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We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed
with a moving potential well or barrier. Using the time-evolving block decimation (TEBD) method, we study
different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time
evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities
deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or
particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are
broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably
deformed and the pair correlations are preserved.
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In three dimensions, the superfluid phase can be broken by
excitations when the fluid moves in a capillary at a velocity
that is larger than the critical velocity [1], or by, e.g., moving
an object [2], a laser beam [3,4], or an optical lattice [5]
through the superfluid at a high enough velocity. In a recent
experiment, a laser beam was rotated in a two-dimensional
quasicondensate to find the critical velocity of a BKT transition
[6]. In this study, we simulate a perturbation propagating in
a one-dimensional (1D) lattice and find that the initial pair-
correlated state is, in contrast to higher-dimensional systems,
broken by a perturbation with velocity below a certain limit.
According to Landau’s criterion, elementary excitations with
energy ε(q) and momentum q can appear in a superfluid if
the velocity of the superfluid with respect to the capillary is
larger than the critical velocity [1], v > vc = minq

ε(q)
|q| . In a

Fermi superfluid in two or three dimensions, the single-particle
(BCS) dispersion relation is E(k) =

√
(k2 − μ)2 + �2, and

the elementary excitations are particle-hole excitations close to
the Fermi surface with energy ε(q) = E(±kF ) + E(±kF + q).
The minimum of ε(q)

|q| is found at q = ∓2kF , which gives the

critical velocity �
kF

for the excitation of a quasiparticle pair.
For Bose-Einstein condensates, experiments have shown that
weak perturbations break the superfluidity by creating phonon
excitations [7] and strong perturbations by vortices [3,4,8]. A
recovery of superfluidity at high velocities of a perturbing laser
beam has also been observed [9].

Collective excitations in a Fermi liquid can decay into
the constituent quasiparticle excitations due to the continuum
of low-energy states. In one dimension, there are no zero-
energy excitations with momentum transfer 0 < q < 2kF , and
collective excitations remain stable [10]. In the Luttinger
liquid model, the dispersion relation is linearized at the
Fermi momentum kF and the slope gives the velocity of
long-wavelength collective excitations (sound waves). In an
interacting two-component Fermi gas, the spin and charge
excitations propagate at different velocities denoted by uσ

*paivi.torma@aalto.fi

and uρ [11]. For attractive interactions, the long-wavelength
properties are described by uρ and the exponent of the power
law decaying correlation functions Kρ . The speed of sound vs

is equal to the velocity of charge excitations uρ , which, for the
Hubbard model of interest here, can be solved numerically for
any interaction from the Bethe ansatz (BA).

One might expect to excite sound waves by perturbing the
system. To model the critical velocity experiments, we use
wave-packet perturbations which are not localized in momen-
tum or frequency space, and do not excite a specific mode
but a collection of modes. Therefore, modes with velocity
higher than vs can also be excited. The maximum group
velocity vmax

g = dE(k)
dk

|k= π
2

can be calculated from the lattice
dispersion in the limiting cases of a noninteracting system U =
0 and strong interactions |U | � J . The free-particle dispersion
relation in a homogeneous lattice is E(k) = −2J cos k, and
in the strong-coupling limit, the Hamiltonian is mapped to
an isotropic Heisenberg Hamiltonian [12] and the doublons
propagate as hard-core bosons with E(k) = 4J 2

U
cos k. The

values of vmax
g together with the values of uρ are given in

Table I for different interactions U . It is of interest to study
velocities of the perturbation above and below these values.

The time-evolving block decimation (TEBD) method
[15,16] is used for calculating the ground-state properties of
the attractive Fermi-Hubbard Hamiltonian, including a trap to
model a potential realization in ultracold gases,

H0 = −J
∑
i,σ

c
†
iσ ci+1σ + H.c. + HU + Htrap. (1)

The terms are HU = U
∑

i n̂i↑n̂i↓, and Htrap = Vtrap
∑

i,σ (i −
C)2n̂iσ , where C denotes the center of the lattice. Here, J

is the tunneling energy, U the on-site interaction energy, and
Vtrap = 5 × 10−4J the trapping potential in units of J . The
particle number operator is n̂iσ = c

