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We study fermions in a lattice, with on-site and nearest neighbor attractive interactions between two spin
species. We consider two geometries: (1) both spins in a triangular lattice and (2) a mixed geometry with up
spins in honeycomb and down spins in triangular lattices. We focus on the interplay between spin-population
imbalance, on-site and valence bond pairing, and order parameter symmetry. The mixed geometry leads to a
rich phase diagram of topologically nontrivial phases. In both geometries, we predict order parameters with
simultaneous time-reversal and translational symmetry breaking.
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I. INTRODUCTION

In the Bardeen, Cooper, and Schrieffer (BCS) theory [1],
which describes well many low-temperature superconductors,
the transition to the superconducting state is characterized
by the breaking of gauge symmetry only. However, the hall-
mark of unconventional superconductivity is the breaking of
additional symmetries. For example, the Fulde-Ferrel-Larkin-
Ovchinnikov (FFLO) state has broken translational symmetry:
The order parameter has a nontrivial spatial dependence [2–5].
On the other hand, chiral superconductors break time-reversal
symmetry (TRS) because they feature gap parameters that
wind in phase around the Fermi surface in multiples of 2π .
Chiral superconductors also exhibit many other fascinating
properties that are highly sought after for nanoscience applica-
tions [6–10], and broken TRS is a prerequisite for the quantum
Hall effects (excluding the spin Hall effect) [11,12]. Moreover,
in MgB2 and iron pnictides [13–16] TRS may be broken due
to interband couplings [17–19]. In this paper, we propose and
theoretically study a system in which exotic superfluids with
translational and TRS breaking can compete and even coexist.

Simultaneous breaking of multiple symmetries is an in-
triguing phenomenon; an example of a sought-after state is the
supersolid which breaks translational and U(1) symmetries by
coexisting crystal structure and superfluidity [20]. As another
example, it was recently predicted for spinless fermions in
a triangular lattice that density orders with several broken
symmetries may coexist [21]. Each broken symmetry typically
generates characteristic modes, the coexistence of which
leads to rich physics and potential applications. Achieving
such states is, however, nontrivial since the system must
be susceptible to different types of order. The translational
and TRS-breaking superfluids that we predict here are of
conceptual interest as a type of state with simultaneous
breaking of several symmetries, all reflected in the superfluid
order parameter. Importantly, the very ingredients that are
essential for creating such states, namely a combination of
long-range interactions, special lattice geometries, and spin-
density imbalance, are an emerging experimental reality in
ultracold gas systems.

*Corresponding author: paivi.torma@aalto.fi

A crucial extension to the capabilities of ultracold Fermi
gases as a quantum simulator [22,23], including emulation
of the extended Fermi-Hubbard model [24–28], is emerging
from the possibilities of realizing not only on-site but also
long-range interactions. They can be realized, for example,
with the help of atoms with a large magnetic dipole moment
(e.g., chromium, dysprosium, and erbium [29–31]), dipolar
molecules such as the fermionic 40K87Rb [32–34], or atoms
excited to Rydberg states [35–38]. Another type of possibility
is mixtures of bosonic and fermionic atoms where the bosons
induce a long-range interaction between the fermions [39].
Intriguingly, ultracold gas lattice systems also enable spin-
dependent confinement of particles [40–43]. This has led to
theoretical proposals of new concepts, such as mixed geometry
pairing [44].

II. MODEL

We consider two different lattice systems, namely a
honeycomb-triangular and a triangular lattice loaded with
spin-1/2 fermions. In the former system, the honeycomb lattice
comprises two triangular sublattices A and B, as shown in
Fig. 1(a). The sublattices are spin selective in such a way
that ↑-spin atoms can occupy the whole honeycomb lattice,
but ↓-spin atoms are confined to the triangular sublattice A.
Consequently, we denote the honeycomb lattice by L↑ and the
triangular sublattice A by L↓.

