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Collective modes and the speed of sound in the Fulde-Ferrell-Larkin-Ovchinnikov state

M. O. J. Heikkinen and P. Törmä*
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We consider the density response of a spin-imbalanced ultracold Fermi gas in an optical lattice in the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state. We calculate the collective mode spectrum of the system in the
generalized random-phase approximation and find that, although the collective modes are damped even at zero
temperature, the damping is weak enough to have well-defined collective modes. We calculate the speed of sound
in the gas and show that it is anisotropic due to the anisotropy of the FFLO pairing, which implies an experimental
signature for the FFLO state.
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I. INTRODUCTION

Ultracold Fermi gases are dilute systems of fermionic atoms
cooled down to temperatures where quantum statistics domi-
nate the physics. The unprecedented experimental possibilities
of controlling and tuning the ultracold Fermi gas systems have
made them an extremely successful tool for simulating a broad
range of condensed-matter phenomena [1–3]. To highlight the
topic area of this paper, the ability to control the number of
each atom species forming the ultracold gas has enabled the
experimental study of spin-population imbalanced fermionic
superfluidity [4–10].

One candidate for the theoretical description of imbalanced
fermionic superfluids is the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [11–13], which was originally derived for
superconductors in a strong magnetic field. In the FFLO state,
the pairing correlations that give rise to superfluidity occur with
a finite center-of-mass momentum. This leads to the fact that
the FFLO state exhibits a spatially varying order parameter.

In solid-state systems, there has been progress toward
finding experimental evidence of the FFLO state in heavy
fermion systems [14–17] and also in organic superconductors
[18,19]. In the context of ultracold gases in one-dimensional
(1D) confinement, there have been experiments [8] in quali-
tative agreement with theoretical studies on the FFLO state.
However, the question about the existence of the FFLO state
still remains undecided. This subject has received considerable
theoretical attention in the field of ultracold gases, and several
experimental procedures to probe the FFLO state have been
suggested to complement the direct imaging of the density
profile. For instance, the radio frequency (rf) spectroscopy
of the FFLO state has been a subject of inquiry [20,21].
In the case of 1D systems, studies have been made on
collective mode properties [22], double occupation modulation
spectroscopy [23], and Josephson junction analogies [24], as
well as rf specroscopy [25]. Recently, Bragg scattering and
rf spectroscopy were proposed for observing the FFLO state
in quasi-1D systems [26]. Moreover, noise correlations have
been shown to contain information about the FFLO pairing
both in 1D and in higher dimensions [27,28].

In this paper, we study the density response and collective
modes of the FFLO state. While several collective mode
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studies exist on imbalanced Fermi gases, only a few of them
consider explicitly the FFLO state [22,29,30]. We concentrate
on two-component spin-imbalanced Fermi gases at finite
temperature in the lowest band of a two-dimensional (2D) or
a quasi-1D optical lattice and with an on-site interaction. The
optical lattice is motivated by theoretical studies, indicating
that the lattice aids the formation of the FFLO state as the
lattice dispersion improves the overlap between the Fermi
surfaces of the majority and minority components [31,32]. Our
method for calculating the collective mode spectrum is based
on the generalized random-phase approximation (GRPA) for
the linear response function of the system. The RPA [33] is
a standard tool for describing collective modes of interacting
fermion systems and it was first applied to the BCS context
by Anderson [34]. The method has been used to also describe,
e.g., layered superconductors [35] and the BEC-BCS crossover
[36,37]. In addition to analyzing the collective mode dispersion
and the speed of sound, we also study the damping properties
of the collective modes. We find the interesting result that
the the anisotropic pairing of the FFLO state leads to an
anisotropy in the speed of sound in the system. Furthermore,
we study a quasi-1D optical lattice in which the tunneling in
two directions of a three-dimensional (3D) lattice is restricted,
as it has been recently suggested that a quasi-1D geometry
would provide optimal conditions for the formation of the
FFLO state [38–42].

This paper continues in the next section with an introduction
of the Hubbard model and Green’s function formalism as well
as a rederivation of the FFLO Green’s function. Section III A
outlines the linear response problem and the Kadanoff-Baym
method [43,44] for constructing self-consistent linear response
approximations. We derive the linear response function for
the FFLO state in Sec. III B. After this, we present our main
results in Sec. IV A in which we consider the collective mode
spectrum and the speed of sound in two-dimensional square
optical lattices. In Sec. IV B, we discuss a quasi-1D geometry.
Finally, we conclude our work in Sec. V.

II. THE FFLO STATE IN A LATTICE

A. The theoretical framework

We consider a two-component Fermi gas confined to the
lowest energy band of a square (2D) or cubic (3D) lattice with
NL sites, and describe the system with the Hubbard model
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with an on-site interaction. The Hamiltonian H0 of this system
is

H0 = −
∑

〈r1,r2〉,σ
Jσ [ψσ (r1)ψ†

σ (r2) + ψσ (r2)ψ†
σ (r1)]

−
∑
r,σ

µσψ†
σ (r)ψσ (r)

+
∑

r

U12ψ
†
1(r)ψ†

2(r)ψ2(r)ψ1(r). (1)

Here, σ ∈ {1,2} labels the two atomic species, e.g., two
hyperfine states of a fermionic atom, and ψ†

σ are the fermionic
annihilation and creation operators. [The notation ψ†

σ (r) is
slightly more convenient for the Green’s function formalism as
opposed to the more conventional notation ĉi,σ .] The position
vector of the lattice sites is denoted by r and the summations
run over the set of all lattice sites with 〈r1,r2〉 meaning
summation over nearest-neighboring sites. Moreover, J is the
nearest-neighbor hopping energy, µσ is the chemical potential,
and U12 is the interaction strength between the two species.
A detailed exposition of the connection of the Hubbard model
parameters with experimental parameters for ultracold gases
can be found, e.g., in [45]. We employ a periodic boundary
condition and take the convention h̄ = 1.

With the assumption that the system is excited by an
external perturbation Hφ of the form

Hφ =
∑

σ,ν,r1,r2

φσν(r1,r2,t)ψ
†
σ (r1)ψν(r2), (2)

the total Hamiltonian is H = H0 + Hφ . The unperturbed
Hamiltonian H0 is assumed time independent, but the per-
turbation Hφ may have an explicit time dependence.

