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We study the superfluid properties of two-dimensional spin-population-imbalanced Fermi gases to explore
the interplay between the Berezinskii-Kosterlitz-Thouless (BKT) phase transition and the possible instability
towards the Fulde-Ferrell (FF) state. By the mean-field approximation together with quantum fluctuations, we
obtain phase diagrams as functions of temperature, chemical potential imbalance, and binding energy. We find
that the fluctuations change the mean-field phase diagram significantly. We also address possible effects of the
phase separation and/or the anisotropic FF phase to the BKT mechanism. The superfluid density tensor of the FF
state is obtained, and its transverse component is found always vanishing. This causes divergent fluctuations and
possibly precludes the existence of the FF state at any nonzero temperature.
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I. INTRODUCTION

Systems at low temperature can exhibit diverse quantum-
mechanical phenomena, such as superfluidity, superconductiv-
ity, Bose-Einstein condensation (BEC), Mott insulators, and
various magnetic states. Such phenomena become possible
because of the interplay between interactions and low tem-
perature. Fast progress in the ultracold-gas experiments (see,
e.g., Ref. [1] and references therein) has made these highly
controllable systems attractive for the study of correlated
quantum states. While remarkable experimental achievements
have been reached on different quantum states in various
settings, one state of special interest, namely the inho-
mogeneous superfluidity with nonconstant order parameter,
remains a challenge. Such a possibility was predicted on
spin-population-imbalanced Fermi systems several decades
ago [2,3]. In such a state Cooper pairs can have nonzero total
momenta.

The simplest case of inhomogeneous superfluidity is the
Fulde-Ferrell (FF) state [2], where the order parameter is a
single plane wave, �0e

i2Q·x, with �0 being the magnitude of
the order parameter and 2Q the momentum of the pair [some-
times referred to as the FF(LO) vector]. One may also consider
the Larkin-Ovchinnikov (LO) state [3] with �0 cos(2Q · x),
which can be taken as the superposition of two equal FF modes
with opposite momenta [4]. More generally, the nonuniform
order parameter can be expressed as a superposition of many
possible FFLO vectors by

∑
Q �0Qei2Q·x. All these states are

usually categorized as FFLO states and have been extensively
studied. Although undisputed experimental evidence is still
missing, there have already been several experiments in heavy
fermion superconductors [5–13] and organic superconductors
[14,15] which report signatures consistent with the predicted
FFLO states. The recent realization of imbalanced Fermi
gases with ultracold atoms [16,17] has triggered more interest
in the FFLO states. An experiment with a one-dimensional
(1D) ultracold Fermi gas showed results consistent with the
FFLO state [18], but direct observation, especially in higher
dimensions, remains a goal.

*paivi.torma@aalto.fi

Besides physical parameters such as temperature T , particle
density, and interaction strength, dimensionality may also
affect the properties of the quantum systems significantly. It
is well known that thermal fluctuations become increasingly
strong as dimensionality is lowered. The Mermin-Wagner-
Hohenberg theorem states clearly that there cannot be any
long-range order in uniform 1D or two-dimensional (2D)
systems at T �= 0 [19]. However, the 2D case turns out to
be marginal and a quasi-long-range order can survive at
low temperatures in the presence of interactions or trapping
potential. This suggests that 2D systems can display very rich
phenomena [20].

One peculiar possibility in 2D systems is the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition [21,22]. It de-
scribes a mechanism by which the quasi-long-range order of a
2D system is destroyed by the proliferation of free vortices and
antivortices when the temperature is higher than a critical value
TBKT. Below TBKT the quasi-long-range order is sufficient
for the existence of superfluidity. Furthermore, it has been
theoretically shown that a 2D quantum gas can also form a
BEC in the presence of a trapping potential [23].

Since the properties of 2D Fermi gases can be related to
other important (quasi-) 2D systems, such as graphene [24]
as well as the 2D CuO2 layers, which play a significant role
in high Tc superconductors [25], their scientific importance
extends beyond the field of ultracold gases. There have been
some theoretical studies of various properties of the 2D
imbalanced Fermi gases [26–31]. Here we study the possibility
and properties of the FFLO phase in a 2D imbalanced Fermi
gas, especially the interplay between FFLO states, phase
separation, and the BKT phase transition. A similar question
was posed briefly in a letter by H. Shimahara [32] in the context
of a 2D superconductor based on the Ginzburg-Landau (GL)
theory, but the anisotropic superfluid density (stiffness) was
not taken into account. Recently, for imbalanced Fermi gases,
the GL theory has been applied to the study of the LO state in
various dimensions [33].

In the present paper we discuss this topic by using mean-
field (MF) theory with fluctuations. Our discussion is not
limited to a small order parameter and goes beyond the GL
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theory. A fair amount of relevant theoretical work devoted to
the research of FFLO states has been published under different
conditions and various dimensions. For three-dimensional
(3D) homogeneous imbalanced Fermi gases, the FF state is
expected to exist in a narrow sliver in the phase diagram
[34,35]. In isotropic traps, FFLO features are predicted to
appear only as a boundary layer [36,37], although highly
anisotropic traps yield much larger FFLO phase areas [38,39].
Interestingly, in optical lattices the FFLO state has been
suggested to be stabilized due to nesting of the Fermi surfaces
[40–42]. For the case of (quasi-) 1D system, where no
long-range order exists due to extremely strong fluctuations,
the possibility of the FFLO state was first discussed in the
context of superconductors by using the bosonization of
electron gases [43], and later, for atomic gases, many numerical
simulations show the existence of the FFLO state [44–47],
which is also supported by a few solvable models [48–52],
and several methods have been proposed for the detection
of such 1D FFLO states [53–57]. However, the (quasi-) 2D
imbalanced case with quasi-long-range order is less explored
because of its complexity, especially the marginally strong
fluctuations. Some lattice simulations show that the FF state
exists with medium filling factor, but it is unclear what happens
in the zero-filling-factor limit, i.e., the continuum limit [41].
Because of the recent progress in ultracold atoms, especially
the realization of degenerate quasi-2D atomic gases both for
bosons [58] and fermions [59] by using 1D optical lattices
with lattice depths V0 in the range of V0/h ≈ 10 · · · 100 kHz
(here h is the Planck constant), many important properties
of 2D systems have been observed. For Fermi systems, these
include studies of pseudogap physics [60] and polarons in
imbalanced gases [61]. These ground-breaking experiments
provide a strong motivation to address the issue of polarized
2D Fermi gases with the possibility of the FF state. Although
recent experiments usually study the quasi-2D gases, for the
sake of simplicity, we will focus only on the perfect 2D
case which corresponds to the limit of an infinitely deep
trapping in the third dimension. Therefore, we will not discuss
some interesting phenomena such as the FFLO states in a
dimensional crossover [62–64]. It is also worth mentioning
that, in the opposite limit, i.e., with a very loose trap in
the third direction, a 3D gas with 1D periodic potential not
only stabilizes the possible FFLO states but also enables
the FFLO wave vector to lie skewed with respect to the
potential [65].

