)

Ŷ C =

N∑
i=1

wiyi cos(2πfti − φ) + wAµA, (14)

Ŷ S =

N∑
i=1

wiyi sin(2πfti − φ) + wBµB , (15)

ĈC =

N∑
i=1

wi cos2(2πfti − φ) + wA, (16)

ŜS =

N∑
i=1

wi sin2(2πfti − φ) + wB , (17)

T̂ T =

N∑
i=1

wit
2
i + wα, (18)

Ŷ T =

N∑
i=1

wiyiti + wαµα, (19)

T̂C =

N∑
i=1

witi cos(2πfti − φ), (20)

T̂ S =

N∑
i=1

witi sin(2πfti − φ), (21)

Ŷ Y =

N∑
i=1

wiy
2
i + wAµ

2
A + wBµ

2
B + wαµ

2
α + wβµ

2
β . (22)

If the value of φ is defined such that the cosine and sine
functions are orthogonal (for the proof see Mortier et al.
2015), namely

φ =
1

2
arctan

[∑N
i=1 wi sin(4πfti)∑N
i=1 wi cos(4πfti)

]
, (23)

then we have

E = ĈCA2 − 2Ŷ CA+ 2αT̂CA+ 2βCA

+ ŜSB2 − 2Ŷ SB + 2αT̂SB + 2βSB

+ T̂ Tα2 − 2Ŷ Tα+ 2Tβα+Wβ2 − 2Y β + Ŷ Y ,

(24)

where we have grouped the terms with A on the first line,
terms with B on the second line, and the rest of the terms
on the third line.
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In the following we repeatedly use the formula of the
following definite integral:∫ ∞
−∞

e−ax
2−2bxdx =

√
π

a
e

b2

a , a > 0. (25)

To calculate the integral in Eq. (8), we start by integrating
first over A and B. Assuming that ĈC and ŜS are greater
than zero and applying Eq. (25), we get the solution for the
integral containing terms with A as follows:∫ ∞
−∞

exp

(
− ĈCA

2 − 2Ŷ CA+ 2αT̂CA+ 2βCA

2

)
dA

=

√
2π

ĈC
exp

(
(Ŷ C − αT̂C − βC)2

2ĈC

)

= exp

(
−αŶ CT̂C

ĈC
+
α2T̂C

2

2ĈC
+
αβT̂CC

ĈC

)

· exp

(
−βŶ CC
ĈC

+
β2C2

2ĈC

)

·

√
2π

ĈC
exp

(
Ŷ C

2

2ĈC

)
.

(26)

In the last expression we have grouped onto separate lines
the terms with α, terms with β not simultaneously con-
taining α, and constant terms. Similarly, for the integral
containing terms with B,∫ ∞
−∞

exp

(
− ŜSB

2 − 2Ŷ SB + 2αT̂SB + 2βSB

2

)
dB

=

√
2π

ŜS
exp

(
(Ŷ S − αT̂S − βS)2

2ŜS

)

= exp

(
−αŶ ST̂S

ŜS
+
α2T̂ S

2

2ŜS
+
αβT̂SS

ŜS

)

· exp

(
−βŶ SS
ŜS

+
β2S2

2ŜS

)

·

√
2π

ŜS
exp

(
Ŷ S

2

2ŜS

)
.

(27)

Now we gather the coefficients for all the terms with α2

from the last line of Eq. (24) (keeping in mind the factor
-1/2) as well as from Eqs. (26), (27) into new variable K,
i.e.

K =
1

2

(
−T̂ T +

T̂C
2

ĈC
+
T̂ S

2

ŜS

)
. (28)

We similarly introduce new variable L for the coefficients
involving all terms with α from the same equations as fol-
lows:

L =

(
Ŷ T − βT +

−Ŷ CT̂C + βT̂CC

ĈC
+
−Ŷ ST̂S + βT̂SS

ŜS

)
.