In the following theoretical treatment, we rely on Green’s
function techniques in the Matsubara formalism [46,47],
i.e., taking time as a complex parameter, which allows us
to deal with the finite temperature more efficiently. The
thermodynamic average of the operator Ô in interaction
picture in the Matsubara formalism is defined as

〈Ô〉 = Tr{e−βH0Tτ [S(0,β)Ô]}
Tr[e−βH0S(0,β)]

. (3)

Here, β = 1
kBT

, with kB the Boltzmann constant and T the
temperature. Tτ is the time ordering operator. The complex-
time S matrix is defined as

S(τ,τ ′) = Tτ exp

(
−

∫ τ ′

τ

d τ ′′ Hφ(τ ′′)
)

. (4)

The single-particle Green’s function is then defined as

G(1,1′) = −〈T [ψ(1)ψ†(1′)]〉. (5)

The shorthand notation 1 is used for the variables r1τ1σ1.
It is convenient to extend the range of the spin index σ ∈

{1,2} by defining that, for σ ∈ {3,4}, one takes ψσ = ψ
†
σ−2

and ψ†
σ = ψσ−2. With this extension, the definition for the

Green’s function above covers also the so-called anomalous
correlators in which two creation or two annihilation operators
appear. These functions are essential in describing pairing
correlations in the system on the mean-field level. A similar
extension is useful for J , µ, φ, and U ; for σ1,σ2 ∈ {3,4}, one

defines Jσ1 = −Jσ1−2, µσ1 = −µσ1−2, φσ1,σ2 = −φσ2−2,σ1−2,
and Uσ1,σ2 = Uσ1−2,σ2−2. In these definitions, the choice of
sign allows us to write the equations of motion in the most
fluent form.

In certain expressions involving two or more field operators
evaluated at the same time τ , the notations τ+ and τ− specify
the time ordering. These notations imply taking the limits
where τ+ → τ from the positive imaginary axis and τ− → τ

from the negative imaginary axis.
The single-particle Green’s function follows the equation

of motion∫
G−1

0 (1,1̄)G(1̄,1′)

= δ(1,1′) +
∫

φ(1,1̄)G(1̄,1′) +
∫

�(1,1̄)G(1̄,1′). (6)

Here, the integral sign is a shorthand notation for summation
over position and spin in addition to integration over time. The
overbar indicates a variable of summation and integration.
Here, the potential φ appears formally as nonlocal in time,
but only local potentials are required in the work at hand. The
inverse noninteracting single-particle Green’s function is

G−1
0 (1,1′) =

(
− ∂

∂τ
+ Kσ1 + µ(1)

)
δ(1,1′), (7)

where Kσ is the kinetic energy operator defined by Kσf (r) =
Jσ

∑
〈r,r′〉[f (r′) − f (r)]. Furthermore, δ(1,1′) stands for the

Dirac and Kronecker delta for continuous and discrete vari-
ables, respectively. For a general two-body interaction, the
self-energy � is defined as

�(1,1′) = −
∫

V (1,1̄)G2(1,1̄−,2̄,1̄+)G−1(2̄,1′), (8)

in which the two-particle Green’s function G2 is given by

G2(1,2,3,4) = 〈Tτ [ψ(1)ψ(2)ψ†(4)ψ†(3)]〉. (9)

For the on-site interaction V (1,2) = Uσ1σ2δ(r1,r2)δ(τ1 − τ2),
the self-energy simplifies somewhat due to two trivial sum-
mations. The equation of motion can also be inverted for G−1

as

G−1(1,1′) = G−1
0 (1,1′) − φ(1,1′) − �(1,1′). (10)

B. Imbalanced superfluid in a mean-field model

In this section, we consider the FFLO mean-field descrip-
tion for a spin-imbalanced fermionic superfluid first studied by
[11,12]. Notice that, in this section, the focus is on ground-state
properties and the external field Hφ is not needed.

The equation of motion for the single-particle Green’s
function involves the two-particle Green’s function (9). This
object follows again its own equation of motion, which
involves the three-particle Green’s function and, continuing
this way, one derives an infinite set of equations known as
the Martin-Schwinger hierarchy. In practice, one needs to
decouple this hierarchy on some level in order to find the
single-particle Green’s function. We resort to a mean-field
approximation in Eq. (6). This is often referred to as the
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Hartree-Fock-Gor’kov approximation. In this approximation
and with the notation U = U12, the self-energy is

� = δ(r1τ1,r′
1τ

′
1)U

⎡
⎢⎢⎢⎣

−G22 G12 0 −G14

G21 −G11 −G23 0

0 −G32 −G44 G34

−G41 0 G43 −G33

⎤
⎥⎥⎥⎦ . (11)

All of the Green’s functions appearing in � have the variables
(r1τ1,r1τ

+
1 ).

In a system with uniform density, the Hartree terms on
the diagonal can be absorbed into the chemical potentials.
The Fock-exchange terms with G12, G21, G34, and G43 are
negligible in solving for the ground state for ultracold Fermi
gases, as spin flips are energetically highly unfavorable in
experimentally relevant magnetic fields. Finally, we introduce
the key element of the mean-field FFLO theory. We assume
that the pairing correlations have an oscillating structure, so
that the self-energy is

� = δ(r1τ1,r′
1τ

′
1)


⎡
⎢⎢⎢⎢⎣

0 0 0 e2iq·r1

0 0 −e2iq·r1 0

0 −e−2iq·r1 0 0

e−2iq·r1 0 0 0

⎤
⎥⎥⎥⎥⎦ .

(12)

Here, q is the FFLO pairing vector. In the special case of
q = 0 and N1 = N2, the system is reduced to the standard BCS
description. The case with q = 0 and N1 �= N2 is commonly
known as the breached pair (BP) state.

The quantity 
e−2iq·r1 is the order parameter of the FFLO
state. In general, 
 is related to the energy gap of pair-breaking
excitations. We point out that this choice of the order parameter
is not the only possibility, and it has been shown theoretically
[12,13] that, for instance, an order parameter of a cosine form
would be energetically more favorable. However, the current
choice allows for developing the theory analytically much
further, thus making the physics more transparent.

