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Abstract

Akey component in calculations of exchange and correlation energies is the Coulomb operator, which
requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals
are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-
function products in an auxiliary basis. In this work we show the practical applicability of alocalized
RI-variant (‘RI-LVL’), which expands products of basis functions only in the subset of those auxiliary
basis functions which are located at the same atoms as the basis functions. We demonstrate the
accuracy of RI-LVL for Hartree—Fock calculations, for the PBEO hybrid density functional, as well as
for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly
interacting molecules, the G3 test set, as well as the G2—1 and BH76 test sets, and heavy elements
including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for
linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-
body perturbation theory with significantly reduced computational and memory cost.

1. Introduction

With advances in high-performance computing and improved numerical algorithms, the predictive power of first-
principles electronic-structure theory is increasing in terms of accuracy and tractable system size. Density-functional
theory (DFT) using (semi-)local functionals has excelled because of a very favorable combination of computational
efficiency and reasonable accuracy in solid-state theory and quantum chemistry. However, it is well documented
that conventional DFT methods are not sufficient to properly describe certain types of binding interactions [1-6]. It
is often necessary to use hybrid functionals [7, 8] or even higher-level methods like second-order Mgller—Plesset
perturbation theory [9] (MP2), GW methods [10, 11] or the random-phase approximation (RPA) and beyond [ 12—
14] to accurately treat e.g. cohesive energies, van der Waals interactions or reaction-barrier heights.

For hybrid functionals and more sophisticated treatments of the electronic exchange and correlation a major
computational bottleneck is the evaluation of the two-electron repulsion integrals for orbitals { ¢/ (r)}

* * /
(StluV) — [/ws (r)/l;bu (r)wt(r)¢V(r)drdr/. (1)

lr —r'|

The notation (a|b) refers to the Coulomb interaction between the functions indexed by a and b, respectively,
throughout the paper. In particular, we have (ij|b) = /f P (r) Yj()v(r — 1')¢y (r')drdr’ and (a|b) = ff [T
(@)v (@ — )y (r)drdr’ where v (r) = 1/|r|.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Upon replacing the orbitals by their expansions in a chosen set of basis functions { ¢, (r)|i = 1, ..., Npasis}
equation (1) transforms into a sum over four different basis function indices. The approach for evaluating these
integrals largely depends on the basis set. For Gaussian or plane wave basis sets these integrals are given analytically.
For numeric atom-centered orbital [15-23] (NAO) basis sets { ¢, (r — Ry)} on the other hand, these integrals with
four different atomic positions Ry, often called four-center integrals, have to be evaluated by explicit integration.

A straightforward approach for basis sets with analytical solutions is possible, but due to the O(N; ;)
integrals this leads to unfavorable execution times for large systems. For NAOs, on the other hand, no analytical
solution exists. Computing these integrals on the fly becomes intractable as the system size grows. Precomputing
them is also out of the question due to the memory and communication requirements for storing and reading
this matrix with O(N;,) entries.

A widely used approach to alleviate the computational time requirements of the four-center integral
evaluation is the ‘resolution of identity’ (RI), also known as ‘density fitting’ [24—30]. The central idea is to expand
orbital products into an auxiliary basis { P, (r) }:

©; (r) b (r):= Pij (r) = ZCI‘/;PM (r)
I

= GjIk) ~ SC5 (BB )l

JI8%

This approach represents the four-index matrix in terms of three- and two-index ones and is therefore better
suited to be precomputed and stored. The auxiliary basis functions { P, (r) } can either be predefined or calculated
at runtime. The most commonly used variant is the ‘RI-V’ scheme [24, 29-31], which determines the expansion
coefficients by directly minimizing the errors in the four-center integrals. This scheme has the advantage that the
error in the four-center integrals is quadratic in the error of the actual RI expansion [24, 25]. This approximation,
together with the fact that the total energy is stationary with respect to the expansion coefficients, makes the RI-V
a ‘robust variational’ scheme [25].

Our group has successfully applied the RI to NAOs and shown it to be a reliable and robust approach [32].
Additionally, a general procedure for the construction of the auxiliary basis was presented that is particularly
accurate for on-site products of atomic orbitals, which carry the bulk of the total energy. While RI expansions for
any atomic basis set are particularly efficient for small systems, the scaling behavior, both in terms of
computational time and memory usage, is problematic because of the nonlocal nature of expansions based on
the Coulomb metric [33]. (See equations (6) and (7) below.) In principle, this nonlocality is artificial as a local
quantity like the product of two localized orbitals should not need expansion functions arbitrarily far away, and
it makes the application to large or even periodic systems [34] impractical or even impossible.

There are several previous studies exploring ways to limit the number of nonvanishing expansion
coefficients. For example Reine et al replaced the global Coulomb metric with alocalized one [35]. Sodt et al
followed a more pragmatic approach by restricting the expansion of a basis function product to the subset of
those auxiliary basis functions which are centered within a sphere around one of the two basis function centers
[36, 37]. Pisani et al followed a similar approach with a more general fitting domain for local MP2-calculations in
periodic systems [38, 39]. Recently, Merlot et al presented a localized RI, which uses only auxiliary basis
functions centered on the two centers of the expanded basis functions as a starting point [40]. Toreach a
reasonable accuracy, they then applied a Cholesky decomposition scheme to converge the integration accuracy
by adding further auxiliary functions along the connection line between the two centers. Even more localized
density fitting approaches were already known in the early days of computational quantum chemistry. Of
particular interest for the present work is the limited expansion of diatomic overlap (LEDO) of Billingsley and
Bloor [24, 41]. In this work, the authors expanded products of Slater type orbitals on different atoms in the on-
site products of these two atomic centers.

In addition to using localized variants of the Rl approach, several other techniques for the evaluation of four-
center integrals have been investigated in the literature. Delley evaluated the products of molecular orbitals on an
atom-centered numerical grid and used multipole techniques to solve the Poisson equation [42]. Already in the
early 1980s [43], Talman showed how to use Fourier space techniques [44, 45] to spherically expand NAO
products around a point between the two orbital centers, and how to efficiently calculate the Coulomb
interactions between such expansions [43, 46]. Recently, a more efficient way of spherically expanding orbital
products based on Legendre integration was published by the same author [47]. Foerster showed how to
construct a compact auxiliary basis a posteriori from Talman’s expansion [43, 46] for a given atom pair by means
of asingular value decomposition [48, 49]. In contrast to our strictly atom-centered approach, this work
employs bond-centered auxiliary basis sets. Another technique is the expansion of the NAOs in terms of a
Gaussian function set, which is implemented in the SIESTA code [50, 51]. While this strategy has the advantage
of offering an analytic solution, each NAO must be fitted by several Gaussians, which partially undoes the
benefits of the compactness of NAO basis sets. Most of these studies aim at computing the four-center integrals
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directly, while the aim of the RI-approach is to compute a set of intermediate expansion coefficients that can be
stored in memory. Some of the integration techniques developed by Talman are employed in our work as well.

In the present paper we demonstrate an approach that is similar to LEDO, but gives accurately converged
total energies for NAOs, for Hartree—Fock (HF) and hybrid DFT functionals, as well as for correlation methods
like MP2 and RPA. A similar atomic RI strategy has recently been implemented for Gaussian-type orbitals
(GTO) by Manzer et al [52]. In contrast to our work, they only apply their new algorithm to the exchange
integrals of the SCF-cycle at present.