This paper is organized as follows. We start, in Sec. II A,
with a MF approximation by calculating the saddle-point
action of the system. Since fluctuations are not negligible
in a 2D system, the fluctuation contribution is included in
Sec. II B. Based on these results we can proceed, in Sec. II D,
to minimize the total thermodynamic potential and examine
the phase diagram and possible phase transitions in Sec. III.
For the sake of simplicity, in the present paper we focus on
the FF state. Since it is commonly accepted that the LO state
is usually more stable and energetically favorable than the
FF state, stability of FF indicates stability of LO as well.
We summarize the structure of the paper in the flowchart of
Fig. 1. Throughout this paper we use the natural units with
� = kB = 1. Some notations are defined in the beginning of
Appendix A.

FIG. 1. (Color online) Framework of the paper, where the yellow
oblate indicates a use of an ansatz, the green rectangles indicate
approximations, while orange diamonds imply different applications
of the theory. The related sections and important equations and figures
are indicated by underlined bold font.

II. THEORETICAL FRAMEWORK

A. Saddle-point action

We assume a system of fermions with two species, namely
spin-up (σ = ↑) and spin-down (σ = ↓). Hamiltonian density
in terms of the creation ψ̂†

σ (x) and annihilation operators ψ̂σ (x)
reads

Ĥ (x) =
∑

σ

ψ̂†
σ (x)(ε̂ −μσ )ψ̂σ (x) −gψ̂

†
↑(x)ψ̂†

↓(x)ψ̂↓(x)ψ̂↑(x).

Here ε̂ is the kinetic energy operator, μσ is the chemical
potential for spin σ (from which we define μ = (μ↑ + μ↓)/2
and h = (μ↑ − μ↓)/2 for later convenience), and g > 0 is
the strength of the attractive contact interaction. By using the
standard Hubbard-Stratonovich transformation (cf. Appendix
A) with the auxiliary field operator �̂ coupled to ψ̂

†
↑ψ̂

†
↓, we

can obtain the effective action,

Seff = V
∑
iqn,q

|�̂(q)|2
g

− Tr ln[βG−1(k,k′)], (1)
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where V = Vβ with V as the volume and β as the inverse of
temperature T , k (as well as q) includes both the Matsubara
frequency ikn and the vector space momentum k, and the
inverse of the Nambu propagator G−1(k,k′) is a 2 × 2 matrix
in the Nambu space given by

(
(ik′

n − εk′ + μ↑)δk,k′ �̂(k − k′)
�̂∗(−k + k′) (ik′

n + εk′ − μ↓)δk,k′

)
.

Here εk is the kinetic energy of a particle with momentum k,
and Tr means the trace over the Nambu space, the momentum
space, and the Matsubara frequencies.

In the MF approximation, the field operator �̂ is replaced by
its saddle-point value, namely the order parameter �s, which
satisfies ∂Seff/∂�∗

s = 0. In the case of balanced Fermi gases,
the momenta of the paired fermions are equal in magnitude but
with opposite directions, such that �s is a constant. However,
with imbalance, the pairs might have nonzero momenta, which
results in the FF(LO) states.

Here we examine the FF state with �s = �0e
2iQ·x. Its phase

part can be absorbed by a momentum shift in the corresponding
Fermi fields ψ̂σ (cf. Appendix A), yielding �̃s = �0 and a
new Nambu propagator, G̃−1

s (k,k′) = G̃−1
s (k)δk,k′ , which is

diagonal in momentum space, and

G̃−1
s (k) =

(
ikn − εQ+k + μ↑ �0

�0 ikn + εQ−k − μ↓

)
, (2)

which can be straightforwardly inverted as

G̃s(k) = 1

(ikn − εQ+k + μ↑)(ikn + εQ−k − μ↓) − �2
0

×
(

ikn + εQ−k − μ↓ −�0

−�0 ikn − εQ+k + μ↑

)
. (3)

It is useful to note that the denominator of G̃s is simply
det(G̃−1

s ) = 1/det(G̃s). Substituting �̃s = �0 and G̃−1
s into

Eq. (A2), we get the saddle-point action which reads, after

Matsubara summation,

Ss = V�2
0

g
−

∑
k

{ln[2 cosh(βEQk)

+ 2 cosh(βhQk)] − βξQk}, (4)

where ξQk = Q2+k2

2m
− μ, EQk =

√
ξ 2

Qk + �2
0 , and hQk = h −

Q·k
m

. Here a quadratic dispersion is assumed for concreteness.

B. Fluctuations

In order to go beyond the MF approximation, we introduce
fluctuations to the order parameter. Conventionally, for the
study of the 2D BKT phase transition, it is convenient to work
with a phase fluctuation via � → �0e

iθ(x). More generally we
could have � → [�0 + η(x)]eiθ(x), where two real fields, η(x)
and θ (x), represent the amplitude and the phase fluctuations,
respectively. For the FF ansatz, we use [�0 + η(x)]e2iQ·x+iθ(x),
such that θ (x) fluctuates around the phase of the FF saddle-
point ansatz.

Notice that while θ (x) is not necessarily small, its deriva-
tives can be taken as small perturbative parameters since we
can expect a smooth phase change of the order parameter
in the space-time when T is not very high and the fluctuation
picture is valid. For this reason, it is more convenient to start the
derivation in the coordinate space rather than in the momentum
space. Also, in order to separate the perturbative part in G−1

more easily, we first apply a phase rotation to the Nambu basis
to absorb the phase of � [66] by the transformation

̂(x) → ˜̂(x) = U (x)̂(x), (5)

with

U (x) =
(

e−iQ·x−iθ(x)/2 0
0 eiQ·x+iθ(x)/2

)
.