To guarantee the consistency of the mean-field solution, we
must have

G32(1,1+) = 1

U

e−2iq·r1 . (13)

This condition is the FFLO gap equation. In the FFLO
self-energy, all the nonzero elements are connected by complex
conjugation or anticommutation relations of the field oper-
ators. Therefore, one indeed has just one independent gap
equation.

One can also fix the expected particle numbers for each
atom species Nσ , with the number equations

Nσ =
∑

Gσσ (r̄τ,r̄τ+). (14)

However, for a uniform density distribution, one may write
the number equation directly in terms of the density (or
more precisely the filling fraction) nσ = Nσ/NL. The number
equation is

nσ = Gσσ (rτ,rτ+). (15)

In order to find out the values of 
, µ1, and µ2 for any given
FFLO state with pairing vector q and particle numbers N1

and N2, we need to find a solution for the gap and number
equations for the state.

In the following, we derive a closed algebraic form for the
FFLO Green’s function in momentum and frequency space
and rewrite the gap and number equations accordingly.

It is possible to solve the Green’s function in the present
approximation analytically in the Fourier space. Here, in order
to find an algebraically closed set of Fourier components,
we have to pay particular attention to the broken translation
invariance of the FFLO order parameter. However, our system
is still translation invariant with respect to time. Thus, we
have G(τ1,τ2) = G(τ1 − τ2) and we may take the Fourier
transformation in time directly with respect to τ1 − τ2.

We define the Fourier transformation of the Green’s
function as

G(p1,p2,ω) =
∑
r1,r2

∫ β

0
d (τ1 − τ2) eiω(τ1−τ2)F(p1 · r1)

×G(r1,r2,τ1 − τ2)F†(p2 · r2), (16)

where the Fourier transfrom matrix F is given by

F(p1 · r1) =

⎡
⎢⎢⎢⎢⎣

e−ip1·r1 0 0 0

0 e−ip1·r1 0 0

0 0 eip1·r1 0

0 0 0 eip1·r1

⎤
⎥⎥⎥⎥⎦ . (17)

Here, p1 and p2 are momenta and ω is a frequency (or
energy, as we have chosen the convention h̄ = 1). The
sign convention of F has been chosen so that it agrees
with the Fourier transformation of the field operators. Due
to the periodic boundary condition in complex time, also
the frequency spectrum is discrete covering the fermionic
Matsubara frequencies ω = (2n+1)π

β
, where n is an integer.

The inverse Fourier transformation is

G(r1,r2,τ1 − τ2) = 1

βNL

∑
p1,p2,ω

e−iω(τ1−τ2)F†(p1 · r1)

×G(p1,p2,ω)F(p2 · r2). (18)

Here, the momentum summations run over the discrete
momentum spectrum and the frequency summation over the
Matsubara frequencies.

We now Fourier transform the equation of motion (6) for G

in the FFLO state. For brevity, we deal first with the σ1,σ2 ∈
{1,4} block, which has the Fourier transform[

iω − ξ1(p1) 0

0 iω + ξ2(p1)

]
G(p1,p2,ω)

= δp1,p2I + 


[
0 1

1 0

]
G(2q − p1,p2,ω). (19)

Here, the noninteracting particle energy ξσ (p) is

ξσ (p) = ε(p) − µσ , (20)

in which ε(p) is the lattice dispersion.
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Equation (19) is mixing different Fourier components of
the Green’s function due to the broken translation invariance
of the order parameter. To be more explicit, for G11, we have

[iω − ξ1(p1)]G11(p1,p2,ω) = δp1,p2 + 
G41(2q − p1,p2,ω).

(21)

However, the equation is still closed. Relabeling p1 with
2q − p1, the equation for G41(2q − p1,p2,ω) is

[iω + ξ2(2q − p1)]G41(2q − p1,p2,ω) = 
G11(p1,p2,ω).

(22)

From this pair of equations, it is straightforward to solve for
G11 and G41. In a similar manner, we find the Green’s functions
G14 and G44. The solution is[

G11(p1,p2,ω) G14(p1,2q − p2,ω)

G41(2q − p1,p2,ω) G44(2q − p1,2q − p2,ω)

]

= δp1,p2

[iω − ξ1(p1)][iω + ξ2(2q − p1)] − 
2

×
[
iω + ξ2(2q − p1) 



 iω − ξ1(p1)

]
. (23)

The solution for the Green’s functions in the matrix block
σ1,σ2 ∈ {2,3} is similar and can be written as

[
G22(2q − p1,2q − p2,ω) G23(2q − p1,p2,ω)

G32(p1,2q − p2,ω) G33(p1,p2,ω)

]

= δp1,p2

[iω + ξ1(p1)][iω − ξ2(2q − p1)] − 
2

×
[
iω + ξ1(p1) −


−
 iω − ξ2(2q − p1)

]
. (24)

Notice that all the other Green’s functions Gσν are trivially
zero in the adopted approximation.

The solution can be written in a form that is easier to
analyze and is similar to the conventional form for the BCS
Green’s functions. This final step makes the application of
finite-temperature Matsubara summation techniques straight-
forward. One defines the well-known quasiparticle energies
E± [11] as

E±(p) = ±ξ1(p) − ξ2(2q − p)

2

+
√(

ξ1(p) + ξ2(2q − p)

2

)2

+ 
2, (25)

and the coherence factors u and v as

u(p) =
√

E+(p) + ξ2(2q − p)

E+(p) + E−(p)
, (26)

v(p) =
√

E−(p) − ξ2(2q − p)

E+(p) + E−(p)
. (27)

With these definitions, the FFLO Green’s functions can be
written for the block σ1,σ2 ∈ {1,4} as[

G11(p1,p2,ω) G14(p1,2q − p2,ω)

G41(2q − p1,p2,ω) G44(2q − p1,2q − p2,ω)

]

= δp1,p2

iω − E+(p1)

[
u(p1)2 u(p1)v(p1)

u(p1)v(p1) v(p1)2

]

+ δp1,p2

iω + E−(p1)

[
v(p1)2 −u(p1)v(p1)

−u(p1)v(p1) u(p1)2

]
, (28)

and for the block σ1,σ2 ∈ {2,3} as[
G22(2q − p1,2q − p2,ω) G23(2q − p1,p2,ω)

G32(p1,2q − p2,ω) G33(p1,p2,ω)

]

= δp1,p2

iω − E−(p1)

[
u(p1)2 −u(p1)v(p1)

−u(p1)v(p1) v(p1)2

]

+ δp1,p2

iω + E+(p1)

[
v(p1)2 u(p1)v(p1)

u(p1)v(p1) u(p1)2

]
. (29)

While the normal Green’s functions are diagonal in momentum
space, the anomalous Green’s functions are not, reflecting the
oscillatory structure of the pairing field.