(29)

After these substitutions, integrating over α can again be
accomplished with the help of Eq. (25) and assuming K <
0, i.e. ∫ ∞

−∞
exp(Kα2 + Lα) =

√
π

−K
exp

(
L2

−4K

)
=

√
π

−K
exp

(
(M +Nβ)2

−4K

)
=

√
π

−K
exp

(
N2β2

−4K

)
exp

(
2MNβ

−4K

)
exp

(
M2

−4K

)
,

(30)

where

M = Ŷ T − Ŷ CT̂C

ĈC
− Ŷ ST̂S

ŜS
(31)

and

N =
T̂CC

ĈC
+
T̂ SS

ŜS
− T. (32)

At this point what is left to do is the integration over β. To
simplify things once more, we gather the coefficients for all
the terms with β2 from Eqs. (24), (26), (27), (30) into new
variable P ,

P =
C2

2ĈC
+

S2

2ŜS
− W

2
− N2

4K
. (33)

We similarly introduce new variable Q for the coefficients
involving all terms with β from the same equations as fol-
lows:

Q = − Ŷ CC
ĈC

− Ŷ SS

SS
+ Y − 2MN

4K
. (34)

With these substitutions we are ready to integrate over β
using again Eq. (25) while assuming P < 0, i.e.∫ ∞
−∞

exp(Pβ2 +Qβ) =

√
π

−P
exp

(
Q2

−4P

)
. (35)

After gathering all remaining constant terms from
Eqs. (24), (26), (27), (30), we finally obtain

p(f |D) ∝ 2π2√
(ĈCŜSKP )

· exp

(
Ŷ C

2

2ĈC
+
Ŷ S

2

2ŜS
− M2

4K
− Q2

4P
− Ŷ Y

2

)
.

(36)

For the purpose of fitting the regression curve into the
data one would be interested in obtaining the expected val-
ues for the nuisance parameters A,B, α, β. This can be eas-
ily done after fixing the frequency to its optimal value using
Eq. (36) with a grid search, and noticing that p(θ|D, fopt)
is a multivariate Gaussian distribution. In the following we
list the corresponding posterior means of the parameters3,
i.e.
3 This is similar to empirical Bayes approach as we use the
point estimate for f .
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µβ = − Q

2P
, (37)

µα = −Nµβ +M

2K
, (38)

µA =
Ŷ C − T̂Cµα − Cµβ

ĈC
, (39)

µB =
Ŷ S − T̂ Sµα − Sµβ

ŜS
. (40)

Formulas for the full covariance matrix of the parameters
and for the posterior predictive distribution, assuming a
model with constant noise variance, can be found in Mur-
phy (2012, Chapter 7.6). The posterior predictive distribu-
tion, however, in our case does not include the uncertainty
contribution from the frequency parameter.

If we now consider the case when ŜS = 0 (for more
details see Mortier et al. 2015), we see that also S = 0,
Ŷ S = 0 and T̂ S = 0. Consequently the integral for B is
proportional to a constant. We can define the analogues of
the constants K through Q for this special case as

KC =
1

2

(
−T̂ T +

T̂C
2

ĈC

)
, (41)

LC =

(
Ŷ T − βT +

−Ŷ CT̂C + βT̂CC

ĈC

)
, (42)

MC = Ŷ T − Ŷ CT̂C

ĈC
, (43)

NC =
T̂CC

ĈC
− T, (44)

PC =
C2

2ĈC
− W

2
− N2

C

4KC
, (45)

QC = − Ŷ CC
ĈC

+ Y − 2MCNC
4KC

. (46)

Finally, we arrive at the expression for the marginal poste-
rior distribution of the frequency

p(f |D) ∝ 2π2√
(ĈCKCPC)

· exp

(
Ŷ C

2

2ĈC
− M2

C

4KC
− Q2

C

4PC
− Ŷ Y

2

)
.

(47)

Similarly we can handle the situation when ĈC = 0. In the
derivation we also assumed that K < 0 and P < 0. Our
experiments with test data showed that the condition for
K < 0 was always satisfied, but occasionally P obtained
zero values and probably due to numerical rounding errors
also very low positive values. These special cases we han-
dled by dropping the corresponding terms from Eqs. (36)
and (47). Theoretically confirming or disproving that the
conditions K < 0 and P ≤ 0 always hold is however out of
the scope of current study.

0 20 40 60 80 100 120 140 160 180
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(b)

Fig. 1. Illustration of importance of priors. (a) Models fitted to
the data with Gaussian priors (red continuous line) and uniform
priors (blue dashed curve) for the nuisance parameters. (b) The
spectra of the corresponding models. The black dotted line shows
the position of true frequency.