This is a generalization of the momentum shift we used in
Sec. II A to get G̃−1

s . Note that there is no mixing between
the two fields of different species since U is diagonal.
Correspondingly,

G̃−1(x,x ′) = U (x)G−1(x,x ′)U †(x ′) =
(

− i
2∂τ θ − ∂τ − ε̂Q+ ∇θ

2
+ μ↑ �0 + η(x)

�0 + η(x) i
2∂τ θ − ∂τ + ε̂−Q− ∇θ

2
− μ↓

)
δ(x − x ′), (6)

where ε̂±(Q+ ∇θ
2 ) means the momentum of the energy operator is shifted by ±(Q + ∇θ

2 ), e.g., ε̂±(Q+ ∇θ
2 )f (k) = f (k)εk±(Q+ ∇θ

2 ).

Meanwhile, the order parameter becomes �̃(x) = �0 + η(x) with the Fourier transform

�̃(q) = �0δq,0 + η(q). (7)

Now we can separate out a perturbative matrix K̃ from G̃−1 = G̃−1
s + K̃ with η and ∇θ as small variables, where

G̃−1
s =

(−∂τ − ε̂Q + μ↑ �0

�0 −∂τ + ε̂−Q − μ↓

)
δ(x − x ′)

is the Fourier transform of Eq. (2), while

K̃(x,x ′) =
(

− i
2∂τ θ − ε̂Q+ ∇θ

2
+ ε̂Q η(x)

η(x) i
2∂τ θ + ε̂−Q− ∇θ

2
− ε̂−Q

)
δ(x − x ′)

=
(

− i
2∂τ θ + i

2m

(∇θ · ∇Q + 1
2∇Q · ∇θ

) − (∇θ)2

8m
η(x)

η(x) i
2∂τ θ + i

2m

(∇θ · ∇−Q + 1
2∇−Q · ∇θ

) + (∇θ)2

8m

)
δ(x − x ′). (8)
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Here in the last line we separated the perturbative ∇θ from the nonrelativistic dispersion ε̂±(Q+ ∇θ
2 ) ≡ −

∇2
±(Q+ ∇θ

2 )

2m
. Note that our

derivation was quite general until this point and most of it is equally valid, for example, in optical lattices with a different
dispersion. From here onwards our formulae apply only in homogeneous space because of the specific quadratic dispersions.

The Fourier transform of K̃(x,x ′) is

K̃(k,k′) =
∑

q

[
η(q)σ1 − qnθ (q)

2
σ3 − iθ (q)

4m
(k2 − k′2 + 3q · Qσ3)

]
δk−k′,q +

∑
q,q ′

θ (q)θ (q ′)q · q′

8m
σ3δk−k′,q+q ′ ≡ K̃1 + K̃2, (9)

where the Pauli matrices σ1 = (0 1
1 0) and σ3 = (1 0

0 −1) operating
in the Nambu space were introduced to make expressions more
compact. Besides, as qθ (q) corresponds to ∇θ , in the Fourier
transformation sense, and qnθ (q) to ∂τ θ , we take them as the
small parameters of the same order as η(q). Therefore, in
Eq. (9), the double-sum term labeled as K̃2 corresponds to the
second-order perturbation, while the remaining part K̃1 is the
first order perturbation.

Now we can obtain the effective action by using
G̃−1(k,k′) = G̃−1

s (k)δk,k′ + K̃(k,k′), with G̃−1
s (k) from Eq. (2)

and K̃(k,k′) from Eq. (9), inserted into Eq. (1) together
with �̃(q) from Eq. (7). Subtracting the saddle-point action
Ss = Seff(�̃s) = Seff(�0δq,0), we find the fluctuation action

Sfl = Seff(�) − Ss

= V
∑

q

�0δq,0η
∗(q) + �0δq,0η(q) + |η(q)|2

g

− Tr ln[1 + G̃sK̃]

= 2V�0η(0)

g
+ V

∑
q |η(q)|2
g

−
∑

k

trG̃s(k)K̃(k,k)

+ 1

2

∑
k,k′

trG̃s(k)K̃1(k,k′)G̃s(k
′)K̃1(k′,k) + · · · , (10)

where only terms up to the second order are kept.
Note that K̃(k,k) = η(0)σ1 − ∑

q
θ(q)θ(−q)q2

8m
σ3 = η(0)σ1 −∑

q
|θ(q)|2q2

8m
σ3, where the term linear in the perturbative fields is

simply η(0)σ1. With two perturbative fields η and θ , the saddle-
point condition (∂S/∂�)�=�s = 0 requires ( ∂S

∂η
)θ=0 = 0 and

( ∂S
∂θ

)η=0 = 0, where the total action S = Ss + Sfl. These ensure
the vanishing of terms linear in η and θ in the expansion of S.
Since the linear term of Sfl is independent of θ , one can obtain
only one equation from η, i.e., constraint on the amplitude of
the order parameter. By collecting the terms linear in η from
Eq. (10), we get

2V�0η(0)

g
−

∑
k

trG̃s(k)η(0)σ1

= 2η(0)�0

[
V
g

+
∑

k

detG̃s(k)

]
,

so the saddle-point condition becomes

V
g

+
∑

k

detG̃s(k) = 0. (11)

This result is equivalent to the gap equation which we get by
taking the partial derivative of the MF action Ss with respect to
�0. On the other hand, the absence of θ in the linear expansion
of the action means that the saddle-point condition is not
enough to determine the phase of the order parameter. We
attribute this to the special form of the FF ansatz. As both
the FF vector and the phase fluctuation appear in the phase
of the order parameter, i[2Q · x + θ (x)], it is always possible
to redefine Q by separating an arbitrary term linear in x from
θ (x). This will cause some ambiguity when we determine Q,
which is to be discussed in detail in Sec. II D.

After removing the linear terms according to Eq. (11), we
can rewrite Eq. (10) in the Gaussian form,

Sfl = 1

2

∑
q

(η∗(q),θ∗(q))D
(

η(q)
θ (q)

)
, (12)

where

D11 = 2V
g

+
∑

k

trG̃s(k)σ1G̃s(k + q)σ1,

D12 = −D21 = i
∑

k

trG̃s(k)JG̃s(k + q)σ1, (13)

D22 =
∑

k

[
q2

4m
trG̃s(k)σ3 + trG̃s(k)JG̃s(k + q)J

]
,

and

J ≡ iqnσ3

2
− (k + q)2 − k2 + 3q · Qσ3

4m
.