Finally, we present the gap equation (13) and the number
equations (14) in Fourier space. The inverse Fourier transform
of G32(1,1+) appearing in the gap equation is

G32(rτ,rτ+) = 1

NL

∑
p

e−2iq·ru(p)v(p)

×{1 − nF [E+(p)] − nF [E−(p)]}, (30)

in which the Fermi distribution nF has been obtained from the
Matsubara summation

nF (E) = 1

β

∑
ω

eiω(τ+−τ )

iω − E
. (31)

Thus, the gap equation is




U
= 1

NL

∑
p

u(p)v(p){1 − nF [E+(p)] − nF [E−(p)]}. (32)

Similarly, the number equations in terms of the filling fraction
are

n1 = G11(rτ,rτ+) = 1

NL

∑
p

u(p)2nF [E+(p)] + v(p)2

×{1 − nF [E−(p)]} (33)

and

n2 = G22(rτ,rτ+) = 1

NL

∑
p

u(p)2nF [E−(p)] + v(p)2

×{1 − nF [E+(p)]}. (34)

III. DENSITY RESPONSE IN THE FFLO STATE

A. Linear response theory

Having established a ground-state description for the
imbalanced superfluid, let us turn to study density fluctuations
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caused by potentials that couple to the particle density. The
Hamiltonian Hφ for such external potentials is of the form

Hφ = ∫
φ1(r̄t)ψ†

1(r̄)ψ1(r̄) + ∫
φ2(r̄t)ψ†

2(r̄)ψ2(r̄). (35)

Now, if and when solving the system with H = H0 + Hφ

directly is not feasible, progress can be made by assuming
that Hφ is a small perturbation. To find out the effect of Hφ

for instance on the density of atom species σ = 1, one can
then write nσ1 (rt) as a variational series with respect to φ and
truncate this series to the first order, obtaining

n1(rt) = [n1(rt)] +
∫

φ1(r̄t̄)
(

δn1(rt)
δφ1(r̄t̄)

)
φ=0

+
∫

φ2(r̄t̄)
(

δn1(rt)
δφ2(r̄t̄)

)
φ=0

. (36)

Let us continue in the Matsubara formalism. The concept
above can be generalized for any Green’s function by writing
it as a variational series to the first order with respect to φ(1,2)
so that

G(1,1′) = [G(1,1′)] +
∫

φ(2̄,3̄)

(
δG(1,1′)
δφ(2̄,3̄)

)
φ=0

. (37)

Notice again that the overbar indicates summation and integra-
tion over position, time, and spin. The variational derivative in
the equation above defines the linear response function

L(12,1′2′) =
(

δG(1,1′)
δφ(2′,2)

)
φ=0

. (38)

For example, the density is given by nσ1 (r1τ1) = G(1,1+) so
L(12,1+2′) would give the density response function.

The linear response function carries information about the
excited states of the unperturbed system. If one is able to
solve the linear response function, one can then extract from
it the excitation spectrum of the system. For instance, the
collective density modes appear as simple poles of the density
response function in frequency space.

Following Kadanoff and Baym [43,44], one can derive an
equation for the linear response function from the equation of
motion (10). To outline the derivation of their result briefly,
let us begin by taking the variational derivative of the identity∫

GG−1 = δ, which yields

δG(1,1′)
δφ(2′,2)

= −
∫

G(1,3̄)
δG−1(3̄,4̄)

δφ(2′,2)
G(4̄,1′). (39)

Now, inserting G−1 from (10) into the previous equation,
evaluating the expression at φ = 0, and identifying L we get

L(12,1′2′) =
∫ [

G(1,3̄)

(
δφ(3̄,4̄)

δφ(2′,2)
+ δ�(3̄,4̄)

δφ(2′,2)

)
G(4̄,1′)

]
.

(40)

Since the self-energy does not depend explicitly on the external
perturbation, the chain rule of differentiation gives

δ�(3,4)

δφ(2′,2)
=

∫
δ�(3,4)

δG(5̄,6̄)

δG(5̄,6̄)

δφ(2′,2)

=
∫

δ�(3,4)

δG(5̄,6̄)
L(5̄2,6̄2′). (41)

Therefore, one may write Eq. (40) explicitly as an integral
equation for the linear response function

L(12,1′2′)

=
∫

G(1,3̄)φ=0G(4̄,1′)φ=0

(
δφ(3̄,4̄)

δφ(2′,2)

)
φ=0

+
∫

G(1,3̄)φ=0G(4̄,1′)φ=0

(
δ�(3̄,4̄)

δG(5̄,6̄)

)
φ=0

L(5̄2,6̄2′),

(42)

which is the result of [43,44]. This equation for the response
function guarantees a self-consistent theory in the sense that
the linear response function obeys the same conservation laws
as does the single-particle Green’s function. From this point
on, we leave out the notation φ = 0 as in the following, all of
the variational derivatives are evaluated at φ = 0. Notice that
in the equation above there is a trivial variational derivative

δφ(3,4)

δφ(1,2)
= δ(r3τ3 − r1τ1)δ(r4τ4 − r2τ2)δ̂(σ3σ4,σ1σ2), (43)

where we have the notation

δ̂(σ3σ4,σ1σ2) = δ(σ3,σ1)δ(σ4,σ2) − δ(σ4,σ1 ± 2)δ(σ3,σ2 ± 2).