†
iσ ciσ , and ciσ annihilates a

fermion with spin σ = ↑,↓ on site i = 1, . . . ,L. The number
of lattice sites is L = 100 and the numbers of up and down
spins Nσ = 20. We use a Schmidt number 100 in the TEBD
truncation and a time step 0.02 1

J
in the real time evolution. The

results were benchmarked with earlier calculations [17,18].
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TABLE I. Velocities of the density wave fronts v
↑
w. f. at different

values of U and the velocity of the perturbation v obtained from
the simulations (see Supplemental Material) [13], with errors below
0.01J . These are close to the maximum group velocities vmax

g

calculated from the lattice dispersion in the noninteracting limit for
U = 0 and in the strong-coupling limit for U � −3J . We also quote
the BA results for uρ (with error 0.1J ) solved for a homogeneous
system with uniform density [14], using the average density between
lattice sites 25 and 75.

U v v
↑
w. f. vmax

g uρ

(units (units (units (units (units
of J ) of J ) of J ) of J ) of J )

Gaussian perturbation, V0 = −2J 0 0.5 1.54 2 1.9

−4 0.2 0.92
1.0 1.00.5 0.94

−10 0.2 0.53 0.4 0.4
Lorentzian perturbation, V0 = 2J −3 0.2 1.19

1.3 1.20.5 1.30

−4 0.2 1.02
1.0 1.00.5 1.14

−5 0.2 0.83
0.8 0.80.5 1.01

−6 0.2 0.80
0.7 0.70.5 0.90

TEBD and t-DMRG have been recently applied to simulating
also dynamics, e.g., in sudden expansion [19] or in connection
to impurity studies [20–23] that are already within reach of
ultracold gas experiments [24,25]. In the real-time evolution,
a perturbing potential is added and

H (t) = H0 + HV (t), (2)

where HV (t) = ∑
i,σ V (i,t)n̂iσ . The potential is either a Gaus-

sian well V (i,t) = V0e
− (i−vt)2

2σ2 with σ 2 = 10 or a Lorentzian
barrier V (i,t) = γ

(i−vt)2+γ 2 , where γ = 1
V0

, V0 is the height
of the potential, and v is the constant propagation velocity
of the perturbation. The Fourier transforms Ṽ (k,ω) are given
in the Supplemental Material [13]. The exact functional form
of the perturbing potential does not signify in these calculations
as long as its width is small compared to the size of the lattice.
Such a local perturbation leads to different physics from, e.g.,
an accelerating optical lattice which would correspond to a
vector potential [26].

Two approximate regimes can be distinguished in the
simulation results according to the velocity of the perturbation:
slow, v � vmax

g , and fast, v � vmax
g . In the slow regime, the

perturbing potential produces a large deformation of the
particle densities. Figure 1 shows the densities at different
time steps as a Gaussian potential well or a Lorentzian
barrier propagates across the lattice. The well draws in
particles, whereas the barrier pushes them. Comparison to the
equilibrium densities for corresponding static potentials shows
that the moving perturbations produce highly nonequilibrium
dynamics. The movement of the particles can also be seen in
Fig. 2, which shows the density difference with respect to the
ground state. For v � vmax

g , a wave front is seen propagating
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FIG. 1. (Color online) Spin-up (ni↑), spin-down (ni↓), and dou-
blon (ni↑↓) densities at times t with U = −4J (in practice, ni↑ and
ni↓ overlap). On the first and third row, the density of spin-up particles
is also shown for the equilibrium case with a static potential well or
barrier (neq.

i↑ ). The first row shows a slow Gaussian well with v = 0.5J

and the second row a fast one with v = 4J . The third and fourth row
show the same quantities in the case of a Lorentzian barrier. For
the Gaussian, V0 = −2J and for the Lorentzian, V0 = 2J . A dashed
black line indicates the perturbing potential multiplied by 0.1.

faster than the perturbation and is reflected from the harmonic
trap. In the case of a well, the wave front is a reduction of
density and corresponds to propagating hole excitations. For a
barrier, there is an increase of density corresponding to particle
excitations. The approximate velocities of the wave fronts v

↑
w. f.