2.2. Importance of priors

In Eq. (4) we defined the priors of the nuisance param-
eters θ to be Gaussian with reasonable means and vari-
ances given in Eq. (5). In this subsection we discuss the
significance of this choice to the results. The presence
of the linear trend component introduces an additional
degree of freedom into the model, which, in the con-
text of low frequencies and short datasets can lead to
large and physically meaningless parameter values when
no regularisation is used. This situation is illustrated in
Fig. 1, in which we show the difference between the mod-
els with Gaussian and uniform priors used for the vec-
tor of nuisance parameters θ. The true parameter vec-
tor in this example was θ = [0.8212,−0.5707, 0.003258, 0]
and the estimated parameter vector for the model with
Gaussian priors θ = [0.7431,−0.6624, 0.002112, 0.1353].
However, for the model with uniform priors the estimate
θ = [3.016, 98.73,−0.5933, 61.97] strongly deviates from the
true vector. As seen from the Fig. 1(a), from the point of
view of the goodness of fit both of these solutions differ only
marginally. From the perspective of parameter estimation
(including the period), however, the model with uniform
priors leads to substantially biased results. From Fig. 1(b)
it is evident that p(f |D) can become multimodal when uni-
form priors are used and in the worst case scenario the
global maximum occurs in the low end of the frequency
range, instead of the neighbourhood of the true frequency.
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2.3. Dealing with multiple harmonics

The formula for the spectrum is given by Eq. (36),
which represents the posterior probability of the fre-
quency f , given data D and our harmonic model, MH,
i.e. p(f |D,MH). Although being a probability density, it
is still convenient to call this frequency-dependent quantity
a spectrum. We point out that if the true model matches
the given model, MH, then the interpretation of the spec-
trum is straightforward, namely being the probability dis-
tribution of the frequency. This gives us a direct approach
to estimate errors, for example by fitting a Gaussian to
the spectral line (Bretthorst 1988, Chapter 2). When the
true model has more than one harmonic, the interpretation
of the spectrum is no longer direct because of the mixing
of the probabilities from different harmonics. The correct
way to address this issue would be to use a more complex
model with at least as many harmonics than are expected
to be in the underlying process (or even better, to infer the
number of components from data). However, as a simpler
workaround, the ideas of cleaning the spectrum introduced
in Roberts et al. (1987) can be used to iteratively extract
significant frequencies from the spectrum calculated using
a model with single harmonic.

2.4. Significance estimation

To estimate the significance of the peaks in the spectrum
we perform a model comparison between the given model
and a model without harmonics, i.e. only with linear trend.
One practical way to do this is to calculate

∆BIC = BICMnull
− BICMH , (48)

where Mnull is the linear model without harmonic, BIC =
ln(n)k−2ln(L̂) is the Bayesian information criterion (BIC),
n is the number of data points, k the number of model pa-
rameters, and L̂ = p(D|θ̂,M) is the likelihood of data for
model M using the parameter values that maximise the
likelihood. This formula is an approximation to the log-
arithmic Bayes factor 4, more precisely ∆BIC ≈ 2 lnK,
where K is the Bayes factor. The strength of evidence for
models with 2 lnK > 10 are considered very strong, models
with 6 ≤ 2 lnK < 10 strong, and those with 2 ≤ 2 lnK < 6
positive. For a harmonic model MH, θ include optimal fre-
quency and coefficients of the harmonic component, slope,
and offset for Mnull only the last two coefficients.

In the derivation of the spectrum we assume that the
noise variance of the data points is known, which is usu-
ally not the case. In probabilistic models, this parameter
should also be optimised, however in practice often sam-
ple variance is taken as the estimate for it. This is also
the case with LS periodogram. However, it has been shown
that when normalizing the periodogram with the sample
variance the statistical distribution slightly differs from the
theoretically expected distribution (Schwarzenberg-Czerny
1998), thus it has an effect on the significance estimation.

4 Bayes factor is the ratio of the marginal likelihoods of the
data under two hypothesis (usually null and an alternative). In
frequentist statistics there is no direct analogy to that, but it is
common to calculate the p-value of the test statistic (e.g. the χ2

statistic in period analysis). The p-value is defined as the proba-
bility of observing the test statistic under the null hypothesis to
be larger than that actually observed (Murphy 2012, Ch. 5.3.3).

A more realistic approach, especially in the case when the
noise cannot be assumed stationary is to use, for example
subsample variances in a small sliding window around the
data points.