Equations (12) and (13) are generalizations of the results
of Eq. (54) in Ref. [66] (we believe the results there were
accidentally divided by 2 twice) to include the possibility of
the FF state.

C. Phase fluctuation and superfluid density

To study the BKT phase transition, it is customary to
include only the phase fluctuation and therefore set η = 0.
As a result, we now focus only on D22 [cf. the form of
Eq. (12)]. Its Matsubara summation is complicated; however,
when the phase fluctuation is smooth enough the momentum
q can be taken as a small parameter. Since D22 vanishes at the
low-frequency and long-wavelength limit, i.e., iqn → 0 and
q → 0, we expand the fluctuation action Eq. (12) with only
D22 �= 0 and keep the leading (quadratic) order of q, and get
an approximation for Sfl as

Sw = V
2

∑
q

(
κq2

n + ρ̃ij qiqj

)|θ (q)|2. (14)
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The expressions for κ and ρ̃ij are (for an equivalent derivation
based on the direct expansion of the saddle-point action, cf.
Appendix B),

κ = 1

V

∑
k

�2
0Xk + βEQkξ

2
QkYk

4E3
Qk

, (15)

ρ̃ij = 1

V

∑
k

[
δij

4m

(
1 − ξQk

EQk
Xk

)
− βYkk

2
i δij

4m2

− 3ZkkzQδizδjz

]
− 9κQ2δizδjz

4m2
, (16)

where the direction of Q is chosen as the z axis, and

Xk ≡ sinh(βEQk)

cosh(βEQk) + cosh(βhQk)
,

Yk ≡ 1 + cosh(βEQk) cosh(βhQk)

[cosh(βEQk) + cosh(βhQk)]2
,

and

Zk ≡ βξQk

4EQkm2

sinh(βEQk) sinh(βhQk)

[cosh(βEQk) + cosh(βhQk)]2
.

Definitions of ξQk, EQk, and hQk were given after Eq. (4).
Sw describes a Bose gas of spin waves with an anisotropic

superfluid density tensor ρ̃ij . As we know from the isotropic
case where ρ̃ij = ρ0δij , the spin-wave contribution to the ac-
tion has a spectrum ωw(q) = vw|q| with the wave speed vw =√

ρ0/κ , and the thermodynamic potential �w = 1
V

∑
q ln[1 −

e−βωw(q)] [67]. The BKT transition temperature is determined
by [22,68]

TBKT = π

2
ρ0(TBKT). (17)

For the FF state with diagonal but anisotropic superfluid
density, ρ̃ij = ρ̃iiδij , we have a similar �w but with ω̃w(q) =√∑

i ρ̃ii q
2
i /κ. However, the relation in Eq. (17) is not directly

applicable for anisotropic ρ̃ij . Since the BKT criterion is based
on a thermodynamic argument of energy and entropy [22],
and in the diagonal but anisotropic case the energy associated
with the vortices is proportional to the geometric mean of
the diagonal elements in the superfluid density tensor, i.e.,√

�iρ̃ii in 2D [69], it is natural to expect correspondingly
TBKT = π

2

√
�iρ̃ii(TBKT). The interplay between the FF state

and the BKT phase transition is one of the main interests of
this paper.

D. Thermodynamic potential and equations

The total thermodynamic potential � = �s + �w = (Ss +
Sw)/V is given by

� = − 1

V
∑

k

{ln[2 cosh(βEQK) + 2 cosh(βhQK)] − βξQK}

+ �2
0

g
+ 1

V
∑

q

ln[1 − e−βω̃w(q)]. (18)

In this expression the assumption of smooth and slowly varying
phase fluctuation does not take into account the presence of

vortices and antivortices. In general, the phase fluctuations can
be separated into the sum of a static vortex part and a spin-wave
part [67], but the vortices can be assumed to be relatively few
in number when T is not high. Although the vortex part might
be relatively more important at very low temperatures, where
the spin-wave part is suppressed but a vortex lattice can be
formed, the vortex contribution to the number equations can
still be (typically) small. Therefore, we choose to focus on the
spin-wave fluctuations only. However, we emphasize that the
effect of vortices is indeed included in the present study since
the BKT transition temperature given by Eq. (17) is based
on the proliferation of free vortices. At T > TBKT, the vortex
contribution will become large, which indicates the collapse
of the spin-wave description.

From �, we can obtain several equations [Eqs. (19)–(22)] to
solve. The gap equation (∂�s/∂�0)μ,β,h,Q = 0, without fluc-
tuation contribution according to the saddle-point condition,

2

g
− 1

V

∑
k

Xk

EQK
= 0. (19)

When �0 = 0, there is no need to consider Q, which is in the
phase of �. With �0 �= 0, a nonzero Q means the FF state.
However, as shown in Sec. II B, the term linear in θ in the
perturbative expansion of Sfl vanishes intrinsically. Therefore,
the equation for Q does not come directly from the saddle-
point condition. In order to determine Q, there are two possible
approaches.

First, by taking the FF vector as the phase part of the order
parameter, which could be treated the same as the amplitude
part �0, we can still determine Q directly from the saddle-point
action in the same way as �0 is determined from the gap
equation, i.e., (∂�s/∂Q)β,μ,h,�0 = 0, or, explicitly,

1

V

∑
k

⎡
⎣Q

m
−

sinh(βEQK) ξQkQ

EQKm
− sinh(βhQK) k·Q

mQ

cosh(βEQK) + cosh(βhQK)

⎤
⎦ = 0.

(20)

Note that, although it does not conflict with the fact that the
term linear in θ vanishes in the expansion of the fluctuation
action, Eq. (20) might turn out to be trivial, if its left-hand
side vanishes intrinsically as a special property of the FF state.
Alternatively, as we cannot obtain the constraint of Q from the
saddle-point condition, it is reasonable to use the minimum of
� rather than �s as the criterion for Q. Therefore, we have

(∂�/∂Q)β,μ,h,�0 = 0. (21)

Usually the first approach is much simpler and will be used
throughout this paper, but Eq. (21) will be discussed when
necessary.