We assume that ↑-spin and ↓-spin atoms can tunnel only
between neighboring sites of L↑ and L↓, respectively. We
denote the tunneling amplitudes of ↑-spin and ↓-spin atoms
by t↑ and t↓, respectively. Subsequently, the Hamiltonian
that takes into account tunneling and possible on-site energy
modulations can be written as

H0 = −t↑
∑

〈i,j〉∈L↑

(â†
i↑b̂j↑ + H.c.) − μ↑

∑
i

(
n̂a

i↑ + n̂b
i↑

)

− t↓
∑

〈i,j〉∈L↓

(â†
i↓âj↓ + H.c.) − (μ↓ − εa

↓)
∑

i

n̂a
i↓, (1)

where â† (â) and b̂† (b̂) are fermionic creation (annihilation)
operators in sublattices A and B, respectively, and n̂a and n̂b

are the corresponding density operators. Parameters μ↑ and
μ↓ are chemical potentials for ↑-spin and ↓-spin particles,
respectively. In order to make our results comparable with the
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FIG. 1. (Color online) Schematic representation of honeycomb-
triangular lattice. (a) Honeycomb-triangular lattice and its Brillouin
zone. Sublattice A (green [light gray]) houses both spins, whereas
sublattice B (red [dark gray]) houses only up-spin paricles. (b) Pairing
happens both on site and intersite with energy gains −U and −V ,
respectively. Phases of the bond order parameters are marked with θ ,
φ, and ϕ.

ones in Ref. [44], we choose εa
↓ = −3, and set t↑ = t↓ = t = 1

in all our calculations.
Here we focus on pairing and types of superfluidity that

arise from attractive interactions. In experiments, there are
many ways to tune the interparticle interactions from attractive
to repulsive, such as Feshbach resonances [45]. Moreover,
there are ways to tune the on-site and nearest-neighbor (NN)
interactions independently of each other [46,47]. Thus, we
choose to consider attractive on-site and nearest-neighbor
interactions. The on-site interaction takes place at A sites,
and we denote the interaction strength by −U where U � 0.
The corresponding Hamiltonian reads

Hos = −U
∑

j

n̂a
j↑n̂a

j↓. (2)

In conventional superconductivity, electrons form supercon-
ducting Cooper pairs in a spin-singlet state [48]. However,
spin-singlet bonding between neighboring A and B sites is
impossible because ↓-spin particles cannot occupy B sites.
Therefore we assume that the nearest neighbor interaction
takes place between adjacent A sites and represent it with
the Hamiltonian

Hnn = −V
∑

〈m,n〉∈L↓

ĥ†
mnĥmn, (3)

where ĥ
†
mn = (â†

m↑â
†
n↓ − â

†
m↓â

†
n↑)/

√
2 is a spin-singlet creation

operator. The parameter V > 0 represents an energy gain when
two atoms form a spin-singlet bond, because ĥ

†
mnĥmn is the

number operator for singlet bonds [49]. We note that the
spin-singlet states between neighboring sites are essentially
resonating-valence-bond states proposed by Anderson [50].

The full Hamiltonian for the honeycomb-triangular lattice
is

H = H0 + Hos + Hnn. (4)

We treat the interaction terms Hos and Hnn in the mean-field
(MF) approximation. As we employ fermionic anticommuta-
tion relations and ignore the Hartree shifts, we obtain the MF

Hamiltonians

HMF
os = −U

∑
j

〈âj↓âj↑〉â†
j↑â

†
j↓ + H.c. − |〈âj↓âj↑〉|2, (5)

HMF
nn = −V

∑
〈m,n〉∈L↓

〈ĥmn〉ĥ†
mn + H.c. − |〈ĥmn〉|2. (6)

In the model of Ref. [44] the possibility of FFLO phase
was not considered: There were forbidden areas in the phase
diagrams, which usually suggest that the mean-field ansatz has
been limited. Here we want to consider also the possibility
of symmetry-breaking superfluid phases, and therefore we
take into account the possibility that Cooper pairs have
nonzero center-of-mass momenta. Consequently, we use an
FFLO-type ansatz U 〈âj↓âj↑〉 = �0e

2iq·xj [51] for the on-site
order parameter. Here xj is the position vector of lattice site j ,
amplitude �0 � 0, and 2q is the Cooper pair center-of-mass
momentum. On the other hand, there are three different NN
bonds on a triangular lattice. We take the three different NN
bonds to be along directions a2, a1, and a1 − a2 specified
in Figs. 1(a) and 1(b). We consider a simple situation in
which the long-range order parameter has the same norm
�1 along all bonds, but different phases are allowed for
the different bonds [52]. In equation form, the ansatz reads
V 〈ĥmn〉 = �1e

iθmneiq·(xm+xn), where �1 ∈ R and θmn is the
phase that depends on the direction of the bond between sites
m and n. We denote the phases corresponding to bonds a2, a1,
and a1 − a2 by θ , φ, and ϕ, respectively.