As a final remark in this section, we want to emphasise
that the probabilistic approach does not remove the burden
of dealing with spectral aliases due to data sampling. There
is always a chance of false detection, thus the interpretation
of the spectrum must be carried out with care (for a good
example see Pelt 1997).

3. Experiments

In this section we undertake some experiments to compare
the performance of the introduced method with LS and/or
GLS periodograms.

3.1. Performance of the method in the absence of a trend

We start with the situation in which no linear trend is
present in the actual data, as this kind of a test allowed
us to compare the performance of the Bayesian generalised
Lomb-Scargle periodogram with trend (BGLST) model,
with an additional degree of freedom, to the GLS method.
For that purpose we drew n data points randomly from
a harmonic process with zero mean and total variance of
unity. The time span of the data ∆T was selected to be
30 units. We did two experiments: one with uniform sam-
pling and the other with alternating segments of data and
gaps (see below). In the both experiments we varied n in
the range from 5 to 100 and noise variance σ2

N from 0 to
0.5 units. The period of the harmonic was uniformly chosen
from the range between 0 and 20 units in the first experi-
ment and from the range between 0 to 6 units in the second
experiment. As a performance indicator we used the follow-
ing statistic, which measures the average relative error of
the period estimates:

S1 =
1

N

N∑
i=1

δi, (49)

whereN is the number of experiments with identical set-up,
δi = ∆i/f

true and ∆i = |fi − f truei | is the absolute error of
the period estimate in the i-th experiment using the given
method (either BGLST or GLS).

First we noticed that both methods performed practi-
cally identically when the sampling was uniform. This result
was only weakly depending on the number of data points n
and the value of the noise variance σ2

N (see Fig. 2(a)). How-
ever, when we intentionally created such segmented sam-
pling patterns that introduced the presence of the empirical
trend, GLS started to outperform BGLST more noticeably
for low n and/or high σ2

N. In the latter experiment we cre-
ated the datasets with sampling consisting of five data seg-
ments separated by longer gaps. In Fig. 2(b) we show the
corresponding results. It is clear that in this special set-
up the performance of BGLST gradually gets closer and
closer to the performance of GLS when either n increases
or σ2

N decreases. However, compared to the uniform case,
the difference between the methods is bigger for low n and
high σ2

N. The existence of the difference in performance is
purely due to the extra parameter in BGLST model, and
it is a well-known fact that models with higher number of
parameters become more prone to overfitting.
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Fig. 2. Performance measure S1 of BGLST (red) and GLS
(blue) methods as a function of the number of data points n
and noise variance σ2

N. (a) Uniform sampling is shown; (b) sam-
pling with segments and gaps is shown. For the definition of S1

see text.

The effect of an offset in the randomly sampled data
to the period estimate has been well described in Mortier
et al. (2015). Using GLS or BGLS periodograms instead of
LS, one can eliminate the potential bias from the period
estimates owing to the mismatch between the sample mean
and true mean. We conducted another experiment to show
the performance comparison of the various methods in this
situation. We used otherwise identical set-up as described
in the second experiment above, but we fixed n = 25 to
more easily control the sample mean and we also set the
noise variance to zero. We measured how the performance
statistic S1 of the methods changes as function of the sam-
ple mean µ (true mean was zero). The results are shown in
Fig. 3. We see that the relative mean error of the LS method
steeply increases with increasing discrepancy between the
true and sample mean, however both the performance of
BGLST and GLS stay constant and relatively close to each
other. Using non-zero noise variance in the experiment in-
creased S1 of BGLST slightly higher than GLS because of
the effects described in the previous experiments, but the
results were still independent of µ as expected.