obtained from Fig. 2 and the same data for other interaction
strengths are shown in Table I. They are reasonably close to
vmax

g as well as the BA values uρ , taking into account the
shallow trap. The velocity of the wave front is independent of

FIG. 2. (Color online) Difference in the density of spin up par-
ticles with respect to the ground state as a function of position and
time, ni↑(t) − ni↑(0), for U = −4J . The perturbation is a Gaussian
well with V0 = −2J and v = 0.2J (left), v = 0.5J (middle), and
v = 4J (right). The center of the perturbing potential is marked with
a dashed black line.
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the velocity of the perturbation since vmax
g and uρ are properties

of the fermion system and do not depend on v. The densities are
perturbed less when the velocity of the perturbation is higher,
as seen in Fig. 1 and in the rightmost column of Fig. 2. There
is no wave front preceding the perturbation since the velocity
of the perturbation is higher than that of the excitations. The
density difference that remains after the perturbation is due
to the smoothening of the initial density oscillations. The
oscillations indicate the tendency to singlet pairing [27], and
their distortion in the slow regime suggests that the singlet
superfluid correlations are broken.

In one dimension, there is no long-range order and the phase
is determined by the dominant power-law decaying correlation
[11]. Therefore, identifying a superfluid in 1D is not as straight-
forward as in higher dimensions [11,14,28,29]. Here we
study the pair correlation Cij (t) = 〈ψ(t)| c†i↑c

†
i↓cj↓cj↑ |ψ(t)〉,

which decays as |i − j |− 1
Kρ and contains both the off-diagonal

components and the doublon density on the diagonal. This
type of decay is directly connected with a nonzero spin gap
[30,31] and the correlator is dominant for Kρ > 1, implying
a singlet 1D superfluid phase for attractive interactions U < 0
[11,12,32]. The fit for the correlator in Fig. 3 gives Kρ =
1.22 ± 0.08. This is close to the BA result for a homogeneous
system with density 0.7, Kρ ≈ 1.28 ± 0.02 [14]. Figure 3
shows |Cij | in the ground state as a function of the lattice
site indices i and j . The same quantity is plotted on the right
with one of the indices fixed to the center of the lattice, |Cx, L

2
|,

where x is the distance from the center, in the ground state, and
after a time evolution with slow and fast perturbations. When
applying a slowly moving perturbation, doublons move into
the potential well or ahead of the barrier and lose correlations
due to localization. The original many-body pairs are reduced
into on-site pairs: nearly strict on-site correlations Cij ∝ δij

are produced instead of the initial pair correlations that extend
over many lattice sites, which suggests that the 1D superfluid
state is broken. Investigating properties such as the superfluid
stiffness goes beyond the scope of this work.

In recent experiments, the decay of similar 1D states has
been studied with nanowires [33], nanopores [34,35], and
oscillating atomic Bose gases [36]. Theoretically, the onset of
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FIG. 3. (Color online) Left: pair correlation |Cij | in the ground
state in the middle part of the lattice for U = −4J . Right: the same
quantity with j fixed, |Cx, L

2
|. A linear fit f (x) = − 1

Kρ
x + a gives the

coefficients Kρ = 1.22 ± 0.08 and a = −1.7 ± 0.1 with errors given
by the 95% confidence bounds. Data points after moving a potential
well across the center of the lattice are also shown. For a well with
v = 0.5J , |Cx, L

2
| is shown at the time step when the perturbation has

reached the site 80 and for v = 4J the site 72.
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FIG. 4. (Color online) Phase φij at different time steps for v =
4J (a),(b) and v = 0.5J (c),(d) of the Gaussian potential well with
V0 = −2J , when U = −4J .

dissipation due to perturbations has been described by phase
slips [37,38] or a drag force [39–41] in bosonic 1D superfluids
with various results depending on the interaction regime. Our
results show that, for the fermion system, the correlations
are not destroyed by fast perturbations since the doublons
do not have enough time to move. Only the phase of the
pair correlation is shifted. A comparison to the noninteracting
case reveals a dramatic difference in |Cij |: whereas the pair
correlations present in the interacting case are nearly perfectly
preserved for fast velocities and destroyed for slow velocities,
in the noninteracting case (see Supplemental Material) [13],
the decay law of correlations is practically the same for all
velocities.