Our method has recently been applied in a linear-scaling implementation of hybrid density functionals for
periodic systems [34] and allows for simple nuclear derivatives, used, e.g., in a corresponding implementation of
the stress tensor for hybrid density functionals [53].

We will introduce our method, which is implemented in the Fritz Haber Institute ab initio molecular
simulations package (FHI-aims [ 16, 54]), as a localized modification of our global fitting approach reported in
[32]. In section 2 we briefly review our RI scheme and introduce our new localized variant. Section 3 shows an
extensive study on the convergence and accuracy for different methods, and in section 4 we compare the
computational scaling with our RI-V implementation. Finally, we summarize our results and draw conclusions
in section 5.

2. Theory

The basic Rl implementation in FHI-aims is described extensively in [32]. We here briefly recapitulate the key
equations before proceeding to the localized expansion. Finally, we explain how the localized variant can be
adapted in a controlled way to further increase the accuracy which is required to minimize the linear error terms
arising in our localized approach (see below).

2.1. Global expansion
The nonlocal exchange operator as part of the generalized Kohn—Sham or Fock matrix is defined by

Kii =" Djc(ij|kl), )
i

where Dy is the one-particle density matrix and (ij | kI) are four-center integrals of basis functions ¢, (r),
analogous to the four-center integrals defined in equation (1) for the orbitals ) (r).
In the R, orbital products ¢, (r) @;(r) =2 p;;(r) are expanded in a set of auxiliary basis functions P, (r):

p;(0) = S CEP, (1) = i (1) 3)
"

to give the approximated product Py (). The two-electron integrals (equation (1)) are then reduced to:
(k) = > _Cf Vi Ciiy

j18%

Vi = (.

py). 4

Several strategies have been proposed to determine the expansion coefficients C/'. The most common variant is
known as ‘RI-V’. This approach directly minimizes the error of the four-center integrals. Whitten has shown
[24] that this can be achieved by minimizing the Coulomb integral of the fitting error (5:0;‘]‘ | 6pij):
5Pij (r)= Pij (r) — pij (r),
= ¢;(r) ;i (r) — ZC#PH (r).
1

The minimization problem then leads to a system of linear equations:

5(6/)-- 5p..)
vl ij |V Fi v ..
0= ET; = ;(My)Cij = (i) ©)]
yielding the expansion coefficients and the approximated four-center integrals:
Cl =Y GV, (6)
= (1K) ~ 3G 1) Vi v 1KD. @)

JI8%

The four-index matrix we started with is now represented by only two- and three-index objects, implying a
significant advantage in terms of memory requirements and computational time. Furthermore, the error of the
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approximated four-center integrals is quadratic in the residual 6p;; (r) = p; (r) — p;;(r) of the fitted orbital
product [25].

Unfortunately, the Coulomb kernel v (r — r’) is long-ranged, so that (11 |) and (1¢|7) are neither sparse nor
short-ranged except when the overlap between ¢, and % vanishes. The consequence is a canonical O (N?)
computational and memory scaling with system size for the precomputed expansion coefficients Cl-]f‘. Itcanbe
reduced to O (N?) memory scaling by taking the vanishing overlaps into account, but in both cases there is a
large prefactor in actual computations. The formal O (N*) scaling for the exchange matrix construction is not
reduced by the RI approach, unless density matrix screening techniques [55] are used when the exchange matrix
is computed. Since the Coulomb metric distributes the expansion coefficients C/ for any given (localized)
density p; (r) over all auxiliary basis functions F, (r) in the system, O(N) scaling can no longer be achieved for the
exchange operator.

2.2. Construction of the standard auxiliary basis
In our implementation [16, 32], all atom-centered basis functions ¢, (r) are defined as:

(,01»(1‘) = ugq(r) Ylm(¢) 0): (8)

where u,(7) is a radial function with index k and angular momentum I for species s and Y, (¢, 0) denotes a
spherical harmonic. Both the radial part and the spherical harmonics are real-valued functions. The basis
functions are constructed numerically and are subject to a cut-off potential V,(r), which enforces a smooth
decay to zero of the basis functions outside the relevant range [16]. The construction of the confined basis
functions is described in detail in equations (8) and (9) of [ 16]. In short, all radial functions in FHI-aims are
solutions to:

[_ld_2+l(l+1)

2 dr? 2 + Vi(r) + cht(r)]ui(r) = €u;(r). 9)

Our auxiliary basis functions B, (r) are not predefined, but rather derived from the basis set { ¢; (r) } used to
expand the orbitals ¢ (r). Our construction scheme for the P, (r) ensures an exact reproduction of those
integrals (ij | kl) with basis functions , j, k, [ centered at the same atom, which account for the major part of the
total energy. We therefore construct our auxiliary basis set such that it contains all on-site products of basis
functions ¢, (r) - ¢, (r) explicitly. Specifically, the auxiliary basis set can be derived from two different underlying
basis sets:

+ OBS: the standard orbital basis set used to expand the Kohn—Sham orbitals of the DFT calculation

*+ OBS+:an enhanced OBS with additional functions, which are used only for the construction of the B, (r)
functions

In figure 1 the auxiliary basis construction is illustrated as a flowchart. For each atom species s in the system
we compute all on-site products u,;, () U, (r) of the radial basis functions u,(r). These products are then
orthogonalized with a Gram—Schmidt scheme. A radial product is accepted as a new radial auxiliary basis
function in a given angular momentum channel if the norm of its projection orthogonal to the already accepted
functions is larger than a small value €y, (for RI-V: 1072 for atoms with Z < 10, 10> for atoms with
10 < Z < 18and 10~ * for all other elements).

The choice of this parameter controls the size of the auxiliary basis { P, (r) } and thus the expansion accuracy
[32]. The accepted products are then multiplied with each spherical harmonic ¥, (¢, 8) which satisfies the
Clebsch—-Gordon condition |, — L| < I < |l + L|to obtain the B, (r). The maximum angular momentum of
any basis function in the OBS or OBS+ of a given species, I;™*, thus also controls the maximum angular
momentum of any basis function in the auxiliary basis set, 2" For each species s the maximal angular
momentum of the product functions [P can be capped to reduce the size of the auxiliary basis, but this comes at
the price of a reduced accuracy. In this work, we do not restrict i in any way for either RI-V or for our new
localized RI. For production calculations beyond this work, we find that Ii** should never be reduced for the
localized RI. For RI-V, we find that [°F = 5 for elements below Xe (Z = 54) and I;? = 6 for heavier elements are
sufficient for well-converged results.