3.2. Effect of a linear trend

Let us continue with the question of how much the presence
of a linear trend in the data affects the period estimate. To
measure the performance of the BGLST method introduced
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10-3
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100

S
1
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GLS

LS

Fig. 3. Performance of BGLST, GLS, and LS as function of
sample mean µ. Both the true mean and slope are zero. The
shaded areas around the curves on this and all subsequent plots
show the 95% confidence intervals of the standard error of the
statistic.
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Fig. 4. Results of the experiments with varying linear trend us-
ing uniform sampling (a) and sampling similar to MW datasets
(b).

in Sect. 2, we compared plain GLS and GLS with preced-
ing linear detrending (GLS-T). Throughout this section we
assumed a constant noise variance. We drew the data with
time span ∆T ≈ 30 time units randomly from the harmonic
process with a linear trend,

y(t) = A cos(2πft) +B cos(2πft) + αt+ β + ε(t), (50)
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where A, B, α, and β are zero mean independent Gaussian
random variables with variances σ2

A = σ2
B = σ2

S, σ
2
α, and σ2

β

respectively, and ε(t) is a zero mean Gaussian white noise
process with variance σ2

N. We varied the trend variance
σ2
α = k(σ2

S+σ2
N)/∆T , such that k ∈ [0, 0.1, 0.2, 0.4, 0.8, 1.6].

For each k we generated N = 2000 time series, where
each time the signal-to-noise ratio (S/N=σ2

S/σ
2
N) was drawn

from [0.2, 0.8] and period P = 1/f from [2, 2/3∆T ]. In all
experiments σ2

β was set equal to σ2
S + σ2

N. We repeated the
experiments with two forms of sampling: uniform and that
one based on the samplings of MW datasets. The prior
means and variances for our model were chosen according
to Eq. (5).

In these experiments we compared three different meth-
ods: the BGLST, GLS-T, and GLS. We measured the per-
formance of each method using the statistic S1 defined in
Eq. (49).

The results for the experiments with the uniform sam-
pling are shown in Fig. 4(a) and with the sampling taken
from the MW dataset in Fig. 4(b). On both of the fig-
ures we plot the performance measure S1 as function of k.
We see that when there is no trend present in the dataset
(k = 0), all three methods have approximately the same
average relative errors and while for the BGLST method
it stays the same or decreases slightly with increasing k,
for the other methods the errors start to increase rapidly.
We also see that when the true trend increases then GLS-
T starts to outperform GLS, however, the performance of
both of these methods stays far behind from the BGLST
method.

3.2.1. Special cases

Next we illustrate the benefit of using the BGLST model
with two examples in which the differences from the other
models are well emphasised. For that purpose we first gener-
ated such a dataset where the empirical slope significantly
differs from the true slope. The test contained only one
harmonic with a frequency of 0.014038 and a slope 0.01.
We again fit three models: BGLST, GLS, and GLS-T. The
comparison of the results are shown in Fig. 5. As is evident
from Fig. 5(a), the empirical trend 0.0053 recovered by the
GSL-T method (blue dashed line) differs significantly from
the true trend (black dotted line). Both the GSL and GSL-
T methods performed very poorly in fitting the data, while
only the BGLST model produced a fit that represents the
data points adequately. Moreover, BGLST recovers very
close to the true trend value 0.009781. From Fig. 5(b) it is
evident that the BGLST model retrieves a frequency closest
to the true value, while the other two methods return values
that are too low. The performance of the GLS model is the
worst, as expected. The frequency estimates for BGLST,
GLS-T, and GLS are correspondingly 0.013969, 0.013573,
and 0.01288. This simple example shows that when there is
a real trend in the data, detrending can be erroneous owing
to the sampling patterns, but it still leads to better results
than not detrending at all.

Finally we would like to show a counterexample where
detrending is not the preferred option. This happens when
there is a harmonic signal in the data with a very long
period, in this test case 0.003596. The exact situation is
shown in Fig. 6(a), from which it is evident that the GLS-
T method can determine the harmonic variation itself as a
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Fig. 5. Comparison of the results using various models. The true
model of the data contains one harmonic, a trend, and additive
white Gaussian noise. (a) Data (black crosses), BGLST model
(red continuous curve), GLS-T model (blue dashed curve), GLS
model (green dash-dotted curve), true trend (black dotted line),
trend from BGLST model (red continuous line), and empirical
trend (blue dashed line) are shown. (b) Spectra of the corre-
sponding models with vertical lines indicating the locations of
maxima. The black dotted line shows the position of the true
frequency.

trend component and lead to a completely erroneous fit. In
Fig. 6(b) we show the corresponding spectra. As expected,
the GLS model, coinciding with the true model, gives the
best estimate, while the BGLST model is not far off. The
detrending, however, leads to significantly worse estimate.
The estimates in the same order are the following: 0.003574,
0.003673, and 0.005653. The value of the trend learned by
BGLST method was -0.00041, which is very close to zero.