In the ground state, the pair correlation function Cij is a
real quantity, but perturbing the system gives it a nonzero
time-dependent phase φij (t),

φij (t) = arctan

(
Im[Cij (t)]

Re[Cij (t)]

)
. (3)

As the perturbation moves through the lattice, φij changes
across the perturbation center, as shown in Fig. 4. If one of the
lattice site indices is fixed, for instance, i = 40 in Fig. 4(b), and
φij observed at each site j , it can be seen to change smoothly
from zero to approximately 5

2π when j crosses the perturbation
center. Similarly, by fixing j = 40 and varying i one sees that
the phase of C∗

ij = Cji changes from zero to approximately

− 5
2π . The value stays constant over a long range, i.e., up

to very small values of the power-law decaying |Cij |, which
indicates a high numerical stability of the calculations. In the
noninteracting case, the phase is not equally smooth and the
density is more deformed (see Supplemental Material) [13]. In
the case of a slow perturbation, the phase is randomized due to
the movement and localization of the doublons. On the left side
of Fig. 5, φx,−x is plotted at the time step when the perturbation
is at the middle of the lattice. For v = 4J and v = 3.5J ,
a stronger interaction U = −10J is included, which shows
that the phase difference does not depend significantly on the
interaction. This is because v > vmax

g for both interactions. In
the case of a Lorentzian barrier, the change in the phase is
steeper due to the narrower shape of the potential and from
positive to negative due to the opposite sign.

The maximum phase changes calculated for different
velocities of the well and barrier are gathered in Fig. 5 (right).
The velocities are in the fast regime where the pair correlations
are preserved. If the many-body system can to some extent be
described by a single (macroscopic) wave function, the phase
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VISURI, KIM, KINNUNEN, MASSEL, AND TÖRMÄ PHYSICAL REVIEW A 90, 051603(R) (2014)

−20 −10 0 10 20

−2

0

2

x

Δφ
x,

−
x / 

π

v = 3.5 J, U = −10 J
v = 3.5 J, U = −4 J
v = 4 J,
U = −10 J

v = 4 J,
U = −4 J

v = 5 J, U = −4 J
v = 6 J, U = −4 J 0.5

1

1.5

2

2.5

Δ
φ 

(r
ad

)

V0 = 10 J
V0 = 5 J
V0 = 2 J
V0 = 1 J
V0 = 0.5 J

4 6 8 10 2

4

6

8

10

Δ
φ 

(r
ad

)

Velocity v (units of J)

V0 = −2 J

FIG. 5. (Color online) Left: Phase difference φx,−x for different
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of the perturbation given by the many-body simulations. The figure
includes data for a Gaussian well with V0 = −2J (right y axis) and
Lorentzian barriers with different heights from V0 = 10J to V0 =
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√
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v
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�φ(v) = 2π

v
. The time integral of the Lorentzian is independent of

the height V0 since its width is 1
V0

.

change can, in an extremely simplified model, be quantified
by single-doublon dynamics. The wave function of a doublon
can be written in the basis of localized states |ψd(t)〉 =∑L−1

i=0 αi(t) |di〉, where |di〉 = |0,0, . . . ,(↑↓)i ,0, . . . ,0〉. The
time-dependent term HV (t) of Eq. (2) does not commute with
the kinetic term in H0, but since the particles are only slightly
displaced in the fast velocity regime, the kinetic term can be
neglected, leaving H̃0 = HU + Htrap and H̃ (t) = H̃0 + HV (t).
The time evolution of the wave function is given by

|ψd(t)〉 ≈ e−i
∫ t

0 H̃ (τ )dτ |ψd(0)〉
=

∑
i

e−2i
∫ t

0 V (i,τ )dτ e−iH̃0tαi(0) |di〉 .

The factor of 2 in the exponent comes from the sum
over σ in HV (t). Considering a time t when the narrow
perturbation has passed the site i, the time evolution of
another far-away site j is given by e−iH̃0t , and relative to
αj (t), αi(t) has gathered a phase �φ = 2