We define the Fourier transformation as f̃kσ =
M−1/2 ∑

j e−ik·xj f̂jσ , where f ∈ {a,b}, σ ∈ {↑,↓}, and M is
the number of sites in either of the triangular sublattices A and
B. With the help of the Fourier transformation and periodic
boundary conditions in real space, the mean-field Hamiltonian
can be written in momentum space as

HMF =
∑

k

	̃
†
kHk	̃k + 3|�1|2

V
+ |�0|2

U
+ ξ

(3)
−k, (7)

where

	̃k = (
ĉ

(1)
k ĉ

(2)
k ĉ

(3)†
2q−k

)T
(8)

and [53]

Hk =

⎛
⎜⎝ ξ

(1)
k 0 g∗

k + G∗
k−q

0 ξ
(2)
k g∗

k + G∗
k−q

gk + Gk−q gk + Gk−q −ξ
(3)
2q−k

⎞
⎟⎠. (9)

The noninteracting dispersions are explicitly written
as ξ

(1,2)
k = ±|h↑(k)| − μ↑, where h↑(k) = −t↑[eikx/

√
3 +

2e−ikx/(2
√

3) cos(ky/2)] and ξ
(3)
k = −t↓(2[cos ky + cos([ky +√

3kx]/2) + cos([ky − √
3kx]/2)] + 3) − μ↓. The interband

coupling due to the on-site interaction is gk = −�0/
√

2.
Similarly, the interband coupling due to the NN interaction is
Gk−q = −�1

∑
δ e−i�δ cos([k − q] · δ), where

∑
δ goes over

the nearest neighbors a2, a1, and a1 − a2, and �δ is the phase
corresponding to δ.

As mentioned in the introduction, we also consider a
triangular lattice spanned by the primitive vectors a1 and a2.
We describe tunneling and possible on-site energy modulations
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with the Hamiltonian

H0 = −t↑
∑
〈i,j〉

(â†
i↑âj↑ + H.c.) − t↓

∑
〈i,j〉

(â†
i↓âj↓ + H.c.)

− μ↑
∑

i

n̂a
i↑ − (μ↓ − ε̃a

↓)
∑

i

n̂a
i↓ (10)

and choose ε̃a
↓ = 0 in all subsequent calculations. The on-site

and nearest neighbor interaction terms for the triangular and
honeycomb-triangular lattices are the same. Thus the full
Hamiltonian for the triangular lattice is H = H0 + Hos + Hnn.
Subsequently, with the help of Fourier transformation we
obtain

H MF =
∑

k

ψ̃
†
kHkψ̃k + 3|�1|2

V
+ |�0|2

U
+ E

(2)
k , (11)

where

ψ̃k = (ãk↑ ã
†
2q−k,↓)

T
(12)

and

Hk =
(

E
(1)
k −�∗

0 + G∗
k−q

−�0 + Gk−q −E
(2)
2q−k

)
. (13)

The noninteracting energy dispersions are

E
(1)
k = Ek − μ↑, (14)

E
(2)
k = Ek − μ↓, (15)

where

Ek=−2

[
cos ky+ cos

(
ky+

√
3kx

2

)
+ cos

(
ky−

√
3kx

2

)]
.

(16)

When interaction strengths and tunneling amplitudes are
fixed, the parameters that govern pairing in the system are the
chemical potentials μ↑ and μ↓. The grand potential is defined
as 
 = (−1/β) ln Tr e−βĤ , where Ĥ ∈ {HMF,H MF} and β =
1/(kBT ) with kB being the Boltzmann constant and T being
the temperature. The location of the absolute minimum of the
grand potential 
 = 
(�0,�1,q) determines the values of �0,
�1 and q [44]. Furthermore, the quasiparticle energies Eα(k),
α ∈ {1,2,3}, are given by the eigenvalues of the matrices Hk
and Hk.