(44)

The second term in this definition owes to the fact that, for the
extended index σ1,σ2 ∈ {3,4}, we have φσ1,σ2 = −φσ2−2,σ1−2.

B. Derivation of the FFLO density response function

We derive the FFLO density response function in this
section. The Kadanoff-Baym method applied to the Hartree-
Fock-Gor’kov approximation (11) leads to the generalized
random-phase approximation. We now extend this to the case
of a FFLO state. In the density response problem, several
simplifications to the general equation for the linear response
function are apparent. First of all, it is sufficient to consider
a local perturbation of the form φ(1,2) = φσ1σ2 (r1τ1)δ(r1τ1 −
r2τ2). Furthermore, the density operator itself as well as all the
Green’s functions in the self-energy are local. Thus, the density
response function of which we are interested in contains only
terms with r1 = r′

1, τ1 = τ ′
1 and r2 = r′

2, τ2 = τ ′
2. Moreover,

due to the time translation invariance, this response function
depends only on the time difference τ1 − τ2. We then find it
suitable for our purposes to define the notation

Lσ1σ2σ
′
1σ

′
2
(r1,r2,τ1 − τ2) = δ(r1τ1,r′

1τ
′
1)δ(r2τ2,r′

2τ
′
2)L(12,1′2′).

(45)

The density response functions δn1
δφ1

and δn1
δφ2

in Eq. (36)
correspond to L1111 and L1212, respectively.

Equation (40) now reads as

Lσ1σ2σ
′
1σ

′
2
(r1,r2,τ1 − τ2)

=
∑

Gσ1σ̄3 (r1,r2,τ1 − τ2)Gσ̄4σ
′
1
(r2,r1,τ2 − τ1)

× δ̂(σ̄3σ̄4,σ
′
2σ2) +

∫
Gσ1σ̄3 (r1,r̄3,τ1 − τ̄3)

×Gσ̄4σ
′
1
(r̄3,r1,τ̄3 − τ1)

δ�σ̄3σ̄4

δφσ ′
2σ2

(r̄3,r2,τ̄3 − τ2). (46)
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Let us now write down explicitly the equation for L1111

to show how to proceed with the solution. Since many of the
FFLO Green’s functions are identically zero, just one term

remains from the direct coupling to the external perturbation,
which is the first term in Eq. (46). Similarly, only four nonzero
terms arise from the second term in Eq. (46):

L1111(r1,r2,τ1 − τ2) = G11(r1,r2,τ1 − τ2)G11(r2,r1,τ2 − τ1)

+U

∫
G14(r1,r̄3,τ1 − τ̄3)G41(r̄3,r1,τ̄3 − τ1)L1111(r̄3,r2,τ̄3 − τ2)

−U

∫
G11(r1,r̄3,τ1 − τ̄3)G41(r̄3,r1,τ̄3 − τ1)L1141(r̄3,r2,τ̄3 − τ2)

−U

∫
G14(r1,r̄3,τ1 − τ̄3)G11(r̄3,r1,τ̄3 − τ1)L4111(r̄3,r2,τ̄3 − τ2)

+U

∫
G11(r1,r̄3,τ1 − τ̄3)G11(r̄3,r1,τ̄3 − τ1)L4141(r̄3,r2,τ̄3 − τ2). (47)

In forming this equation, we have used the identities L3131 =
−L1111 and L2121 = −L4141. This substitution owes to a more
general identity: Noting the definitions (38) of the response
function and (5) of the Green’s function, one concludes based
on equal time anticommutation relations that

Lσ,α,ν,β(r1,r2,τ ) = −Lσ+2,α,ν+2,β (r1,r2,τ ),
(48)

Lσ+2,α,ν,β (r1,r2,τ ) = −Lσ,α,ν+2,β (r1,r2,τ ).

As with the Green’s function, the integral equation for L1111

[Eq. (47)] can be cast into an algebraic equation in Fourier
space. Notice that, for instance, in spherically symmetric
harmonic trapping geometries, one can make similar progress
with the choice of the harmonic-oscillator states as basis
functions [48]. We use the same Fourier transformation
convention for Lσ,1,ν,1 = δGσν

δφ11
as we defined for Gσν in (16),

i.e., the sign convention is given by σ and ν. The Fourier
transformation yields for L1111, i.e., δn1

δφ11
, the equation

L1111(p1,p2,ω) = δp1,p2�1111(p1,ω)

+U�1441(p1,ω)L1111(p1,p2,ω)

−U�1141(p1,ω)L1141(2q + p1, − p2,ω)

−U�1411(p1,ω)L4111(2q − p1,p2,ω)

+U�1111(p1,ω)L4141(−p1, − p2,ω).

(49)

Here, we have the notation

�σ1σ2σ3σ4 (p+,ω)

= 1

βNL

∑
S,χ

Gσ1σ2 [λσ1 (p + s),λσ2 (p + s),χ + ω]

×Gσ3σ4

[
λσ3 (s),λσ4 (s),χ

]
, (50)

where λσ (p) is defined so that

λσ (p) = p, σ ∈ {1,2}
(51)

λσ (p) = 2q − p, σ ∈ {3,4}.
Equation (47) is rather analogous to the previously solved
equation for the FFLO Green’s function. We see that we need
to construct equations also for L1141, L4111, and L4141. By
using again the symmetry property (48) for these equations,
we find out that no other linear response functions enter the
equation. The final task is to identify those Fourier components
that form a closed equation. With this rationale, one arrives at
the following matrix equation:

M (1)(p1)L(1)(p1,p2) = δp1,p2�
(1)(p1). (52)

Here the vector of linear response functions L(1) is defined as

L(1)(p1,p2) =

⎡
⎢⎢⎢⎣

L1111(p1,p2)

L1141(2q + p1, − p2)

L4111(2q − p1,p2)

L4141(−p1, − p2)

⎤
⎥⎥⎥⎦ . (53)

On the right-hand side, �(1) contains the terms from the direct
coupling to the external perturbation

�(1)(p1) =

⎡
⎢⎢⎢⎣

�1111(p1)

�1114(p1)

�4111(p1)

�4114(p1)

⎤
⎥⎥⎥⎦ . (54)