In addition to these, we also have the number equations

n = −(∂�/∂μ)β,h,�0,Q, δn = −(∂�/∂h)β,μ,�0,Q, (22)

where n = n↑ + n↓ and δn = n↑ − n↓ are the total particle
density and the density difference, respectively. Note that
the fluctuations affect the number equations. The partial
derivatives are results of the standard thermodynamic relations
n = −(∂�/∂μ)β,h and δn = −(∂�/∂h)β,μ expanded by using
the chain rule and noting that the partial derivatives of �
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SHAOYU YIN, J.-P. MARTIKAINEN, AND P. TÖRMÄ PHYSICAL REVIEW B 89, 014507 (2014)

with respect to �0 or Q vanish according to the saddle-
point conditions. [In the way we have phrased the problem,
∂�w/∂�0 is not included in accordance with the saddle-point
condition for the order parameter. For the partial derivative
with respect to Q, if the constraint in Eq. (20) is used, then
the same argument for ∂�w/∂�0 also applies to ∂�w/∂Q.]
On the other hand, Diener et al. found that including more
partial derivatives by forcing the gap equation to include the
fluctuation term (referred to as the “self-consistent feedback of
Gaussian fluctuation on the saddle point”) will either violate
the Goldstone’s theorem in the Cartesian representation (with
fluctuation as � = �0 + η) or result in ultraviolet divergence
in the polar representation (with � = �0e

iθ ) [66].

III. PHASE DIAGRAM OF 2D FERMI GASES

For our aim to examine the BKT phase transition of an
imbalanced system with the FF ansatz, we have to specify
some details more concretely. As the BKT phase transition
appears in 2D systems, the 2D contact-interaction coupling
constant is renormalized like (see, e.g., Ref. [67])

1

g
= 1

V

∑
k

1

2εk + Eb

,

where Eb is the 2D binding energy (taken as positive) of a
two-particle bound state, which can be related to the 2D s-wave
scattering length as = �/

√
mEb. The two spacial dimensions

will be denoted as x and z, and then

�w = 1

V
∑

q

ln
(
1 − e−β

√
ρ̃xx
κ

q2
x+ ρ̃zz

κ
q2

z

)
with the explicit expressions

ρ̃xx = 1

V

∑
k

[
1

4m

(
1 − ξQk

EQk
Xk

)
− βYkk

2
x

4m2

]
,

ρ̃zz = 1

V

∑
k

[
1

4m

(
1 − ξQk

EQk
Xk

)
− βYkk

2
z

4m2
− 3ZkkzQ

]

− 9κQ2

4m2
.

It turns out that in the continuum limit the 2D integral in
�w can be carried out explicitly, with the following result:

�w = −ζ (3)κ

2πβ3
√

ρ̃xx ρ̃zz

,

where ζ is the Riemann ζ function. It is clear that a meaningful
spin-wave-like phase fluctuation requires that both ρ̃xx and
ρ̃zz are positive [κ is positive definite according to Eq. (15)].
This is quite natural since with negative superfluid density in
either direction, the fluctuation in the corresponding mode can
proliferate to decrease the energy of the system, such that any
negative superfluid density results in the dynamical instability.

We can solve Eqs. (19)–(22) self-consistently with given
T , Eb, and δn as input parameters. However, it is easier to
calculate with fixed h, as we then do not need to solve the
equation for δn. In the end it is simple, if required, to map the h-
dependent results to the δn-dependent ones. For the numerical
calculations we choose the particle mass as m = 1/2 and the

total particle density n = 1/2π such that the 2D Fermi energy
EF = 2πn/2m = 1.

A. Without the FF state

As is known the FF(LO) state, if it exists, often occupies
only a very narrow region of the parameter space. Therefore,
we start the calculation with Q = 0. In this case the angle
dependence in momentum integrations can be removed, which
reduces the numerical complexity. Then also ρ̃ij = ρ̃0δij is
isotropic, with

ρ̃0 =
∫

kdk

2π

[
1

4m

(
1 − ξQk

EQk
Xk

)
− βYkk

2

8m2

]
Q=0

,

and �w reduces to �w = −ζ (3)κ/(2πβ3ρ̃0).
Before proceeding to numerical calculations, we first

clarify the phase structure qualitatively. The phase diagram is
determined by the minimum of the thermodynamic potential.
At high T and small Eb, pairing is not favored, and the
minimum of � lies at � = 0, which we refer as �N, and
the system is in the normal phase (NP). With decreasing T or
increasing Eb, the minimum is at nonzero �, and the pairing
sets in. At the MF level, the phase diagram can be qualitatively
understood by a small-�0 expansion of � around the phase
transition,

� = �N + a�2
0 + b�4

0 + O
(
�6

0

)
, (23)

where a and b are functions of the system parameters obtained
as a = 1

2
∂2�

∂�2
0
|�0=0 and b = 1

24
∂4�

∂�4
0
|�0=0.

1. Mean-field results

First we consider the easier MF case by neglecting the
fluctuations. In the balanced case,

b =
∫

d2k

{
sech2(βξQk/2)[sinh(βξQk) − βξQk]

16ξ 3
Qk

}
Q=0

is positive definite. On the other hand, a changes from positive
to negative continuously with decreasing T or increasing Eb.
When a > 0, the minimum is at �0 = 0, i.e., the normal state;
while for a < 0, the minimum starts to deviate from the normal
state so �0 ≈ √−a/2b. Such a phase transition into paired
states takes place at a = 0 and is continuous.