2.3. Construction of the enhanced auxiliary basis

Our standard procedure for the construction of the { P, (r) } has the advantage of producing an atom-centered
auxiliary basis that automatically adapts itself to the orbital basis set and that yields a particular high accuracy for
on-site products. The off-site products on the other hand are not included in the auxiliary basis set and therefore
will not be expanded exactly. To obtain accurate results for these integrals too, we must use a sufficiently large
auxiliary basis set. This can be readily achieved with our construction scheme by enhancing the OBS with
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radial basis functions additional functions
skt (r) of orbital from the enhanced
basis set (OBS) orbital basis (OBS+)
Y ¥
on-site radial products maximal angular mo-
Usky 1y (T) * Uskgly (T) menta 7" per species
Gram-Schmidt orthonor- angular momentum
malization to remove channels 0. ..20"%"
linear dependencies for each species
product functions with c?strlsute z}uxﬂlary‘ bafls
Li— Ll <1< |+l unctions for species to
b [stslh | all atoms of this kind

auxiliary basis set for
system (P, (r) functions)

Figure 1. The construction of the auxiliary basis in FHI-aims: starting from the orbital basis set, the on-site products of two radial
functions (with subscripts s, k, [ for species, index and angular momentum) are orthonormalized. The product of the resulting
function with spherical harmonics represents the auxiliary basis functions. One important feature of this approach is that we can add
further radial functions (gray box) to the orbital basis set, which are only used during this procedure and do not influence the
performance of the orbital basis in any way.

additional functions, which are used only for the construction of the auxiliary basis set, as shown by the gray box
in figure 1. This enhanced OBS is labeled OBS+- and yields a larger set of { P, (r) } functions. Since the auxiliary
basis is constructed at the species level, this approach will add the additional auxiliary basis functions to each
atom of the affected species. The choice of additional basis functions will be discussed in detail in section 3.1.

2.4.Localized expansion

As our aim in this work is to reduce the number of expansion coefficients substantially, we restrict the expansion
coefficients C/ to be non-zero only if the auxiliary function 1 is centered at one of the two atoms at which the
basis functions i and jare centered. This restricted expansion of the product ¢, (r) ¢ (r) (centered on atoms Iand
J) can be written as

P = 3 CLR.x) (10)
nePU))

where P(IJ) := P(I) U P(J) denotes the set of all auxiliary functions centered at atom I or atom J, as depicted in
figure 2.

Since the RI-V prescription has proven to be a robust scheme, we use the same minimization target for our
localized variant. In practice, this means that we minimize the Coulomb self-repulsion (6p;j16p;) of the residual
6pij (r) from the restricted expansion:

5Pij (r)= Pij (r) — ,bij (r)

:<P,‘(1')<Pj(r) - Z C,'?Pu(r)
HEPU)

with respect to variations in C/'". The minimization condition then leads to a set of linear equations similar to the
one for RI-V (equation (5)):

5pij) P

! (5pij ..
= > (ulCi — (ulij) (11)

o+ LAY
2 Cf

for the coefficients C;/. Both indices 1 and vare restricted to the subset P(I]). As a consequence, the system of
linear equations can be decomposed into a set of subproblems, one for each atom pair. Finally, the expansion
coefficients and four-center integrals can be written as
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P\(r) € P(K) (not used in local expansion)

P,(r) € PM\ @ P,(r) e P(J)

pilr) € 1 @ilr) - j(r) 20 pi(r) € J

Figure 2. The localized version of the Rl approach: the function product ; (r) - ¢;(r) is to be expanded in terms of the auxiliary basis
set { P, } centered at atom I or J. Auxiliary basis functions centered on other atoms, like Py on atom K, are not used.

> L, (ulijy vePd)
i = nePa) (12)

0 else

C

with IV = (VU)~!where VV is a square matrix with the entries (it |v) for i, v € P(IJ). The dimension of 17 is
therefore N x N7 _with N7, being the number of {B,(r) } centered on atoms I and ], which is only a small
fraction of the total number of auxiliary basis functions N,,,,. If we now insert equation (12) into equation (4), we
obtain

=Gkl ~ Y GINLY, VL (oK) (13)
HAEPU])
vo € P(KL)

where the sums are restricted to the subset P(I]) because of equation (12). We name this expansion ‘RI-LVL’
after the matrices occurring in equation (13).

One advantage of this scheme lies in the fact that the size of the local Coulomb matrices V¥ required for each
atom pair is independent of the system size. Their number initially increases quadratically, but with increasing
system size the number of relevant pairs scales linearly. Due to the cubic scaling of matrix inversions, the
inversion of several local Coulomb matrices becomes favorable for large systems compared to the single
inversion of a global Coulomb matrix.

Furthermore, we no longer need the full three index object (i7| 1), but only the parts relevant for
equation (12). Additionally, the calculation of the remaining three-index integrals (ij| 1) is simplified within RI-
LVL because the center of y is either I or J. The product of the Coulomb potential of B, with, say, ¢, is a simple
superposition of atom-centered functions, whose overlap with {; can be calculated in Fourier space using the
methods suggested by Talman [43, 46] as described in [32]. Together with the strong reduction in the number of
these integrals the computational time can be reduced to an extent where it is small compared to the other parts
of the calculation.

2.5. Error analysis
The following exact relation of four-center integrals and their Rl approximations

(ikjl) = (ﬁik pjl) + (bik|6pjl) + (6pik|pjl) + (5Pik|5pjl) (14)

isimportant for assessing the accuracy of RI schemes. Here, p,, (r) = ¢;(r) ¢, (r) are the exact products, p, (r)
their RI approximations and 6p, (r) = p,. (r) — p, (r) are the residuals. The first term is the straightforward RI
expansion used so far. The next two terms are linear in the residual, whereas the last is quadratic in the residual.

In RI-V, the minimization criterion for the residual equation (5) can be rewrittenas 0 = (1¢|6p;). Since all
approximated products f(r) are expanded in the { P, (r) }, the linear terms must vanish in RI-V.

Thelocalized version, on the other hand, only enforces this condition for those { P, (r) } which are centered
on the same atoms as the basis function composing the product. Therefore, the linear terms will only vanish for
those integrals for which {I, K} = {J, L}, where the capital letters denote the atom index of the corresponding
orbital basis function. For all other integrals, the error is linear in the residuals.
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Some localized RI-schemes alleviate this error by using the robust Dunlap correction[25]. Localized schemes
can be extended to yield quadratic errors in the residual by including the linear error terms from equation (14) in

(13):
(ﬁc\[’j) - (ﬁik pﬂ) + (pik pﬂ) - (bik|pﬂ)' )

In RI-V, all of these three terms are identical and therefore reduce to the previously used formula (equation (7))
for the four-center integral. This expression has a few drawbacks: to calculate the correction terms, all of the
three-index Coulomb integrals (44 |jl) are required. (This also includes those for which P, (r) is not centered on
the same atom as ¢, (r) or ¢, (r).) Since the sparsity in the three-index Coulomb integrals is the key to our
memory and computational time savings, this correction would undo most of our achievements. Furthermore,
italso has been recently demonstrated [40] that this expression can lead to serious convergence problems in rare
cases, because the matrix for the approximated four-center integrals is not necessarily positive semi-definite.
Since negative eigenvalues correspond to attractive electron—electron interactions, the usual safeguards to ensure
SCF convergence will lead to a high ratio of rejected steps, slowing SCF convergence down or preventing
convergence atall.

Due to these drawbacks, we do not employ the Dunlap correction for our localized scheme. As we will show
in section 3, the combination of a localized RI from equation (13) with localized NAOs nevertheless reproduces
the results obtained from RI-V with essentially exact accuracy while significantly decreasing the computational
requirements. The key step is an appropriate enhancement of the auxiliary basis itself.