∫ t

0 V (i,τ )dτ . The

pair correlation is 〈ψd| c†i↑c
†
i↓cj↓cj↑ |ψd〉 = e−i�φ|αi ||αj | for

this single-doublon state. The integral that gives �φ does not
depend on i. Since the functions V (i,τ ) decay quickly, the
integration limits can be extended to ±∞ in order to obtain

analytical expressions for �φ. They can be compared to the
values of φij obtained from the many-body simulations. The
data points in Fig. 5 are the maxima of φij over the lattice,
and the curves are the results of 2

∫ ∞
−∞ V (i,τ )dτ . The simple

model describes the data remarkably well.
In conclusion, our results constitute one more striking

demonstration of the peculiar nature of 1D physics compared
to higher dimensions. Slow perturbations can break the initial
pair correlations due to the existence of charge excitations at
low energies around q = 2kF . For such an excitation spectrum,
the critical velocity in the sense of Landau’s criterion would
be zero. In the fast regime, the doublons do not have enough
time to move and localize. Since the particle-hole spectrum
in a lattice has an upper limit on energy, the fast perturbation
can be interpreted as probing the high-velocity area where
there are no states available. Correlations are preserved and a
phase is imprinted on the 1D superfluid. Our predictions can
be tested in state-of-the-art experiments with ultracold gases
in optical lattices since the temperatures in lattice Fermi gases
[42] are already close to those where 1D superfluid correlations
are predicted [43,44]. Phase imprinting in Fermi gases has
been realized with a static laser beam [45], and an interesting
question is whether a situation similar to the fast perturbation
studied here could be achieved in higher dimensions if the
geometry of the perturbation was changed accordingly, e.g., a
sheet moving through a 2D system.
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[3] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz,
Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999).

[4] R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P.
Chikkatur, and W. Ketterle, Phys. Rev. Lett. 85, 2228 (2000).

[5] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan,
C. Sanner, and W. Ketterle, Phys. Rev. Lett. 99, 070402 (2007).

[6] R. Desbuquois, L. Chomaz, T. Yefsah, J. Lonard, J. Beugnon,
C. Weitenberg, and J. Dalibard, Nat. Phys. 8, 645
(2012).

[7] W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck,
N. Luick, L. Mathey, and H. Moritz, arXiv:1408.5239 [cond-
mat.quant-gas].

[8] T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P.
Anderson, Phys. Rev. Lett. 104, 160401 (2010).

[9] P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405
(2007).

[10] J. Voit, Rep. Prog. Phys. 58, 977 (1995).
[11] T. Giamarchi, Quantum Physics in One Dimension (Clarendon

Press, Oxford, 2003).
[12] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E.
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I. Bloch, and S. Kuhr, Nat. Phys. 9, 235 (2013).

[25] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio,
F. Minardi, A. Kantian, and T. Giamarchi, Phys. Rev. A 85,
023623 (2012).

[26] Q. Niu and M. G. Raizen, Phys. Rev. Lett. 80, 3491 (1998).
[27] G. Xianlong, M. Rizzi, M. Polini, R. Fazio, M. P. Tosi, V. L.

Campo, Jr., and K. Capelle, Phys. Rev. Lett. 98, 030404 (2007).

[28] A. Leggett, Rev. Mod. Phys. 71, S318 (1999).
[29] I. Carusotto and Y. Castin, C. R. Phys. 5, 107 (2004).
[30] K. Yang, Phys. Rev. B 63, 140511(R) (2001).
[31] A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
[32] A. E. Feiguin, S. R. White, and D. J. Scalapino, Phys. Rev. B

75, 024505 (2007).
[33] A. Bezryadin, C. N. Lau, and M. Tinkham, Nature (London)

404, 971 (2000).
[34] N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, and

Y. Fukushima, Phys. Rev. Lett. 86, 4322 (2001).
[35] R. Toda, M. Hieda, T. Matsushita, N. Wada, J. Taniguchi,

H. Ikegami, S. Inagaki, and Y. Fukushima, Phys. Rev. Lett.
99, 255301 (2007).

[36] C. D. Fertig, K. M. O’Hara, J. H. Huckans, S. L. Rolston,
W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 94, 120403
(2005).
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