A particularly promising way to experimentally realize
this model would be to employ the widely used rubidium-
potassium mixture composed of fermionic 40K prepared in the
|F = 9/2,mF = −7/2〉 and |F = 9/2,mF = −9/2〉 Zeeman
components of the F = 9/2 ground-state hyperfine level and
bosonic 87Rb atoms in the |F = 1,mF = 1〉 ground state. The
on-site and NN interactions could be tuned independently [54],
and various experimental methods are available to study the
nature of the pairing [55]. In particular, the experimental
realization of the NN interaction term Hnn in ultracold Bose-
Fermi mixtures has been discussed in Secs. II, III A, and III C
of Ref. [39].

In units of −(e2/h), the Hall conductance of a filled band is
an integer called the Chern number [12]. If we assume that the

pseudospin indices ↑ and ↓ are associated with internal angular
momenta, as opposed to some other internal states unaffected
by time reversal, the Hamiltonian H is not symmetric under
time reversal due to the mixed geometry. Despite that, it is easy
to show that HMF cannot give rise to phases with a nonzero
Chern number if θ = φ = ϕ = 0 and tunneling amplitudes t↑
and t↓ are real valued (see Appendix A 2). In order to study
TRS breaking due to the NN interaction, we hereafter say that
the pseudo spin indices ↑ and ↓ are not associated with internal
angular momenta but by some other internal states unaffected
by time reversal. Subsequently, HMF can break TRS only if
(θ φ ϕ) 	= (0 0 0).

III. RESULTS

Figure 2 shows phase diagram for honeycomb-triangular
lattice with U = 5 and V = 0. We used the values θ = φ =
ϕ = 0 because we have numerically verified that this choice
yields the lowest grand potential for all values of μ↑ and
μ↓. Up-spin density is defined as N↑/M , where N↑ and
M are the number of ↑-spin particles and primitive cells in
the honeycomb-triangular lattice, respectively. Polarization is
defined as (N↑ − N↓)/(N↑ + N↓), where N↓ is the number
of ↓-spin particles. By comparing Fig. 2(b) with Fig. 1(d)
of Ref. [44], we see that some of the forbidden regions
have vanished because Cooper pairs are now allowed to have

FIG. 2. (Color online) Zero-temperature phase diagram for the
honeycomb-triangular lattice with U = 5 and V = 0. (a) Zero
temperature phase diagram for the honeycomb-triangular lattice as
a function of chemical potentials μ↑ and μ↓. The first two main
areas are the normal phase and the FFLO phase, while the rest of the
phase diagram is covered by various non-FFLO superfluid phases. (b)
Honeycomb-triangular lattice phase diagram as a function of up-spin
density and polarization.
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FIG. 3. (Color online) Phases and pairing in the honeycomb-
triangular lattice when U = 5 and V = 3. (a) Zero-temperature
phase diagram for the honeycomb-triangular lattice as a function
of chemical potentials μ↑ and μ↓. The interaction strengths U = 5
and V = 3. The first two main areas are the normal phase and the
FFLO phase, while the rest of the phase diagram is covered by various
non-FFLO superfluid phases. (b) Density plot of the relative weight
of the NN bond P = |�1|/(|�0| + |�1|) as a function of chemical
potentials μ↑ and μ↓.

nonzero momenta. However, since θ = φ = ϕ = 0, the phases
necessarily have vanishing Chern numbers.

We find that the phase diagrams in Fig. 2 are divided into
three main areas. The first two areas are the normal phase and
the FFLO superfluid phase, and the third area comprises the
rest of the diagram covered by various non-FFLO superfluid
phases. The normal phase is simply indicated by vanishing
order parameters, i.e., �0 = �1 = 0. On the other hand,
FFLO phase is characterized by q 	= 0 and at least one of
the order parameters �0 and �1 being nonzero. The FFLO
phase is an unconventional superfluid phase where Cooper
pairs have nonzero center-of-mass momenta. Finally, non-
FFLO superfluid phase has q = 0 with at least one of the
order parameters �0 and �1 being nonzero. The non-FFLO
superfluid phase can be further divided into gapless and gapped
phases, and the gapless phase can be characterized by the
topological arrangement of the one or two Fermi surfaces
(� centered or K centered). The notation 1-FS(X) means
one Fermi surface centered at high symmetry point X and
notation 2-FS(X,Y) means two Fermi surfaces centered at high
symmetry points X and Y [44].