The last example clearly shows that even in the simplest
case of pure harmonic, if the dataset does not contain exact
number of periods the spurious trend component arises. If
pre-detrended, then bias is introduced into the period es-
timation, however, in the case of the BGLST method the
sinusoid can be fitted into the fragment of the harmonic
and zero trend can be recovered.

3.3. Effect of a nonconstant noise variance

We continue with investigating the effect of a nonconstant
noise variance to the period estimate. In these experiments
the data was generated from a purely harmonic model with
no linear trend (both α and β are zero). We compared the
results from the BGLST to the LS method. As there is
no slope and offset in the model, we set the prior means
for these two parameters to zero and variances to very low
values. This essentially means that we are approaching the
GLS method with a zero mean. In all the experiments the
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Fig. 6. Comparison of the results using various models. The true
model contains one long harmonic with additive white Gaussian
noise. (a) Data (black crosses), BGLST model (red continuous
curve) and its trend component (red line), GLS-T model with
trend added back (blue dashed curve), empirical trend (blue
dashed line), and GLS model (green dash-dotted curve) are
shown. (b) Spectra of the corresponding models with vertical
lines indicating the locations of maxima. The black dotted line
shows the position of the true frequency.

time range of the observations is ti ∈ [0, T ], where T = 30
units, the period is drawn from P ∼ Uniform(5, 15), and
the signal variance is σ2

S = 1. For each experiment we drew
two values for the noise variance σ2

1 ∼ Uniform(2σ2
S, 10σ2

S)
and σ2

2 = σ2
1/k, where k ∈ [1, 2, 4, 8, 16, 32], which are used

in different set-ups as indicated in the second column of
Table 1. For each k we repeated the experiments N = 2000
times.

Let ∆i = |fi − f truei | denote the absolute error of
the BGLST period estimate in the i-th experiment and
∆LS
i = |fLSi − f truei | the same for the LS method. Now

denoting by δi = ∆i/f
true and δLSi = ∆LS

i /f true the rela-
tive errors of the corresponding period estimates, we mea-
sured the following performance statistic, which represents
the relative difference in the average relative errors between
the methods, i.e.

S2 = 1−
∑N
i=1 δi∑N
i=1 δ

LS
i

. (51)

The list of experimental set-ups with the descriptions of
the models are shown in Table. 1. In the first experiment
the noise variance linearly increases from σ2

1 to σ2
2 . In prac-

tice this could correspond to decaying measurement accu-
racy over time. In the second experiment the noise variance
abruptly jumps from σ2

2 to σ2
1 in the middle of the time se-

ries. This kind of situation could be interpreted as a change
of one instrument to another more accurate instrument. In

Table 1. Description of experimental set-ups with nonconstant
noise variance. The first column indicates the number of the set-
up, the second column shows how the variance σ2

i for i-th data
point was selected, and third column the criteria of drawing the
time moment ti for i-th data point.

No. Form of noise Type of sampling
1 σ2

i = σ2
1 + ti

T (σ2
2 − σ2

1) ti ∼ Uniform(0,T)

2 σ2
i =

{
σ2
2 , if ti < T/2

σ2
1 , if ti ≥ T/2

ti ∼ Uniform(0,T)

3
σ2
i = σ2

2+
σ
2(emp)
i −σ2(emp)

min

σ
2(emp)
max −σ2(emp)

min

(σ2
1 − σ2

2)
Based on MW dataset

Notes. In the 3rd row the σ2(emp)
i denotes the empirical vari-

ance of the i-th datapoint and σ2(emp)
min and σ2(emp)

max the minimum
and maximum intra-seasonal variances. In other words we renor-
malised the intra-seasonal variances to the interval from σ2

1 and
σ2
2 .

both of these experiments the sampling is uniform. In the
third experiment we used sampling patterns of randomly
chosen stars from the MW dataset and the true noise vari-
ance in the generated data is set based on the empirical
intra-seasonal variances in the real data. In the first two
experiments the number of data points was n = 200 and in
the third the number of data points was between 200 and
400, depending on the randomly chosen dataset, which we
downsampled.