The coefficient matrix M (1) is given by

M (1)(p1) = I + U

⎡
⎢⎢⎢⎣

−�1441(p1) �1141(p1) �1411(p1) −�1111(p1)

−�1444(p1) �1144(p1) �1414(p1) −�1114(p1)

−�4441(p1) �4141(p1) �4411(p1) −�4111(p1)

−�4444(p1) �4144(p1) �4414(p1) −�4114(p1)

⎤
⎥⎥⎥⎦ . (55)
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One derives similarly for L1212, i.e., δn1
δφ2

, the equation

M (2)(p1)L(2)(p1,p2) = −δp1,p2�
(2)(p1), (56)

in which L(2) stands for

L(2)(p1,p2) =

⎡
⎢⎢⎣

L1212(p1,p2)
L1242(2q + p1, − p2)
L4212(2q − p1,p2)
L4242(−p1, − p2)

⎤
⎥⎥⎦ , (57)

and �(2) is

�(2)(p1) =

⎡
⎢⎢⎢⎣

�1441(p1)

�1444(p1)

�4441(p1)

�4444(p1)

⎤
⎥⎥⎥⎦ . (58)

The coefficient matrix M (2) turns out to be the same as M (1).
In our theoretical treatment, we have an obvious symmetry

with respect to interchanging indices 1 and 2 and indices 3 and
4. Therefore, we obtain the equation for the density response
functions L2222 and L2121 directly from the results above.

The frequency summation in the definition of � [Eq. (50)]
can be handled analytically. One applies the identity

1

β

∑
χ

1

i(ω + χ ) − E1

1

iχ − E2
= nF (E1) − nF (E2)

E1 − E2 − iω
(59)

to the four cross terms that arise when one inserts the Fourier-
transformed Green’s functions (28) and (29) to Eq. (50).
The momentum summation in Eq. (50) needs to be carried
out numerically after which one simply inverts the matrix
equations presented above to obtain the Matsubara, i.e.,
imaginary frequency, response function. From this, the real
frequency retarded linear response function is obtained by
means of analytical continuation.

IV. RESULTS

A. 2D square lattice

In the following results, we consider a system in a two-
dimensional square optical lattice with lattice constant d

and NL = NxNy = 40 000 lattice sites with Nx = Ny = 200
lattice sites in each direction. We assume that the perturbation
potential is the same for both atom species, i.e., φ1 = φ2 in
which case it is most natural to study the density response
function χ1(k,ω) = L1111(k,ω) + L1212(k,ω), where L1111

and L1212 are the responses of density n1 to potentials φ1

and φ2, respectively. In the following, the parameters are
chosen so that n1 is the density of the majority component.
Similar conclusions hold also for the response of the minority
component. The assumption of φ1 = φ2 is not a crucial one as
the collective mode dispersion is the same for all choices of
these potentials. Moreover, we assume that the FFLO vector q
is directed along the x axis.

We solve Eqs. (52) and (56) numerically for imaginary
frequencies. We then use a Padé approximant [49] to carry out
the analytical continuation and obtain the response function
for complex frequencies.

In Fig. 1, we plot the real part of the density response
function for typical parameters as a function of the wave vector

FIG. 1. (Color online) The real part of the density response
χ1(k,ω) for typical parameters µ1 = 3.5J , µ2 = 2.5J , T = 0.07J ,
U = −3.0J , 
 = 0.27J , and q = 12π/(dNx) with k parallel to q.
The collective mode is seen as a clear divergent behavior of the density
response. The lone peak on the kx axis is a numerical instability.

k and the real frequency ω. In this figure, we have chosen k
parallel to q. The collective density mode appears as a nearly
diverging feature of the density response at a particular wave
vector k and frequency ω. Toward higher wave vectors, we see
a typical broadening of this feature owing to the increase of
damping. The actual eigenfrequency of the mode is complex
with the frequency ω − iγ , where γ is the damping rate. For
the small damping rates, the response has a very sharp jump
also as a function of real frequencies. The collective mode is
gapless with a linear dispersion for small k. It corresponds to
the Anderson-Bogoliubov phonon of the BCS state of a neutral
Fermi gas [34].

We solve the dispersion relation ω(k) and the damping rate
γ (k) by solving the poles of the response function χ1. We plot
ω(k) and γ (k) in Fig. 2 for wave vectors along the x and y axes,
i.e., parallel and perpendicular to the FFLO vector q. Notice
that the numerical method produces several instabilities in the
damping rate at higher wave vectors, while the real frequency
ω is far more stable. The speed of sound to the direction of the
x axis, cx , can be obtained from the dispersion by the definition

cx = dω(kex)

dk

∣∣∣∣
k→0

, (60)

where ex is the unit vector in the x direction. One defines cy

similarly. For the dispersions presented in Fig. 2, we obtain
cx = 1.39Jd and cy = 1.24Jd. We observe that the finite
FFLO vector causes a clear difference between the parallel
and perpendicular (w.r.t. q) speeds of sound. In this case, the
relative difference in the sound propagation is cx/cy − 1 =
12%. This observation suggests immediately an experiment in
which one creates a local density perturbation in the system
and then monitors the propagation of this perturbation to
collect information about the FFLO state. Such an experiment
would create a rather remarkable contrast with, e.g., a breached
pairing state, which is isotropic with cx = cy .
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FIG. 2. (Color online) The dispersion relation ω(k) and the
damping rate γ (k) calculated for µ1 = 3.5J , µ2 = 2.5J , T = 0.07J ,
U = 3.0J , 
 = 0.27J , and q = 12π/(dNx) along the x axis (circles)
and y axis (diamonds). The FFLO vector q is directed along the x

axis and this anisotropy creates a clear difference between the two
dispersions and damping rates.