The imbalanced case is more complicated as b can become
negative at large h. In this case, higher-order coefficients are
positive and guarantee that the minimum of � is at finite
�0. With negative b, if a � 0, the gap equation has only one
nontrivial solution corresponding to the global minimum of �s,
and all the particles are paired with nonzero �0 as the BCS
state. In order to conform to usual terminology we call it simply
the superfluid (SF) state or phase, although, strictly speaking,
superfluidity implies nonzero superfluid density and phase
coherence rather than just a nonvanishing gap parameter. But
if a > 0, the gap equation may have two nontrivial solutions,
with the smaller one corresponding to a local maximum and the
larger one to a local minimum. If b is sufficiently negative, this
local minimum can be lower than �N and becomes the global
minimum. This phase transition taking place at nonzero �0 is
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FIG. 2. (Color online) Mean-field phase diagrams as functions of
Eb and T without the FF ansatz at h = 0.5 and h = 1, respectively.
The phase boundaries plotted as solid curves correspond to first-order
phase transitions, while the dashed curves correspond to continuous
phase transitions. The tricritical point is indicated by a brown dot
where three different phases meet, i.e., the normal phase (NP) (white),
the phase separation (PS) region (between the red and the blue
curves), and the superfluid (SF) phase. The contours show the values
of superfluid density (in the units of total density, n = 1/2π ) in the
PS region and the SF phase, which is positive definite and approaches
n/2 as T → 0 in the SF phase, since then all particles are fully paired.
In the PS region it can be larger than n/2 because the superfluid only
takes part of the spatial volume. We emphasize that the superfluid
density shown here is a MF result and its nonzero value does not
necessarily mean superfluidity. The phase boundaries agree with the
results in Ref. [28].

of first order. Such a possibility begins at the point where both
a and b vanish, i.e., the tricritical point [35]. The MF phase
diagrams are shown in Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.10
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0.08

0.07

0.06

0

FIG. 3. (Color online) The thermodynamic potential � (with �w

included) as functions of �0 at h = 0.5 and T = 0.1, with Eb =
0.2 (red) for the NP with only one minimum at �0 = 0; Eb = 0.24
(orange) for the NP with an unstable local minimum at �0 ≈ 0.68;
Eb ≈ 0.26 (green) for the NP-PS boundary where two minima �N and
�(�0 ≈ 0.73) are equal; Eb ≈ 0.29 (blue) for the PS-SF boundary
with two equal minima �N and �(�0 ≈ 0.74); Eb = 0.35 (purple) for
the SF phase with �0 ≈ 0.82 while �N becomes a local minimum;
and Eb = 0.6 (black) for the SF phase with �0 ≈ 1.1 as the only
one minimum. Note that when all the particles are in the NP, μ is
completely determined by T and h (here μ ≈ 1.0); consequently, �N

is constant.

When T is below the tricritical value, there is a region of
phase separation (PS) where no solution satisfying both the
gap and the number equations can be found. In fact, the NP
and the SF phase coexist there. The ratio of particles in these
two phases is constrained by the total number density. This
PS region has one boundary with the pure NP where all the
particles stay unpaired and another boundary with the pure SF
phase where all the particles are paired. Between these two
boundaries, the two minima of � remain the same, as required
by the phase equilibrium condition of both phases having the
same pressure. In Fig. 3 the curves of �(�0) demonstrate
these cases explicitly. Here we plot the total thermodynamic
potential instead of the saddle-point value. It turns out that at
the temperature T = 0.1 the effect of fluctuations is so small
that the contribution to � is very small (cf. the boundaries
shown in Fig. 4). In this sense Fig. 3 is a useful reference
for both the present and the next subsections since the way
to determine the boundaries of the phase-separation region
is the same with and without fluctuations. We emphasize
that, although our qualitative discussion about the phase
transition used small-�0 expansion, all the numerical results
presented here and hereafter are based on full calculations of
the thermodynamic potential for each case.

2. Including fluctuations

The above arguments are qualitatively valid when contribu-
tions from the phase fluctuations are included. Obviously, the
phase fluctuations in the order parameter should not change
�N as ρ and �w vanish in the NP. However for the NP-PS
boundary, the inclusion of the phase fluctuations for the paired
states may cause a history-dependent behavior: The boundary
depends on from which phase the system approaches it.
Because the existence of pairs is the premise of the phase
fluctuation (in our model that focuses on phase, not amplitude
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FIG. 4. (Color online) Phase diagrams including the fluctuations.
The MF phase boundaries (thin curves) and the tricritical points are
shown for comparison. The new PS-SF boundaries (thick blue) show
the strong effect of fluctuations. The difference between thick and
thin red curves shows the history dependence of the NP-PS boundary.
The PS region does not end with a tricritical point but with a region
where no solution can be found to satisfy the equilibrium condition, as
indicated by pink dotted lines. Besides the solid curves corresponding
to first-order phase transitions and the dashed curves to continuous
phase transitions, the black dot-dashed curves correspond to the
topological BKT phase transition with TBKT obtained by Eq. (17).
The curves of TBKT bend in the PS region as the corresponding
superfluid density increases in the superfluid portion. The colored
region shows the values of nonzero order parameter �0, but only the
part below TBKT can be taken as a superfluid, while the remaining
part is the pseudogap phase where no phase coherence exists and the
superfluid density vanishes in accordance with the BKT mechanism.
The first-order NP-SF phase boundaries are not quite smooth because
of the numerical difficulty to find the exact locations of this phase
transition.

fluctuations), if the system starts from the NP side, all particles
are unpaired such that no contribution from fluctuation should
be included, and the boundary condition is �N = �s(�0),
which is exactly the MF case. However, if the boundary is

approached from the PS region, the fluctuation contribution to
the SF state is present since the pairs already exist. Then the
equilibrium requires �N = �(�0). Whether or not we include
�w gives rise to a different NP-PS boundary. Because �w

is negative definite, �(�0) < �s(�0), the NP-PS boundary
obtained by �N = �(�0) lies at smaller Eb or higher T

compared to the MF case, and the difference increases at
larger T as �w becomes more significant. As all the pairs
break up across the boundary, the disappearance of fluctuation
contribution results in a sudden increase from �(�0) to
�s(�0).

However, if the fluctuation contribution to the thermo-
dynamic potential happens to be positive (distinct from the
spin-wave-like fluctuation, which is negative definite), there
will be no such history dependence. In that case, the fluctuation
makes the paired state less favored and the boundary is always
obtained by �N = �(�0), which lies at larger Eb or lower
T . On the other hand, the PS-SF boundary is independent of
how it is approached, unless there is some contributions to �N

which changes discontinuously across this boundary.
Theoretically, such a sudden change of � across the

boundary would be quite general, even if we were to consider
interaction effects more carefully. Because the order parameter
changes discontinuously in the first-order phase transition,
the change of fluctuation contributions in one phase is also
discontinuous across the boundary. It would be unlikely
that this discontinuity could be exactly compensated by
contributions of the other phase which is continuous across
the boundary (e.g., the normal state continuing from NP
to PS). Strictly speaking, in the NP amplitude fluctuations
might result in pairs which would be associated with the
phase fluctuations. The possibility to create pairs due to
the fluctuations increases dramatically as the boundary is
approached because the difference between the two local
minima of � decreases to zero. This effect is even stronger at
high temperatures. Therefore, we expect the NP-PS boundary
should be determined by �N = �(�0). However, because
here we only focus on the phase fluctuations for the study
of the BKT mechanism, the amplitude fluctuations are beyond
the scope of this paper. Furthermore, a better treatment of
the normal states including the effects of interactions will
certainly modify the NP-PS and the NP-SF boundaries as
well. In strongly interacting systems, proper description of
the normal state can be nontrivial and various Fermi-liquid,
pseudogap, etc., approaches have been developed. A more
elaborate description of the normal phase might remove the
history-dependent behavior discussed above.