Figure 3(a) shows the honeycomb-triangular lattice zero
temperature phase diagram as a function of μ↑ and μ↓ for
U = 5 and V = 3. We used the values θ = φ = ϕ = 0 because
we have numerically verified that this choice yields the lowest
grand potential everywhere except in a small region in the
lower right corner of the phase diagram. In other words, the

FIG. 4. (Color online) Phase angles in honeycomb-triangular and
triangular lattices. (a) Honeycomb-triangular lattice phase angles
(θ φ ϕ) at the point (μ↑ μ↓)= (−1.5 −2.5) as a function of on-site
and NN interaction strengths U and V. (b) Triangular lattice phase
diagram for U = V = 5 with (θ φ ϕ) = (4π/3 2π/3 0). Black
squares indicate the area where the grand potential is minimized by
(θ φ ϕ)= (4π/3 2π/3 0).

system exhibits phase winding in a small region within the
FFLO phase. Moreover, Fig. 3(b) shows that there is significant
amount of pairing between nearest neighbors when U = 5 and
V = 3. This is very different from the mixed geometry study
Ref. [44] in which long-range interactions were not considered.
In addition, we find a large area of FFLO, which was not
included in the ansatz of Ref. [44]. However, since θ = φ =
ϕ = 0, the phases necessarily have vanishing Chern numbers.

Now, it is of interest to ask whether the system breaks TRS
for some values of U , V , μ↑, and μ↓. To that end, Fig. 4(a)
shows the phase angles θ , φ, and ϕ as a function of U and
V at the point (μ↑ μ↓) = (−1.5 −2.5). Temperature was
set to zero. At lower values of U the system is in normal
phase if V is small and in superfluid phase with (θ φ ϕ) =
(0 2π/3 4π/3) if V is large. At higher values of U the
system is in superfluid phase with (θ φ ϕ) = (0 0 0)
if V is small and in superfluid phase with (θ φ ϕ) =
(0 2π/3 4π/3) for large values of V . Thus the system
spontaneously breaks TRS when V becomes large enough.
We also note that the threshold for TRS breaking becomes
higher when U is raised. TRS breaking also happens in the
triangular lattice [52], but the phase diagram shown in Fig. 4(b)
is exceedingly simple compared to the rich phase diagram of
Fig. 3(a).

Figure 5 shows the quasiparticle energy bands E1(k), E2(k),
and E3(k) along the line �-K for the point (μ↑ μ↓) =
(−1.5 −2.5) when U = 0 and V = 3. The system is in a
gapped phase because none of the energy bands cross the
Fermi level located at EF = 0. In addition, we note that the
two higher bands are degenerate at the Dirac points K because
the coupling function Gk vanishes at the Dirac points.

We have calculated the Chern numbers by using the method
from Ref. [56]. In that method, one obtains the Chern number
by summing a gauge-independent field strength F12(kl) over
a set of discrete points kl covering the entire Brillouin zone.
Due to the periodicity of the momentum space Hamiltonian,
the Brillouin zone can be regarded as a two-dimensional
torus. Remarkably, the field strengths F12(kl) can also be
directly measured by using time-of-flight imaging [57]. We
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K
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0

2

4

6

E α
0,
k y

t

FIG. 5. (Color online) Quasiparticle energy bands Eα(kx,ky) on
the line �-K for interacting (solid) and noninteracting (dashed)
systems when (μ↑ μ↓) = (−1.5 −2.5) and U = 0 and V = 3.
Dash-dotted line indicates the Fermi energy EF = 0.