3. Results

In this section we demonstrate that our RI-V implementation is a reliable benchmark for RI-LVL by comparing
it to the GTO based NWChem [56] code that does not employ the RI approximation. In this step, we use
Gaussian-type functions in FHI-aims so that we can perform the comparison for exactly the same basis
functions. We then evaluate the accuracy for RI-LVL for HF [57] and second-order Mgller—Plesset perturbation
theory [9] (MP2), as well as for the PBEO [8] hybrid functional and the RPA [12—-14].

As explained in the previous section, we enhance the normal OBS with additional functions to improve the
accuracy of the resulting { B, (r) }. Throughout this article we only add hydrogen-like functions with the minimal
principal quantum number for the given angular momentum, i.e. nodeless radial functions. For these functions,
we have V; (r) = —z/r in equation (9). In the following, spd(z = x) will denote the enhancement of the OBS, i.e.
which additional functions OBS+ contains, as described in section 2.2. spd indicates the added angular
momentum channels (s, p, 4, fetc) and z = x denotes the effective charge parameter of the added hydrogenic
basis functions. Neither for RI-V nor RI-LVL we did impose any constraints on the maximal angular
momentum (/) of the {P, (r) }.

Individual total energy values for all structures in all benchmark sets used for each method can be found in
the supporting information (SI).

3.1. HF and MP2 calculations

To demonstrate the general applicability of our approach, we first discuss HF and MP2 total energies for RI-V
and RI-LVL in FHI-aims using Gaussian basis sets and compare them to the results obtained with NWChem.
We then show that the same degree of accuracy can be obtained using the NAO basis functions of FHI-aims.

3.1.1. Gaussian type orbitals
To establish a valid reference for our comparison between RI-V and RI-LVL, we first calculate total energies for
the molecular geometries compiled in the S22 test set of Jurecka and coworkers [58] with the Gaussian basis set
cc-pVTZ [59]. This test set contains 22 weakly bonded dimers with 6-30 atoms per dimer, ranging from the
water dimer to adenine—thymine complexes. This test set allows us to test total energies of molecular systems as
well as weak binding energies, which usually require RPA or MP2 for an accurate description. Figure 3 shows the
total energy errors for all molecular dimers and table 1 shows the root mean square deviation (RMSD) and
maximum absolute value (MAX) for the error per atom (not counting hydrogens) and the systemwide error. The
results show that the RI-V implementation in FHI-aims is reliable and accurate [32], yielding deviations in total
energy ofless than 1 meV per system for HF calculations. Also the MP2 corrections, which are more sensitive to
the accuracy of the four-center integrals, are of similar quality, with a RMSD below 0.2 meV. Our RI-V
implementation is therefore a suitable reference choice to benchmark RI-LVL and will be employed as such
throughout the rest of this work.

The straightforward localized RI on the other hands yields significantly higher errors of up to 29.5 meV/
atom (up to 440 meV total error) for MP2 calculations and also gives less accurate results for HF, although the
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Figure 3. Total errors in the total energy computed with FHI-aims using RI-V and RI-LVL, compared to NWChem. The upper panel
shows the errors of Hartree—Fock calculations and the lower panel shows the errors of the MP2 correction in the S22 test set using the
cc-pVTZ Gaussian basis set. ‘RI-LVL+aux’ uses an additional g-function for constructing the auxiliary basis. The area highlighted
with the light green background is plotted using a linear y axis, the non-coloured area corresponds to alogarithmic y axis where only
the 2nd and 5th intermediate grid lines are plotted. See SI for details.

Table 1. Root mean square deviation and maximum (absolute) value of the total
energy error (total and per atom, not counting hydrogens) of RI-V in the S22 test
set compared to NWChem using the cc-pVTZ basis set. (See also figure 3.)

AE HF MP2
(meV) RMSD  MAX  RMSD MAX
Total 0.383 0.716 0.182 0.445
RI-V peratom  0.038 0.082 0.028 0.085
Total 9.129 18423  168.995  440.565
RI-LVL
peratom  0.743 1.062 11432 29.371
Total 0.527 0.936 0.581 1.144
RI-LVL taux peratom  0.051 0.087 0.055 0.111

discrepancies there are less dramatic. However, the plot also shows an additional set of curves, labeled ‘RI-LVL
~+aux’, which corresponds to RI-LVL with an enhanced auxiliary basis (using a single hydrogenic g function with
z=06). This data set shows that RI-LVL yields an accuracy similar to RI-V provided a suitable chosen OBS+ and
thus auxiliary basis set { P, (r) } is chosen. We will discuss the choice of OBS+- in detail below. (The interested
reader is referred to appendix B for more details about the impact of the g-function.)

In addition to the S22 test set we also investigated the performance of our new method in the larger G3 test
set [60]. This test set contains 223 molecules composed of first and second row elements. As in the S22 case we
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Table 2. RMSD and maximum absolute errors for Hartree—Fock cal-
culations in the S22 test set using the RI-V method with tier 2 basis
sets. The functions listed under ‘aux basis additions’ are added to those
from the bare basis set when the product basis is constructed.

HF RI-V

- AEy (meV)

Aux basis Per atom Systemwide
additions RMSD MAX RMSD MAX
s(z=1) 0.005 0.016 0.040 0.124
sp(z=1) 0.009 0.024 0.090 0.201
spd(z=1) 0.011 0.020 0.119 0.318
spdfiz=1) 0.023 0.064 0.341 1.219
spfgz=1) 0.154 0.367 2.320 6.976

HF and MP2 in the G3-test set (cc-pVTZ basis)

‘ linear scale I RMSD MAX ‘

103

HF MP2

AEtm‘, [mev]
= =
|

,_.
<

RI-LVL | RI-LVL RI-LVL | RI-LVL
+aux +aux

Figure 4. RMSD and MAX errors in the total energy computed with FHI-aims using RI-V and RI-LVL, compared to NWChem. The
left side shows the errors of Hartree—Fock calculations and the right side shows the errors of the MP2 correction in the G3 test set using
the cc-pVTZ Gaussian basis set. ‘RI-LVL+aux’ uses an additional g-function for constructing the auxiliary basis. The dimer-systems
from the test set were excluded because they are of little interest for the accuracy analysis of the RI-LVL. See SI for details.

used NWChem as a reference for our RI implementations. The results for HF and MP2 total energies are shown
in figure 4. We have not included the 28 dimer systems in the statistical analysis, because RI-V and RI-LVL are
the same procedures for dimer systems.

Overall, RI-V achieves a very good accuracy with an RMSD of the total energy of about 1 meV. As was
already the case in the S22 test set, RI-LVL itself performs worse and yields errors with tens or even hundreds of
meV magnitude. However, enhancing the auxiliary basis with the same functions we used in the S22 test set, we
can again recover the same accuracy as RI-V. A few test cases still exhibit total energy errors up to 5.5 meV. For
all these cases the RI-LVL results lie exactly on top of the RI-V results, which is a strong indication that these
errors are not specific to RI-LVL. It should also be noted that almost all the outliers contain chlorine atoms.

3.1.2. Numeric atom-centered orbitals

For the remainder of the article, we will return to the NAO basis sets and focus on improving the accuracy of RI-
LVL. For HF calculations we use the standard tier 2 basis sets [16] with tight settings. For MP2 calculations, on
the other hand, we use the recently developed valence correlation consistent NAO basis sets [61].