The phase diagrams including the fluctuations are shown
in Fig. 4. As is clear, the effect of fluctuations is significant
compared to the MF results. At high T , a considerable region
where paired states could exist in the MF case turns into pure
NP due to the fact that the number equations could not be
simultaneously satisfied. This region expands with increasing
temperature as the fluctuations become large. Consequently,
the SF phase sets in with nonzero �0, as can be seen from the
color scales in Fig. 4, thus the NP-SF phase transition becomes
of first order, but note that there is no phase coexistence at this
first-order phase transition. Most interestingly, the tricritical
point no longer exists. Instead, the PS ends with a region
where we could not find any solution satisfying the equilibrium
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condition. Furthermore, we found the NP-PS and the PS-SF
boundaries can overlap if h is small. This means that, with the
same T and Eb, there can be two sets of solutions to Eq. (19)
and the phase equilibrium condition. One solution corresponds
to the number constraint Eq. (22) satisfied in the NP, while the
other corresponds to the number equation satisfied in the SF
phase.

We attribute the disappearance of the tricritical point to
different fluctuation contributions to the coexisting phases.
This result is distinct from the 3D case [35], where the
tricritical point would play an important role in the phase
diagram even at nonzero temperatures. In addition to the
dimensionality, the main difference is that the fluctuations
used in Ref. [35] were of the Nozières-Schmitt-Rink (NSR)
form, which considers the pair fluctuations on the second-
order phase boundary where �0 is small. However, on the
first-order boundaries, where the order parameter changes
discontinuously, the NSR fluctuation is not suitable. In general,
the NSR form is applicable when fluctuations are small. In this
respect, the 2D and the 3D systems differ. The NSR fluctuation
is widely used in 3D cases where the fluctuation is relatively
weak, but the phase fluctuations which affect the first-order
phase transition become much more important for the 2D
cases.

B. With the FF state

Now we consider the FF state by turning on Q as a free
parameter. The previous case without including the FF state
will be referred to as the non-FF case for the sake of simplicity.
We can discuss the problem qualitatively as before by adding
to Eq. (23) the spatial variation of � as

� = �N + a|�|2 + b|�|4 + c|∇�|2 + d|∇�|4 + · · · ,

(24)

where the expansion is up to quartic order, though even higher-
order expansion is possible [70]. With the FF ansatz �0e

2iQ·x,
the new terms correspond to an expansion in Q. The quadratic
term c|∇�|2 plays the role of the kinetic energy of the pairs.
Similarly to the non-FF case, the signs of c and d determine
the minimum of � along the Q axis. However, as now �

depends on both �0 and Q, a simple discussion with only one
parameter is not enough. Furthermore, we find numerically
that the coefficient c of the total thermodynamic potential is
always positive in the low-temperature range of interest, which
means that, unlike a 3D mass-imbalanced system [71], in the
present system there is no Lifshitz point. Consequently, it is
impossible to have the FF state starting from Q = 0 and a
complete calculation with Q as a free parameter is necessary.
We will start with the simpler case at zero temperature and
then continue to the finite-temperature case.

1. Zero-temperature limit

The zero-temperature limit, although impossible to be
realized experimentally, provides clear physical insight and
useful limiting behavior at low temperatures, since many
calculations can be carried out analytically. At T = 0, �w

vanishes and � reduces to

�T 0 = �2
0

g
− 1

V

∑
k

[Max(EQK,|hQK|) − ξQK]

=
∫

kdk

2π

(
�2

0

2εk + Eb

− EQK + ξQK

)

+
∫

kdk

2π

(∫ θ1

0
+

∫ π

θ2

)
dθ

π
(EQK − |hQK|), (25)

where θ1,2 = �[arccos(m(h±EQK)
kQ

)] such that |hQK| > EQK is
satisfied within the ranges [0,θ1) and (θ2,π ]. Here � means
taking the real part. It is easy to find that, as Q → 0,
θ1 → 0 and θ2 → π�(Ek − h) with Ek =

√
ξ 2
k + �2

0 , ξk =
k2

2m
− μ and � is the Heaviside step function. The first

integral, being angle-independent and analytically integrable,
integrates to m

8π
[2�2

0 ln ξQ+EQ

Eb
− (ξQ − EQ)2]. As Q → 0, the

non-FF expression for �T 0 is consistent with the result in
Ref. [26].

The phase diagram is determined by the global minimum
of �T 0 in the �0-Q plane. There can be three different local
minima, namely �N of the normal state with �0 = 0, �SF of
the paired state with �0 �= 0 but Q = 0, and �FF of the FF state
with both �0 and Q nonzero, each of which can become the
global minimum depending on the parameters. Coexistence
is possible between the SF and the FF phases, as well as
between the SF phase and the NP. Such coexistence is not
possible between the NP and the FF phase since in the cases
we have studied �FF is always lower than �N when the FF
state exists. This issue has been discussed more extensively in
Ref. [72]. Figure 5 shows various examples of the contour plots
of the thermodynamic potential �T 0. It should be noted that
the FF state sets in with infinitesimal �0 but nonvanishing Q.
However, any state with �0 = 0 should be taken as the normal
state since a nonzero Q has no contribution when �0 = 0.
Therefore, the corresponding NP-FF phase transition is still
continuous, which differs from the non-FF case and is not as-
sociated with a negative coefficient c in Eq. (24). The complete
phase diagram at T = 0 is shown in Fig. 6, from which we
see the FF state exists in a horn-shaped area and gives way to
the normal state when h or Eb becomes large, resulting in two
parts of the PS region: one as the coexistence of the FF and the
SF phases (PSF) at smaller h and Eb and the other of the NP
and the SF phase (PSN). This phase diagram can be taken as the
generalization of the previous results of 2D imbalanced Fermi
gases in homogeneous case [27] or in lattices [73]. While these
studies did not consider FFLO states, they found similar phase
boundaries as we do in Fig. 6 with their partially polarized
phases replaced by our FF phases at small imbalance.