Turning back to analyze the damping rates presented in
Fig. 2, we find that the damping rate is only a fraction of
the mode frequency, with γx/ωx = 5% and γy/ωy = 7% for
the lowest frequencies. With this observation, we conclude
that the collective modes can be considered as well-defined
elementary excitations of the FFLO state. An important aspect
here is that the damping is fundamentally not an effect caused
by the finite temperature. In contrast to the BCS state, the FFLO
state contains also at zero temperature unpaired quasiparticles
that cause a finite lifetime for the collective modes. In Fig. 3,
we illustrate the locations of the quasiparticle channels for the
system of Figs. 1 and 2. Indeed, the collective mode dispersion
lies deep within the region containing quasiparticle transitions.
To compare, the pair-breaking excitations are present also in a
BCS state of a neutral Fermi gas, but at zero temperature,
the quasiparticle transitions are completely absent and the
Anderson-Bogoliubov phonon is thus undamped.
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FIG. 3. (Color online) An illustration of the quasiparticle tran-
sitions for a system with µ1 = 3.5J , µ2 = 2.5J , 
 = 0.27J , and
q = 12π/(dNx) along the x axis, corresponding to a zero-temperature
Fermi distribution. A cross denotes a transition of a single quasipar-
ticle and a plus denotes a pair breaking, which involves the creation
of two quasiparticles. Notice that the figure shows only the positions
of the quasiparticle excitations, not their relative weights. The small
void regions along the kx axis owe to the finite system size.

In Fig. 4, we study the speed of sound as a function of the
length of the FFLO vector q when the other system parameters
are held constant and the gap is solved from the gap equation
(13) for each q. In the range qdNx/(2π ) = 4–8, we find an
anisotropy of 5%–7%. The figure also indicates that the speed
of sound tends to increase with q. This is caused by the fact that
the gap 
 decreases when q increases, which in turn causes the
increase in the speed of sound. The two smallest possible FFLO
vectors have been left out since they lead to a pair-breaking gap,
which is larger than the chemical potential difference 2
 >

|µ1 − µ2| and, therefore, the state is not physically relevant.
We then turn to examine the effect of the polarization

P = (N1 − N2)/(N1 + N2) on the speed of sound in Fig. 5.
Technically, we vary the chemical potential difference while
holding the average chemical potential (µ1 + µ2)/2 and other
system parameters constant. We find that the anisotropy in
the sound propagation increases from 2% to 10% when the
polarization increases to the value P = 0.2. Also, the speed of
sound itself increases with the polarization, and the explanation
is analogous to the discussion of the FFLO vector above: while
holding the other system parameters fixed, the gap 
 decreases
with the chemical potential difference, or the polarization. In
the range P < 0.11, the pair-breaking gap is larger than the
chemical potential difference, and the FFLO ansatz does not
produce a physically relevant state.

We examine the temperature dependence of the speed of
sound in Fig. 6. First, we stress that while the temperature
does affect the dispersion relation, it always remains true that,
in the small wavelength limit, the collective mode is massless
and the dispersion goes linearly to zero. We see that the speed
of sound and, in particular, the anisotropy is fairly robust
against changes in temperature deep in the superfluid phase.
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FIG. 4. (Color online) The speed of sound parallel (cx , circles)
and perpendicular (cy , diamonds) to the FFLO vector q = qex as a
function of length of the FFLO vector q for a system with µ1 = 3.4J ,
µ2 = 2.6J , T = 0.1J , and U = −2.8J . The gap 
 is solved from
the gap equation (13) for each q.

When the temperature approaches the critical temperature
[in Fig. 6, Tc = 0.15J (upper panel) and Tc = 0.12J (lower
panel)], the speed of sound increases. This effect arises from
the temperature dependence of the gap 
, which falls to zero
when T → Tc.

In Fig. 7, we plot the damping rates of the k = 2π/(dNx)
collective mode. This is the lowest nonzero wave vector. As
mentioned previously, in the FFLO state, finite damping is
present already at T = 0 in contrast to a BCS state since
the FFLO state has quasiparticle excitations even at T = 0.
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FIG. 5. (Color online) The speed of sound parallel (cx , circles)
and perpendicular (cy , diamonds) to the FFLO vector q = qex as
a function of the polarization P = (N1 − N2)/(N1 + N2). Here,
we vary the chemical potential difference δµ = µ1 − µ2 to vary
the polarization while holding (µ1 + µ2)/2 constant at 3.0J . The
other parameters for the system are T = 0.1J , U = −2.8J , and
q = 12π/(dNx). The gap 
 is solved from the gap equation (13)
for each set of parameters.
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FIG. 6. (Color online) The speed of sound parallel (cx , circles)
and perpendicular (cy , diamonds) to the FFLO vector q = qex as
a function of the temperature T . Here, the system parameters are,
in the upper panel, µ1 = 3.4J , µ2 = 2.6J , U = −2.8J , and q =
12π/(dNx) and, in the lower panel, µ1 = 3.5J , µ2 = 2.5J , U =
−3.0J , and q = 12π/(dNx). Note that the critical temperature when
holding these parameters constant is Tc = 0.15J (upper panel) and
Tc = 0.12J (lower panel).

Increasing the temperature creates more quasiparticle excita-
tions and the damping becomes stronger. The result implies
that, in a broad range of temperatures, a significant portion
of the damping can be attributed to the zero-temperature
quasiparticles as opposed to thermal excitations. The damping
is notably enhanced close to Tc as the excitation gap 


decreases rapidly close to Tc. The largest damping rates in
Fig. 7 are 13% (upper panel) and 15% (lower panel) of the
corresponding collective mode frequency, which means that
the low-frequency collective modes are well defined in the
entire temperature range shown.

B. Quasi-1D lattice

We now turn to quasi-1D optical lattices motivated by recent
theoretical works, which predict that the FFLO state would
be more stable in such geometries [38–42]. We study a
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FIG. 7. (Color online) The damping rate γ of the lowest k mode,
k = 2π/(dNx), in directions parallel (γx , circles) and perpendicular
(γy , diamonds) to the FFLO vector q = qex as a function of
temperature. The parameters for the plots in the upper and lower
panels are the same as in Fig. 6.

three-dimensional cubic lattice with lattice constant d and a
weak hopping in two directions, i.e., Jy = Jz � Jx . The FFLO
q vector is directed along the x axis.