Asseenin figure 3, our standard procedure to construct the { B, (r) } yields sufficiently accurate total energies
at the HF level. However, it does not suffice to converge MP2 total energies with our localized RI. A
straightforward way to deal with this error is to increase the size of the auxiliary basis. This is achieved by using
OBS+ instead of OBS for the construction of the auxiliary basis set, as discussed in section 2.3.

We first show that our reference is well converged with respect to the auxiliary basis by enhancing the
original OBS with functions of increasing angular momentum (see upper panel in figure 5). Then we apply the
same systematic approach to RI-LVL and finally we demonstrate that an OBS+ with only a single extra g
function (see lower panel in figure 5) is sufficient.

9
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Figure 5. Radial shape of the employed basis functions. The upper panel shows basis functions with different angular momentum and
constant effective charge z= 1. The lower panel shows 5gradial functions with different effective charges z. The dashed line in both
panels shows the onset of the basis confining potential.
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Figure 6. Convergence of the HF total energy error of the RI-LVL approximation with increasing auxiliary basis set size. The difference
between the RI-LVL calculations and the RI-V reference using the pure tight (tier 2) basis set is shown. The black line shows the
performance of the OBS+ with a single g-function(z = 1), which we consider sufficient for production calculations (see also table 3).

Table 2 shows the impact of this enhanced { B, (r) } on the HF total energies calculated with RI-V. Even if the
auxiliary basis set is significantly enlarged with extended functions having high angular momenta, the change in
total energy is below 0.16 meV per atom (max 0.37 meV).

Figure 6 shows that the error of RI-LVL systematically converges with increasing auxiliary basis set size. By
including additional radial functions with angular momentumss, p, d, fand gin the auxiliary basis construction
the RMSD of the total energy per atom can be reduced from 1.9 to 0.13 meV. Therefore, the error introduced in
a HF calculation by using the local Rl approximation can be controlled systematically by adding higher angular
momenta to the { B, (r) } and decreases to a negligible value.

In figure 6 it can be seen that the addition of fand g functions has the largest impact. It turns out that a single ¢
function is already sufficient. As shown in table 3, the accuracy of the hierarchical approach can even be
surpassed if we alter the effective charge that defines the added g function, but the general quality of the result is
unaffected by the choice of the effective charge. The reason why the results do not depend strongly on the shape
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Table 3. RMSD and maximum absolute errors for Hartree—
Fock calculations in the S22 test set using the RI-LVL method
with tier 2 basis sets. The functions listed under ‘aux basis
additions’ are added to those from the bare basis set when the
product basis is constructed.

HFRI-LVL
AE (meV)

Aux basis Peratom Systemwide
additions RMSD MAX RMSD MAX
None 0.594 1.891 3.959 6.432
spdfgz=1) 0.052 0.124 0.493 1.466
gz=1) 0.066 0.153 0.633 1.799
g(z=2) 0.059 0.137 0.567 1.663
g(z=3) 0.054 0.127 0.533 1.590
g(z=4) 0.053 0.125 0.514 1.544
g(z=5) 0.053 0.123 0.491 1.454
g(z=6) 0.047 0.107 0.465 1.305
g(z=7) 0.046 0.098 0.462 1.226

Table 4. RMSD and maximum absolute errors for MP2@HF
in the S22 test set using the RI-V method with the NAO-VCC-
3Z basis set. The functions listed under ‘aux basis additions’
are added to those of the bare basis set when the product basis

is constructed.
MP2@HF RI-V

AEo (meV)
Aux basis Peratom Systemwide
additions RMSD MAX RMSD MAX
s(z=1) 0.003 0.008  0.031 0.076
sp(z=1) 0.013 0.045 0.050 0.123
spd(z=1) 0.012 0.036 0.066 0.126
spdfiz=1) 0.011 0.027  0.076  0.144
spdfg(z=1) 0.031  0.098 0494  1.856

(see lower panel of figure 5) of the added function is the basis-confining potential (see equation (9)). As can be
seen in figure 5, the onset and peak position of the radial function depends on the effective charge, but their
behavior in the outer regions is similar. Without the confinement potential, the radial functions would extend
further and the results would probably show a significant dependence on the effective charge.

We also investigated the use of RI-LVL in MP2 calculations. For these calculations we use the recently
developed compact NAO based valence correlation consistent basis sets [61] that facilitate an extrapolation to
the complete basis set limit.

As can be seen from table 4, RI-V with the 3Z-version of these basis sets is essentially insensitive to an
enlarged auxiliary basis set, yielding at most a change of 0.1 meV per atom compared to the pure basis set. In the
following analysis, RI-V with the NAO-VCC-3Z basis set with the standard auxiliary basis set will therefore be
used as the reference to benchmark the MP2 results.

Figure 7 shows the accuracy for MP2 using the same representation as figure 6 did for HF. In essence, we find
the same results as for HF: if functions up to angular momentum channel fare included in OBS+, the error can
be reduced to 0.43 meV per atom (6.52 meV for the system) at most, while an additional g function reduces the
error even further to at most 0.11 meV per atom (1.15 meV for the system). As for HF and the tier basis, the
accuracy of the hierarchical approach can also be achieved with fewer auxiliary basis functions. Table 5 shows
that a single g-function reduces the total energy error to the same order of magnitude as the addition of s, p, d, f
and g functions. As for HF we find that the general quality of the results is insensitive to the variation of the
effective charge, but can be fine-tuned to yield errors slightly below those of the systematic approach.

3.2. PBE0 and RPA
To demonstrate RI-LVL’s broad range of applicability, we also performed calculations with the PBE0 exchange-
correlation functional [8] and the RPA [12—14].

For PBEO we use tier 2 basis sets, as we did for HF. For converged RPA total energies, larger NAO basis sets
are required [62] and we thus use the NAO-VCC-3Z basis set again. As in the cases of HF or MP2, for PBEO the
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Figure 7. MP2 total energy errors of the RI-LVL calculations using the NAO-VCC-3Z basis set with additional auxiliary basis
functions, compared to the RI-V calculation with the pure basis set. The black line shows the performance of the OBS+ with a single g-
function (z= 1), which we recommend for production calculations.

Table 5. RMSD and maximum absolute errors for MP2@HF in the S22
test set using the RI-LVL method with the NAO-VCC-3Z basis set. The
functions listed under ‘aux basis additions’ are added to those of the bare
basis set when the product basis is constructed.

MP2@HF RI-LVL

AE o (meV)

Aux basis Per atom Systemwide
additions RMSD MAX RMSD MAX
None 13.919 32.970 195.751 494.545
spdfgz=1) 0.047 0.104 0.548 1.141
gz=1) 0.063 0.111 0.859 2.006
g(z=2) 0.064 0.114 0.881 2.003
g(z=3) 0.059 0.104 0.814 1.879
g(z=4) 0.054 0.097 0.737 1.780
g(z=5) 0.036 0.070 0.483 1.324
g(z=06) 0.028 0.074 0.364 1.035
g(z=7) 0.046 0.082 0.610 1.384

RI-V shows no significant dependence on the added auxiliary basis functions (data not shown). When the
product basis is enhanced with additional auxiliary functions, the RI-LVL results can be controlled and
converged in a systematic way. In contrast to the previous HF calculations (see figures 3 and 6), we find that no
OBS+ is needed to obtain accurate results with PBEO. This has two reasons: first, compared to the cc-pVTZ basis
setused in figure 3 the tier 2 basis already contains a g-function in the orbital basis set. (See table 10 for more
details on the tier basis sets and table 12 for an example of how the auxiliary basis set is enhanced by the
additional g function.) The second reason is that PBE0 only contains 25% exact exchange, which reduces the
total energy error accordingly, when compared to the tier 2 HF calculations.