In Fig. 7(a) the results of various experimental set-ups
are shown, where the performance statistic S2 is plotted
as function of

√
k = σ1/σ2. We see that when the true

noise is constant in the data (k = 1), the BGLST method
performs identically to the LS method while for greater
values of k the difference grows bigger between the methods.
For the second experiment, where the noise level abruptly
changes, the advantage of using a model with nonconstant
noise seems to be the best, while for the other experiments
the advantage is slightly smaller, but still substantial for
larger k-s.

In Fig. 8 we show the models with maximally differing
period estimates from the second experiment for

√
k = 5.66.

The left column shows the situation in which the BGLST
method outperforms the LS method the most and in the
right column vice versa. This plot is a clear illustration of
the fact that even though on average the method with non-
constant noise variance is better than LS method, for each
particular dataset this might not be the case. Nevertheless
it is also apparent from the figure that when the LS method
is winning over BGLST method, the gap tends to be slightly
smaller than in the opposite situation.

In the previous experiments the true noise variance was
known, but this rarely happens in practice. However, when
the data sampling is sufficiently dense, we can estimate the
noise variance empirically, for example by binning the data
using a window with suitable width. We now repeat the ex-
periments using such an approach. In experiment set-ups 1
and 2 we used windows with a length of 1 unit and in the
set-up 3 we used intra-seasonal variances. In the first two
cases we increased the number of data points to 1000 and in
the latter case we used only the real datasets that contained
more than 500 points. The performance statistics for these
experiments are shown in Fig. 7(b). We see that when the
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Fig. 7. Results of the experiments with known nonconstant
noise variance. For the definition of S2 see text. (a) True noise
variance is known. (b) Noise variance is empirically estimated
from the data. The black dotted horizontal lines show the break
even point between LS and BGLST.

true noise variance is constant (k = 1) then using empir-
ically estimated noise in the model leads to slightly worse
results than with constant noise model, however, roughly
starting from the value of k = 1.5 in all the experiments
the former approach starts to outperform the latter. The
location of the break-even point obviously depends on how
precisely the true variance can be estimated from the data.
This, however depends on the density of the data sampling
and the length of the expected period in the data because
we want to avoid counting signal variance as a part of the
noise variance estimate.

3.4. Real datasets

As the last examples we consider time series of two stars
from the MW dataset. In Figs. 9 and 10 we show the dif-
ferences between period estimates for the stars HD37394
and HD3651 correspondingly. For both stars we see that
the linear trends fitted directly to the data (blue dashed
lines) significantly differ from the trend component in the
harmonic model (red lines) with both types of noise models
(compare the left and right columns of the plots), and con-
sequently, also the period estimates in between the methods
always tend to vary somewhat.

Especially in the case of HD37394, the retrieved period
estimates differ significantly. Assuming a constant noise

variance for this star results in the BGLST and GLS/GLS-
T to deviate strongly, the BGLST model producing a sig-
nificantly larger period estimate. With intra-seasonal noise
variance, all three estimates agree more with each other,
however, BGLST still gives the longest period estimate.
In the previous study by Baliunas et al. (1995) the cycle
period for this star has been reported to be 3.6 yrs, which
closely matches the period estimate of GLS-T estimate with
constant noise variance5. For the GLS method the period
estimates using constant and intra-seasonal noise variances
were correspondingly 3.71 ± 0.02 and 5.36 ± 0.05 yrs; for
the GLS-T the values were 3.63± 0.02 and 5.61± 0.05 yrs
and for the BGLST model 5.84± 0.07 and 5.79± 0.05 yrs.
All the given error estimates correspond to 1σ ranges of the
frequency estimates.

In the case of HD3651 the period estimates of the mod-
els are not that sensitive to the chosen noise model, but
the dependence on how the trend component is handled
is significant. Interestingly, none of these period estimates
match the estimate from Baliunas et al. (1995) (13.8 yrs).
For the GLS method the period estimates using constant
and intra-seasonal noise variances were correspondingly
24.44± 0.29 and 23.30± 0.32 yrs; for the GLS-T the values
were 20.87± 0.29 and 19.65± 0.34 yrs and for the BGLST
model 16.56 ± 0.23 and 16.16 ± 0.14 yrs. As can be seen
from the model fits in Fig. 10(a) and (b), they significantly
deviate from the data, so we must conclude that the true
model is not likely to be harmonic. Conceptually the gener-
alisation of the model proposed in the current paper to the
nonharmonic case is straightforward, but becomes analyt-
ically and numerically less tractable. Fitting periodic and
quasi-periodic models to the MW data, which are based on
Gaussian processes, are discussed in Olspert et al. (2017).