found that the Chern number for the lowest band is c3 = 2.
However, the two higher bands do not satisfy the gap opening
condition |E1 − E2| 	= 0 at the Dirac points K . Therefore
we did not calculate the Chern numbers for those bands
individually, but for the multiplet ψ comprising the two
bands. The multiplet Chern number cψ = −2. Although we
have calculated the Chern numbers using periodic boundary
conditions, the nonzero Chern numbers still suggest that
a finite system with edges would have propagating edge
modes [58,59]. The main challenge in detecting such edge
modes has been the separation of the small edge-state signal
from the bulk background, but Ref. [60] provides a simple and
robust way to measure the edge modes. Moreover, when the
Fermi energy lies in a gap, the Hall conductance is given by
σxy = −(e2/h)

∑
n cn, where cn denotes the Chern number of

the nth Bloch band and the sum over n is restricted to the bands
below the Fermi energy [56,61,62]. The lowest energy band
in Fig. 5 is fully below the Fermi energy EF = 0, whereas
the two higher bands are completely above the Fermi energy.
Consequently, the Hall conductance is −c3 = −2 in units of
e2/h.

IV. DISCUSSION AND SUMMARY

It is remarkable that simultaneous occurrence of phase
winding and FFLO is possible both in honeycomb-triangular
and triangular lattices. In a honeycomb-triangular lattice
time-reversal and translational symmetries are simultaneously
broken, e.g., at (μ↑ μ↓) = (2 −2) when U = 0 and V =
4, whereas Fig. 4(b) shows the areas where this happens in a
triangular lattice for U = V = 5. Although it is known that
TRS can be broken in a triangular lattice due to NN interac-
tions [52], we have shown here that simultaneous breaking of
time-reversal and translational symmetries in the superfluid
order parameter of a two-component fermion system may
happen both in honeycomb-triangular and triangular lattices.

In summary, the extended Fermi-Hubbard model we have
considered in a mixed honeycomb-triangular lattice exhibits a
rich phase diagram with gapped and gapless paired phases, as
well as spontaneous TRS breaking at NN interaction strengths
V higher or equal to the on-site interaction U . The TRS
breaking gives rise to topologically nontrivial phases and

nonzero Hall conductivity. The connection of our lattice model
to various graphene systems [6,63,64] may inspire a search
for ways to design mixed geometries on such nanomaterials.
Remarkably, we found that TRS breaking happens also in
the FFLO state: We thus predict a type of superfluid with
simultaneous TRS and translational symmetry breaking. This
phase of matter could be realized in the mixed honeycomb-
triangular or in the triangular geometry, which are both
realizable in ultracold gases, the latter being simpler since
it does not require spin-dependent confinement.
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APPENDIX

1. Geometry of honeycomb-triangular lattice

A mixed-geometry lattice comprising a honeycomb lattice
and a triangular lattice has been depicted in Fig. 1(a) and
described in detail in the Supplemental Material of Ref. [44].
Following the example of Ref. [44], we take the primitive
vectors of the triangular sublattice A to be

a1 =
(√

3

2

1

2

)
, (A1)

a2 =
(√

3

2
−1

2

)
. (A2)

The corresponding reciprocal lattice vectors are

b1 =
(

2π√
3

2π

)
, (A3)

b2 =
(

2π√
3

−2π

)
. (A4)

The triangular sublattice B is shifted by (1/
√

3 0) relative to
the sublattice A. Thus the A and B sublattices together form a
hexagonal lattice.

We impose Born–von Karman boundary conditions on the
direct space wave function. That is, we assume that ψ(r +
Nai) = ψ(r), where N is a positive integer and i ∈ {1,2}.
Consequently, allowed momentum values are of the form

k = m1b1

N
+ m2b2

N
, (A5)

where m1,m2 ∈ Z [65]. Thus summations
∑

k run over over
such k points that are of the form (A5) and belong to the
first Brillouin zone. In each calculation, we used a 400 ×
400 or a 200 × 200 k-point mesh, depending on the amount
of computational work. We solved the eigenvalues of 3 × 3
matrices by using the method from Ref. [66].
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2. Chern number

It is easy to see that matrix Hk defined in Eq. (9) is
symmetric if t↑ and t↓ are real valued and θ = φ = ϕ = 0.
The eigenvectors |n(kl)〉 of a symmetric matrix can always be
chosen real valued. Consequently, the link variable Uμ(kl)
defined in Eq. (7) of Ref. [56] is equal to unity for all
kl . Subsequently, the lattice field strength F̃12(kl) defined in
Eq. (8) of Ref. [56] vanishes for all kl . It follows that the lattice
Chern number c̃n defined in Eq. (9) of Ref. [56] vanishes if t↑
and t↓ are real valued and θ = φ = ϕ = 0.