Table 6 shows the relevant errors for the hierarchical enhancement of the auxiliary basis. As for HF, we can
significantly reduce the RMSD and maximal value of the total energy error per atom, in this case by more than
one order of magnitude from 0.19 to 0.02 meV. If the auxiliary basis is only enhanced by a single g-function, we
find results similar to those from the HF analysis: the effective charge of extra function in the OBS+ has no
significant impact on the achieved accuracy.

For RPA@PBEO calculations using the NAO-VCC-3Z basis set we find almost the same behavior as for MP2:
the RI-V reference is again well converged and shows no sensitivity to the added auxiliary basis functions (data
not shown) and the RI-LVL error can be well controlled by the hierarchical auxiliary basis set additions, as
shown in figure 8 for the RMSD and maximal absolute error. The only difference we found is that the reduction
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Table 6. RMSD and maximum absolute errors for PBEQ in the
§22 test set using the RI-LVL method with the tier 2 basis set. The
functions listed under ‘aux basis additions’ are added to those of
the bare basis set when the product basis is constructed.

PBEORI-LVL

- AE (meV)

Aux basis Peratom Systemwide
additions RMSD MAX RMSD MAX
None 0.068 0.185 0.543 0.941
s(z=1) 0.070 0.188 0.557 0.964
sp(z=1) 0.060 0.159 0.464 0.792
spd(z=1) 0.039 0.091 0.334 0.588
spdfiz=1) 0.012 0.028 0.115 0.237
spafgz=1) 0.007 0.017 0.065 0.168

A Clhrigetal

Figure 8. Root mean square deviation and maximal (absolute) errors for RPA@PBEQ in the S22 test set using RI-LVL with the NAO-
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Table 7. Root mean square deviation and maximum absolute errors
for RPA@PBEQ in the S22 test set using the RI-LVL method with the
NAO-VCC-3Z basis set. The functions listed under ‘aux basis addi-
tions” are added to those of the bare basis set when the product basis
is constructed.

RPA@PBEO RI-LVL

AE o (meV)

Aux basis Per atom Systemwide
additions RMSD  MAX RMSD MAX
None 9.119 17.611 120.283  266.504
spdfgz=1) 0.041  0.130 0.221 0.597
gz=1) 0.059 0.385 0.792 7.324
g(z=2) 0.060 0.383 0.795 7.286
g(z=3) 0.059 0.387 0.791 7.353
g(z=4) 0.058 0.390 0.785 7.416
g(z=5) 0.059 0.406 0.796 7.712
g(z=6) 0.058 0.417 0.804 7.932
g(z=7) 0.057 0.402 0.788 7.642

of the additional auxiliary basis functions to a single g-function is not as effective as for the HF /MP2 case. In
table 7 we listed the RMSD and maximal absolute errors for different effective charges of the added g-function.
As can be seen, the values are significantly larger than for the largest analyzed hierarchical auxiliary basis set, but
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Table 8. Absolute differences between RI-V and RI-LVL
for the root mean square deviation and maximal abso-
lute error for the G2—1 test set (restricted to non-dimers)
and the reaction barrier height test set BH76. Computa-
tional details are given in the text. See SI for more details.

G2—1" (meV) BH76 (meV)
RMSD MAX RMSD MAX
HF 0.060 0.184 0.077 0.181
PBEO 0.023 0.093 0.019 0.045
MP2 0.064 0.188 0.079 0.232
RPA 0.105 0.429 0.079 0.200

A Clhrigetal
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Figure 9. The clusters we used to benchmark the performance of RI-LVL for heavy elements. The geometries of all clusters can be
found in the supporting information. The gold [63] and titanium-dioxide clusters [64] are the results from basin hopping and genetic
algorithm based structure optimizations. The copper clusters [65] are cut out from bulk geometries.

still small on an absolute scale. The error per atom is below 0.5 meV in all cases and the RMSD for the total error
is approximately 0.8 meV.

3.3. Atomization energies and reaction barrier heights

In addition to total energies we also computed the atomization energies in the G2—1 test set [66, 67] and reaction
barrier heights in the BH76 test set [6, 68] with RI-LVL. The employed geometries are taken from the original
papers. For the G2—-1 test set we included only those molecules in the error analysis which have at least three
atoms, because RI-V and RI-LVL are identical in the dimer case. In the RI-LVL calculations we use an auxiliary
basis set constructed from an OBS+ with a g function with z = 6. All RI-V calculations are performed with the
standard OBS and { P, (r) }. All calculations use the NAO-VCC-3Z OBS. As shown in table 8, RI-LVL performs
equally well for binding energies as for total energies.

3.4.RI-LVL for heavy elements

In addition to the properties of light elements from the first and second row of the periodic table, we also
investigated the performance of RI-LVL for a few representative heavier elements, namely copper, gold and
titanium dioxide. The cluster geometries used for this test are displayed in figure 9.

Figure 10 shows the RMSD and maximum absolute error per atom for titanium dioxide, copper and gold
clusters. For the heavy elements we used either tier 3 (titanium, oxygen and gold) or tier 4 (copper) basis sets to
demonstrate the applicability of our new method to a typical RPA-calculation setup. We know from the previous
results that light elements like oxygen need an enhanced auxiliary basis set for an accurate treatment with RI-
LVL. Therefore, we constructed an enhanced auxiliary basis set with an additional g-function (z= 1) for oxygen
in titanium dioxide. For the explicit three-center integrals (77 | ) of RI-V, dense multicenter integration grids are
needed for heavy elements. We note that the (ij| ;1) integrals are two-center in RI-LVL and can be carried out
using Talman’s method, therefore significantly lighter integration grids are sufficient for our RI-LVL
implementation than for RI-V. With very tight integration settings (see appendix C for the details) particularly
for RI-V, our RI-LVL results match the total energies of RI-V for our chosen systems with an RMSD below
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RI-LVL convergence for heavy element clusters
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Figure 10. Total energy error of the RI-LVL RPA@PBEO calculations for TiO, (2—8 units), Cu (2—6,9 and 12 atoms) and Au clusters
(27 atoms). The reference point is the RI-V calculation with the standard tier3 /4 basis sets. In the TiO, case the oxygen atoms had an
OBS+ with a g-function for the RI-LVL calculation. See SI for details.

Table 9. For RI-V and RI-LVL, we show the
RPA@PBEO total energy change (RMSD) of the
clusters shown in figure 9 when adding a g-func-
tion (z = 6) to the OBS of the elements Ti, Cu, and
Au. For all titanium dioxide test cases, we used an
OBS+ with an additional g-function on oxygen,
i.e., the third column only reflects the RMSD
change due to the addition of a g-function to the
OBS of Ti. See text for further details about the
computational settings.