4. Conclusions

In this paper we introduced a Bayesian regression model
that involves, aside from a harmonic component, a linear
trend component with slope and offset as well. The main
focus of this paper is to address the effect of linear trends in
data to the period estimate. We show that when there is no
prior information on whether and to what extent the true
model of the data contains linear trend, it is more preferable
to include the trend component directly to the regression
model rather than either detrend the data or opt not to
detrend the data before fitting the periodic model.

We note that one can introduce the linear trend part
also directly to the GLS model and use the least squares
method to solve for the regression coefficients. However,
based on the discussion in Sect. 2.2 one should consider
adding L2 regularisation to the cost function, i.e. use the
ridge regression. This corresponds to the Gaussian priors in
the Bayesian approach. While using the least squares ap-
proach can be computationally less demanding, the main
5 To be more precise, in their study they used LS with cen-
tring plus detrending, but this does not lead to a measurable
difference in the period estimate compared to GLST-T for the
given datasets. We also note that the datasets used in Baliunas
et al. (1995) do not span until 1995, but until 1992 and for the
star HD37394 they have dropped the data prior 1980. However,
we do not want to stress the exact comparison between the re-
sults, but rather show that when applied to the same dataset,
the method used in their study can lead to different results from
the method introduced in our study.
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Fig. 8. Comparison of the methods for experiment with set-up 2. (a) and (b) Data points with black crosses, red continuous curve
indicate the BGLST model, and the blue dashed line indicates the LS model fit. (c) and (d) Spectra of the models with same
colours and line styles. The vertical lines correspond to the optimal frequencies found and the black dotted line shows the true
frequency. The plots on two columns correspond to the biggest difference in the period estimates from both methods w.r.t. each
other. On the left the BGLST method outperforms the LS method and on the right vice versa.
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Fig. 9. Comparison of the results for star HD37394 using BGLST, GLS-T, and GLS models with constant noise variance in the
plots in the left column and intra-seasonal noise variance in the right column. (a) and (b) Data (black crosses), BGLST model (red
curve), GLST-T model with trend added back (blue dashed curve), GLS model (green dash-dotted curve), the trend component
of BGLST model (red line), and the empirical trend (blue dashed line) are shown. (c) and (d) Spectra of the models with same
colours. The dashed lines indicate the locations of the corresponding maxima.
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Fig. 10. Comparison of the results for star HD3651 using BGLST, GLS-T, and GLS models. The meaning of the panels and
colour coding is identical to those of Fig. 9.

benefits of the Bayesian approach are the direct inter-
pretability of the spectrum as being proportional to a prob-
ability distribution and more straightforward error and sig-
nificance estimations.

In the current work we used Gaussian independent pri-
ors for the nuisance parameters θ and a uniform prior for
the frequency parameter f . As mentioned, the usage of pri-
ors in our context is solely for the purpose of regularisation.
However, if one has actual prior information about the pa-
rameters (the shapes of the distributions, possible depen-
dencies between the parameters, the expected locations of
higher probability mass, etc), this could be incorporated
into the model using suitable joint distribution. In prin-
ciple one could also consider different forms of priors than
independent Gaussian for θ, but then the problem becomes
analytically intractable. In these situations one should use
algorithms like Markov Chain Monte Carlo (MCMC) to
sample the points from the posterior distribution. The se-
lection of uniform prior for f was also made solely to avoid
losing the tractability. If one has prior knowledge about f ,
one could significantly narrow down the grid search inter-
val. This idea was actually used in the current study as
we were focussing only on the signals with low frequency
periods. However, in the most general intractable case one
should still rely on the MCMC methods.

We also showed that if the true noise variance of the
data is far from being constant, then by neglecting this
knowledge, period estimates start to deteriorate. Unfortu-
nately in practice the true noise variance is almost never
known and in many cases impossible to estimate empiri-
cally (e.g. sparse sampling rate compared to the true fre-
quency). In this study we, however, focussed only on the
long period search task, which made estimating the noise

variance on narrow local subsamples possible. Based on the
experiments we saw that if the true noise is not constant
and the extremes of the S/N differ at least two times, then
using a model with empirically estimated noise variance is
well justified.
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