3. Symmetries of Eα(k) and nσ (k)

If the FFLO-momentum q = 0 and θ = φ = ϕ = 0, the
quasiparticle energies Eα(k) and momentum distributions
nσ (k) exhibit the symmetries of the underlying triangular
lattice. However, if at least one of the phase angles θ , φ,
and ϕ is given a nonzero value, Eα(k) and nσ (k) may lose
the symmetries of the triangular lattice. Nevertheless, we
prove next that Eα(k) and nσ (k) retain the symmetries of the
triangular lattice in the case �0 = q = 0 and (θ φ ϕ) =
(0 2π/3 4π/3).

Let us say that �0 = q = 0 and (θ φ ϕ) =
(0 2π/3 4π/3) and consider how Hk changes when k is
rotated anticlockwise by π/3. The noninteracting dispersions
ξ

(i)
k do not change, because they exhibit the symmetries

of the underlying triangular lattice. On the other hand, the
π/3 rotation is equivalent to making the cyclic permutation
(θ φ ϕ) → (φ ϕ θ ). That is,

(0 2π/3 4π/3) → (2π/3 4π/3 2π ), (A6)

where we have also used the fact that the angles are defined
modulo 2π . Thus, the π/3 rotation amounts to changing the
total phase of Gk by 2π/3. It is easy to see that changing
the total phase of Gk does not affect the eigenvalues of Hk,
but the phase of the third eigenvector component changes.
However, the momentum distributions nσ (k) depend only
on the squared norms of the eigenvector components, and
therefore both Eα(k) and nσ (k) remain unchanged.

Reflecting vector k about the x or y axis is equivalent
to making the permutation (θ φ ϕ) → (φ θ ϕ). That
is,

(0 2π/3 4π/3) → (2π/3 0 −2π/3), (A7)

where we have also used the fact that the angles are defined
modulo 2π . Thus, reflecting vector k about the x or y

axis is equivalent to making the change Gk → ei2π/3G∗
k . It

is easy to see that this does not affect the eigenvalues of
Hk, but eigenvectors are complex conjugated and the third
eigenvector component is also multiplied by ei2π/3. However,
the momentum distributions nσ (k) depend only on the squared
norms of the eigenvector components, and therefore both
Eα(k) and nσ (k) remain unchanged.
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R. SARJONEN AND P. TÖRMÄ PHYSICAL REVIEW A 91, 063605 (2015)

[61] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized hall conductance in a two-dimensional periodic
potential, Phys. Rev. Lett. 49, 405 (1982).

[62] M. Kohmoto, Topological invariant and the quantization of the
Hall conductance, Ann. Phys. 160, 343 (1985).

[63] Y. Jiang, D.-X. Yao, E. W. Carlson, H.-D. Chen, and J. P.
Hu, Andreev conductance in the d + id ′-wave superconducting
states of graphene, Phys. Rev. B 77, 235420 (2008).

[64] B. Uchoa and A. H. Castro Neto, Superconducting states
of pure and doped graphene, Phys. Rev. Lett. 98, 146801
(2007).

[65] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders
College Publishing, Philadelphia, 1976).

[66] J. Kopp, Efficient Numerical diagonalization of Hermi-
tian 3 × 3 matrices, Int. J. Mod. Phys. C 19, 523
(2008).

063605-8

http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1103/PhysRevB.77.235420
http://dx.doi.org/10.1103/PhysRevB.77.235420
http://dx.doi.org/10.1103/PhysRevB.77.235420
http://dx.doi.org/10.1103/PhysRevB.77.235420
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1142/S0129183108012303
http://dx.doi.org/10.1142/S0129183108012303
http://dx.doi.org/10.1142/S0129183108012303
http://dx.doi.org/10.1142/S0129183108012303