In the quasi-1D setup, the collective mode spectrum along
the different axes scales with the appropriate hopping strength.
Therefore, one observes that cy/cx ∼ Jy/Jx � 1. Now, it is
still true that the FFLO state creates an additional difference
perpendicular to the q vector, but the relative variation in
cy and cz is in the same order of magnitude as in the case
of an isotropic lattice and therefore negligible in comparison
to the anisotropy caused directly by the hopping anisotropy.
Therefore, the analysis of the sound propagation in different
directions does not suggest direct means for observing the
FFLO state in a single experiment in systems that are strongly
anisotropic already by geometry.

However, there is another interesting feature that we find
at the quasi-1D limit. In the following, we have an optical
lattice with NL = 1203 lattice sites, i.e., Nx = Ny = Nz =

FIG. 8. (Color online) The real part of the density response
function L1111(k,ω) for an FFLO gas in a quasi-1D optical lattice
along the x axis. The hopping in the y and z directions is Jy =
Jz = 0.02Jx and, moreover, µ1 = 2.6Jx , µ2 = 1.4Jx , T = 0.05Jx ,
U = −2.7Jx , 
 = 0.3Jx , and q = 8π/(dNx) with q parallel to the
x axis. There are two strongly peaked responses. The lower branch
corresponds to the phonon mode of the previous section, while the
upper branch is caused by quasiparticle excitations centered into a
narrow stripe due to the quasi-1D nature of the system.

120 lattice sites in each direction, and Jy = Jz = 0.02Jx . In
Fig. 8, we plot the density response function L1111(k,ω) for
an FFLO state with µ1 = 2.6Jx , µ2 = 1.4Jx , T = 0.05Jx ,
U = −2.7Jx , 
 = 0.3Jx , and q = 8π/(dNx). We now find
two strongly peaked responses. Both of these branches are
linear for small wave vectors and also gapless. Moreover, the
higher branch vanishes for kd ≈ 0.5. The lower branch corre-
sponds to the collective density mode of a multidimensional
lattice. The higher branch, in turn, is created by the FFLO
quasiparticle transitions, which are illustrated in Fig. 9. This
higher branch is present also in L1212, but with the opposite
sign. Therefore, it tends to cancel, although not exactly, the
contribution of L1111 in χ1 = L1111 + L1212. To illustrate the
effect clearly, we thus plot in this section L1111.

In the quasi-1D limit, the quasiparticle energies are dom-
inated by the kx wave vector and the transverse momentum
only creates a relative variation on the order of Jy/Jx to these
energies. This 1D-like dispersion of the quasiparticles places a
notable restriction to the possible energy and momentum trans-
fers for small energies and momenta. On the other hand, each
possible quasiparticle transition gains a significant weight for
the very same reason by the following argument. Let δE0(kx)
be the energy of transition between an empty and a filled
quasiparticle state with no transverse momentum. This means
that there are filled and empty quasiparticle states at energies
E±(kx + px,py = 0,pz = 0) and E±(px,py = 0,pz = 0) for
which δE0(kx) = E±(kx + px,0,0) − E±(px,0,0). Denoting
then δE(kx) = E±(kx + px,py,pz) − E±(px,py,pz), we find
after some straightforward algebra that δE(kx) − δE0(kx) ∼
Jykxd, for small kx . In other words, all the quasiparticles with
different momenta py and pz but the same momentum px

contribute at a narrow energy interval on the order of Jykxd

and, therefore, we find a strongly peaked response in Fig. 8
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FIG. 9. (Color online) The zero-temperature quasiparticle chan-
nels (for quasiparticles with zero transverse momentum) calculated
for the system of Fig. 8. A cross denotes a transition of a single
quasiparticle and a plus denotes a pair breaking, which involves the
creation of two quasiparticles. At low wave vectors, there is only a
narrow stripe of quasiparticle channels, which become clearly visible
also in the GRPA response.

following the quasiparticle energies of Fig. 9. The strong
quasiparticle response vanishes toward higher wave vectors
as the quasiparticle transitions are spread to a wide energy
range. Moreover, for low wave vectors, the dispersion of the
lower collective mode does not overlap with the quasiparticle
excitations and, therefore, the mode is undamped, unlike in
the higher-dimensional case.

To compare to the results of [22] for a strict 1D system
and a Larkin-Ovchinnikov (LO) ansatz (cosine form order
parameter), it is interesting to notice that such a system has a
similar two-mode structure at low wavelengths as the Fulde-
Ferrell (FF) ansatz (plane-wave order parameter) in a quasi-1D
setup. However, at higher wavelengths, the mode associated
with the excess quasiparticles does not exhibit an additional
Brillouin zone structure in the FF case. The reason is that
this Brillouin zone structure is caused in the LO case by the
oscillatory structure of the quasiparticle density profile [22],
while the FF quasiparticle density profile is uniform.

V. CONCLUSIONS

We have studied the density response of a spin-imbalanced
ultracold Fermi gas in an optical lattice in the FFLO state. By
using the Kadanoff-Baym formalism, we derived the linear
response function for this system in the generalized random-
phase approximation. We then calculated the collective mode
spectrum in a 2D square optical lattice and showed that the
speed of sound is anisotropic due to the anisotropy of the FFLO
pairing. This suggests an experiment in which one monitors the
propagation of a local density perturbation in order to find evi-
dence of the anisotropic pairing mechanism of the FFLO state.

Moreover, we studied the damping of the collective modes
and showed that, despite the presence of quasiparticles in the
FFLO ground state, the collective modes have a relatively
weak damping rate and are thus well defined and physically
meaningful elementary excitations of the system.

We also studied a quasi-1D system. In this case, the
anisotropy of the sound propagation is predominantly caused
by the anisotropy of the lattice itself in contrast to a possible
exotic pairing mechanism. However, the quasi-1D system is
qualitatively different from higher-dimensional systems as it
contains an additional collective-type response of quasiparti-
cles.

To draw future guidelines, a clear way to improve on the
results presented in this paper would be the inclusion of
more elaborate order-parameter structure, in particular, the
LO ansatz with a cosine-type order parameter. In this case,
one can not simplify the problem in momentum space to
the same extent as in Sec. III B of this paper, and a heavier
numerical method in position space is called upon. One would
still anticipate an anisotropic speed of sound for the LO ansatz
as well, based on presenting the state as a superposition of two
FF states, as well as by the arguments of [29].
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