RPA-RMSD per atom RMSD per
OBS+ with g[z= 6] versus

standard OBS atom (meV)
Gold RI-V 0.438
OBS: tier 3 RI-LVL 0.187
Copper RI-V 0.193
OBS: tier 4 RI-LVL 0.043
Titanium dioxide RI-V 0.101
OBS: tier 3* RI-LVL 0.022

1.3 meV per atom even for gold clusters. In contrast to lighter elements, our results suggest that the auxiliary
basis is well saturated and has enough flexibility to compute the four-center integrals accurately without adding
further elements to the OBS.

To substantiate this observation, we computed the systems again with a g-function in the OBS+ and
otherwise identical parameters. The results are shown in table 9.

Enhancing the RI-LVL calculations with additional auxiliary basis functions on the heavy elements changes
the results only slightly. The RI-V calculations on the other hand show a larger, but overall still insignificant
susceptibility to the additional functions in the { B, (r) }. For example the RMSD changes by 0.44 meV for gold
when computed with RI-V, while RI-LVL only exhibits a change 0f 0.19 meV.

From the presented RMSD and maximum errors (figure 10) we can see that RI-LVL is very accurate for
heavy elements and can reproduce the RI-V results with no significant error. The deviation for the error per
atom is consistently below 1.5 meV and even the total error is a few meV at most for large basis sets. We have
additionally verified that these conclusions also hold for smaller FHI-aims tier1 basis sets as the OBS for Ti, Cu,
and Au, with maximum overall errors between RI-LVL and RI-V for RPA of 3 meV (Auy) and errors for the
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Figure 11. Scaling analysis of self-consistent Hartree—Fock calculations for fully extended oligoalanine chains. The figures show the
RI-V implementation and the RI-LVL version that uses sparsity as well as integral screening. All calculations were performed using
180 CPU cores of an Infiniband-connected Intel cluster with Intel Xeon X5650 Westmere hexa-core processors (2.66 GHz, 12 cores
per node). As computational settings we used the tight defaults settings and the tier 2 basis set. For the RI-LVL calculations we
furthermore added one more radial g-function with z= 6 for the construction of the auxiliary basis.

PBEO hybrid functional consistently below 1 meV. The good performance for all three elements shows that the
RI-LVL has no problems dealing with d- and f-electrons.

4. Computational scaling analysis

In addition to the accuracy of the localized RI, we also investigated the scaling with system size, i.e. the number of
atoms, both in terms of memory consumption and the required computational time. To obtain a superior
scaling with our localized variant, specialized routines are required that operate on the resulting sparse tensors
instead of on the full three-function tensor. At present, such routines exist for the evaluation of the Fock matrix
within FHI-aims. This implementation is discussed in detail in a separate publication [34]. In particular this
implementation employs integral screening as used in standard quantum chemistry linear scaling exchange
algorithms based on density matrix screening [55, 69].

Figure 11 shows the scaling of the RI-LVL (using sparsity and screening) in comparison to RI-V for the HF
level of theory for extended polyalanine chains. One of them, namely Alanine-8 (Alag) is depicted in figure 11(b).
All calculations were performed using the tier 2 basis sets [ 16] and tight integrations settings (see table 1 in [70]
for details). The auxiliary basis in RI-LVL was enhanced with one extra g-function (z = 6).

Figure 11(a) shows the total time required for the self-consistent HF calculation, as well as the portion that is
spent on the Fock matrix evaluations. In small systems, the screened RI-LVL runs slower compared to simple
BLAS3 dense matrix multiplications used in RI-V. The break-even point occurs at about 70 atoms. For RI-LVL,
in contrast to RI-V, the Fock matrix evaluation is the single dominant contribution to the total time, regardless
of the system size. This shows that the localized scheme significantly speeds up the construction of the auxiliary
basis.

Figure 11(c) shows how the memory consumption for RI-V and RI-LVL scales with system size. While RI-
LVL has alarge constant offset, it scales linearly and breaks even at only 50 atoms. The favorable memory scaling
is due to the fact that we no longer need to store the complete three-center integrals (ij| 1¢). Each core p has a peak
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Figure 12. Time for the Fock matrix evaluation in the second SCF step of fully extended oligoalanine chains of increasing length. In the
graph, we compare data for the RI-V implementation and for the RI-LVL version that uses sparsity as well as integral screening. The
RI-V based calculations were performed in parallel on 180 CPU cores, while the RI-LVL based calculations were performed using 24
CPU cores (same hardware as described in caption of figure 11). As computational settings we used the tight defaults settings and the
tier 2 basis set. For the RI-LVL calculations we furthermore added one more radial g-function with z = 6 for the construction of the
auxiliary basis.

memory requirement M. For both methods an increase in the spread between minimal (min, (M, )) and
maximal (max,(M,)) memory consumption per core can be observed with increasing system size. This is a
consequence of aload-balancing algorithm [34]. Figure 11(d) shows the difference in the total energy per atom
between RI-V and RI-LVL. The error per atom is insignificant and does not increase with system size, but instead
levels out at a very low value.

Finally, we extrapolated the scaling of the computational time for the algorithm with system size by
analyzing the scaling of its dominant step, namely the evaluation of the exchange matrix. In figure 12 we present
the scaling of the time necessary for the exchange matrix evaluation as a function of the system size
approximated by the second SCF-iteration. Shown are the results for RI-V using the standard auxiliary basis and
180 cores (to accommodate the memory needs of the largest system tested) and for RI-LVL with the enhanced
auxiliary basis on 24 cores. Our localized RI exhibits a superior scaling (linear versus cubic) and despite using
significantly fewer cores, the break-even point occurs ataround 110 atoms.

5. Conclusion and outlook

In this work, we present a way to improve the scaling of the RI technique with the number of atoms by restricting
the expansion to a subset of the auxiliary basis functions. ‘RI-LVL’ only includes auxiliary basis functions which
are located at one of the two atoms where the basis functions forming the product are centered. Importantly, the
Coulomb metric of RI-V is retained.

We show for HF, DFT-PBEO, MP2, and RPA that the error of the RI-LVL approach can be controlled in a
systematic way by enhancing the set of orbital basis functions, upon which the auxiliary basis for RI is based, with
specific, structure- and method-independent additional radial functions before the auxiliary basis set { B, (r) }
itself is built. For light elements, by using functions up to angular momentum channel g we were able to reduce
the RMSD of the total energy (compared to an RI-V calculation with the pure basis set) below 1 meV for the S22
test set. Even for sub-meV total energy accuracy, we found that a single ¢ function in the OBS+ is sufficient. For
heavy elements, no enhancement of the orbital basis set for the purpose of constructing the Rl auxiliary basis set
isneeded. We also showed that RI-LVL has a similar performance for reaction barrier heights and atomization
energies in molecular systems. The RI-LVL method also requires less dense integration grids for the same
accuracy as RI-V for heavy elements with very large basis sets.

The RI-LVL method together with these auxiliary basis sets paves the way towards low-memory, linear-
scaling implementations of HF exchange, MP2, RPA and even higher-level methods.
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Table 10. Numerical parameters of the radial functions defining the NAO basis sets employed in FHI-aims as described in detail in [16]. Basis
sets consist of a minimal free-atom like set of radial functions, and additional ‘tiers’ (levels) of radial functions as determined by an auto-
mated basis set construction procedure. The label *H (nl, z)’ denotes a hydrogen-like function with principal quantum number 1, angular
momentum / and the effective charge z. The label * X**(nl)’ denotes free-ion solutions with the given ion charge zand the quantum numbers
nand l. Each tier includes the functions from all preceding tiers.

H C N 0 Ti Cu Au
Minimal 1s [He] + 2s,2p [He] + 2s, 2p [He] + 2s,2p [Ar] +4s,3d [Ar] +4s,3d [Xe] + 6s, 5d, 4f
Tier 1 H(2s,2.1) H(Q2p,1.7) H(2p, 1.8) H(2p, 1.8) H(4f, 8.0) Cu**(4p) Au*t(6p)
H(2p, 3.5) H(3d, 6.0) H(3d,6.8) H(3d,7.6) H(3d,2.7) H(4f, 7.4) H(4f, 7.4)
H(2s,4.9) H(3s,5.8) H(3s, 6.4) Ti*"(4p) H(3s,2.6) Au*T(6s)
H(5g, 11.6) H(3d, 5.0) H(5g, 10.0)
Ti*"(4s) H(5g, 10.4) H(6h, 12.8)
H(3d,2.5)
Tier2 H(1s,0.8) H(4f, 9.8) H(4f, 10.8) H(4f, 11.6) H(3d, 4.4) H(4p, 5.8) H(5f, 14.8)
H(2p,3.7) H(3p,5.2) H(3p, 5.8) H(3p,6.2) H(6h, 16.0) H(3d,2.7) H(4d, 3.9)
H(2s,1.2) H(3s,4.3) H(1s,0.8) H(3d,5.6) H(4f, 9.4) H(6h, 15.2) H(3p,3.3)
H(3d,7.0) H(5g, 14.4) H(5g, 16.0) H(5g,17.6) H(4p, 4.5) H(5s,10.8) H(ls, 0.5)
H(3d,6.2) H(3d,4.9) H(ls, 0.8) H(ls,0.5) H(4f, 16.0) H(5g, 16.4)
H(6h, 13.6)
Tier 3 H(4f, 11.2) H(2p, 5.6) H(3s, 16.0) 02t (2p) H(4d, 6.4) H(4d, 6.0) H(4f,5.2)
H(3p, 4.8) H(2s, 1.4) N2+(2p) H(4f, 10.8) H(4f, 10.0) H(3p,2.4) H(4d, 5.0)
H(4d, 9.0) H(3d, 4.9) H(3d, 6.6) H(4d, 4.7) H(5g,12.0) H(4f, 6.4) H(5g,8.0)
H@3's,3.2) H(4f, 11.2) H(4f, 11.6) H(2s, 6.8) H(2p,1.7) H(3s,6.8) H(5p,8.2)
H(6h, 16.4) H(5g,11.2) H(6d, 12.4)
H(4s,3.8) H(6s, 14.8)
Tier 4 H(2p,2.1) H(2p, 4.5) H(3p, 5.0) H(4p, 7.0)
H(5g, 16.4) H(2s,2.4) H(3s,3.3) H(4s, 4.0)
H(4d, 13.2) H(5g, 14.4) H(5g,15.6) H(6h, 14.0)
H(3s,13.6) H(4d, 14.4) H(4f, 17.6) H(4d, 8.6)
H(4f, 17.6) H(4f, 16.8) H(4d, 14.0) H(5f,15.2)

Table 11. Highly converged integration settings for
the different atoms. N, denotes the final number of
radial shells. N?®¢ is the initial number of shells
before the enhancement factor 7., also known as
the radial multiplier, is applied and 7, is the out-
ermost radius of the base integration grid. (see
appendix of [61] for details) N, ¢ is the number of
grid points on an integration shell.

Quantity Au Cu Ti O
N, 443 323 293 221
Nbase 73 53 48 36
Tmult 6 6 6 6
Fouter 7A 7A 7A 7A
Min (Nyng) 110 110 110 110

Max(Nyng) 974 974 974 974

Appendix A. Employed basis sets

The FHI-aims code includes NAOQ basis sets consisting of successive ‘tiers’ or levels of groups of radial functions.
The basis sets include the free-atom solutions for occupied orbitals of the given element and hydrogen-like
functions. In some cases also functions from the free ion are used to complement the basis set. The tier basis sets
used in this paper are listed in table 10. The table only lists the radial functions, which are then multiplied with all
spherical harmonics for their given angular momentum.

Appendix B. The effects of augmenting the orbital basis set

As shown above, adding a single hydrogen-like function with angular momentum g to the pool of functions used
to construct the auxiliary basis set in RI-LVL suffices to recover the accuracy of the RI-V. To give a specific
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Table 12. The size of the auxiliary basis set for a carbon atom with a standard and augmented auxiliary basis for both the cc-pVTZ and tier 2
basis sets in FHI-aims, corresponding to the steps outlined in figure 1. In this table, the notation 4s indicates the inclusion of four different
s-type radial functions. The expression ‘number of radial functions’ refers to the number of distinct radial functions used in the construction
of orbital or auxiliary basis sets, whereas the expression ‘number of basis functions’ counts the total number of basis functions in the sets

{¢; }or {B, }. Thus, the ‘number of basis functions’ also accounts for the different angular momentum functions Y, included in their
definition in equation (8).

Standard orbital basis Augmented orbital basis
cc-pVTZ Tier2 cc-pVTZ Tier2
Number of basis functions ¢; in orbital basis 30 39 30 39
Pool of radial functions uy, for auxiliary basis 4s,3p, 2d, 1f 4s,3p, 2d, If, 4s,3p, 2d,1f, 1g 4s,3p, 2d, 1f,, 2¢
construction 1g
Number of onsite radial products u, ), + U, 111 150 150 198
Number of onsite radial functions in auxiliary basis 43 50 65 70
after Gram-Schmidt orthonormalization
Types of radial functions in the auxiliary basis 9s, 9p, 84, 7f, 10s, 9p, 84, 7f, 10s, 10p, 9d, 10f, 11s, 10p, 94, 10f,
6g, 3h, 1i 6g,4h, 3i,2j, 1k 10g, 8h, 5i,2j,1k  9g, 7h, 6i, 5j, 3k
Final number of basis functions B, in auxiliary basis 225 310 445 518

example of the number and type of radial functions recovered at each step of the construction procedure
outlined in figure 1, table 12 summarizes the pertinent radial functions in the orbital and auxiliary basis sets of
the C atom, using the GTO cc-pVTZ and the NAO tier 2 basis sets as examples. All specifics of the radial
functions up to tier 2 are summarized in table 10. As it can be seen from the table, adding a single g-function to
the construction procedure yields a large set of additional auxiliary basis functions.

Appendix C. Integration parameters for heavy element tests

FHI-aims uses an atom-centered grid for computing most integrals [ 16, 54]. The grid is composed of radial
‘shells’ [71] (see also equation (18) in [16] and the appendix in [61]) and each shell is populated with a given
number of angular integration points that form a Lebedev grid [72-75]. The key controlling parameters for the
accuracy of the integration routines are the number of radial shells and the number of angular grid points as a
function of the distance to the center. For our investigation of heavy elements, we use dense integration grids,
because our reference point, the RI-V, is sensitive to the quality of the grid. The details are listed in table 11. For
the sake of consistency we decided to use the same integration settings also in RI-LVL. In a production
calculation the settings can be reduced significantly, because RI-LVL does not use the atom-centered grid for the
four-center integral evaluation and the normal DFT part has much lower demands on the grid settings.
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