The superfluid density at T = 0 can also be calculated. It
is important to note that

ρ̃T 0
xx = n

4m
−

∫
kdk

2π

k(sin θ2 + sin θ1)

4mQπ
≡ ∂Q�T 0

4Q
,

which means that the FF state whose Q satisfies ∂Q�T 0 = 0
always has a superfluid density tensor with a vanishing
component along the direction perpendicular to the FF vector.
This property of the transverse superfluid density (stiffness)
has been pointed out in Refs. [4,33] based on the GL theory
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FIG. 5. (Color online) Contour plots of �T 0 at h = 0.8 for various Eb corresponding to different phases at T = 0. (a) Eb = 0.3 (NP);
(b) Eb = 0.5 (FF); (c) Eb = 0.6 (PSF); (d) Eb = 0.7 (PSN); (e) Eb = 0.9 (SF). For the acronyms of the phases see the text. The global
minima are indicated by red dots. Similar results have been shown in Ref. [72]. The pit close to the Q axis in (a) indicates the emergence
of a FF state in (b) at finite Q. The contour labels are the values of �T 0 divided by n = 1/2π , i.e., the thermodynamic potential per
particle.

and a symmetry argument. It means that there is no energy
cost to generate fluctuations along the x direction, which can
be understood from the divergence of �w as ρ̃xx = 0 in the
denominator. It is not a serious problem at T = 0 as the

thermal fluctuation is not considered; however, a vanishing
or small superfluid density will cause difficulties when we use
the spin-wave description of the phase fluctuations at finite
temperatures.
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FIG. 6. (Color online) Phase diagram of a 2D imbalanced Fermi
gas at T = 0. Here NP is the normal phase, PSF is the phase separation
region with the FF and the superfluid (SF) states coexisting, while in
PSN the SF phase and the NP coexist. The phase boundaries plotted
as solid curves correspond to first-order phase transitions, while the
dashed curves correspond to continuous phase transitions. The colors
in the FF-related regions show the values of Q of the FF states.

2. Finite temperature

Similarly to the non-FF case, we first present the MF results
with the FF ansatz in Fig. 7, which can be taken as finite-
temperature extensions of the results of Fig. 6. Compared to
the non-FF cases, the PSF regions are shifted a bit towards the
SF-phase side and also shrink slightly. On the MF level, the
range of Eb with the possibility of FF state shrinks smoothly
with increasing T , and at higher temperatures the FF states
can survive around the FF-PSF boundaries, where the peaks of
�0 are located (but, in general, the values of Q increase with
Eb). However, in order to draw more reliable conclusions, we
must include the fluctuations for such a 2D system.

Being aware of the vanishing transverse superfluid density
at T = 0, we first check the behavior of the superfluid density
ρ̃ at nonzero temperatures, which has a significant effect on
the phase fluctuations. Figure 8 shows the T dependence
of ρ̃xx and ρ̃zz, as well as κ given in Eq. (15), of a FF
state, where we see that ρ̃xx always vanishes and ρ̃zz can
become negative at high T , while κ is positive definite. In
fact, we find numerically that the relation ρ̃xx = ∂Q�s

4Q
is still

true at finite temperature, such that the FF state always has
divergent transverse fluctuations if the FF vector is determined
by Eq. (20), i.e., the condition (∂�s/∂Q)β,μ,h,�0 = 0. It is
interesting to explore this property from another angle. Starting
with the vanishing transverse superfluid density of the FF
ansatz, which may be argued based on symmetry, the relation
∂Q�s = 4Qρ̃xx means that the left-hand side of Eq. (20)
vanishes identically for a FF state. Then the absence of terms
linear in θ in the expansion of Sfl is a natural consequence:
Since the transverse fluctuations are unconstrained, it is
physically justified to be unable to determine the value of Q

from the saddle-point condition. Therefore, all these special
properties of the FF ansatz are connected.

In this respect, we try to determine Q by Eq. (21) rather
than (20), and the results are shown in Fig. 9. While ρ̃xx

is then nonzero it is still quite small. As a rough estimate,
if we take ρ̃xx depending on T linearly at low tempera-
tures, where the nonzero ρ̃zz and κ change very little, then
�w ∝ T 3κ√

ρ̃xx ρ̃zz
is approximately proportional to T 5/2, which

vanishes at T = 0 but increases very quickly with T . Such an
increase is significant also due to the small coefficient of the
proportionality ρ̃xx(T ) ∼ 1.5 × 10−2T . For this reason, we do
not expect this different approach to change our conclusions
considerably.

Because of the divergent fluctuations, it is impossible to
determine part of the finite-temperature phase diagram where
the fluctuation contributions to the FF state should be included,
such as the NP-FF and the FF-PSF boundaries. However, the
PSF-SF boundary does not have such a numerical difficulty
since the FF state is empty and its phase fluctuations do
not need to be included. Despite the incompleteness, we still
present our results in Fig. 10 for various h. Differing from the
non-FF case, the PS-SF boundary now starts with a PSF-SF
segment at low temperatures, which lies to the right of the
corresponding PS-SF boundary in the non-FF case. Then this
PSF-SF segment gradually approaches the latter and finally
merges into it as the FF state gives way to the normal state.
We find that for h = 0.2,0.3, and 0.4, the PSF-SF boundaries
extend above the corresponding TBKT obtained in the isotropic
non-FF case. This suggests that the effect of anisotropic
superfluidity might be relevant to the BKT mechanism.

It should be pointed out that in the PSF region there are
two superfluid densities associated with the FF (ρ̃FF) and the
SF phases (ρ̃SF). Correspondingly, there are two critical tem-
peratures, T FF

BKT and T SF
BKT, respectively. Here ρ̃SF is isotropic

and qualitatively the same as the non-FF case, while for
ρ̃FF the criterion should be T FF

BKT = π
2

√
ρ̃FF

xx (T FF
BKT)ρ̃FF

zz (T FF
BKT).

Since ρ̃FF
xx = 0, T FF

BKT would be zero (or almost zero, if
there can be some mechanisms to suppress the marginally
divergent fluctuation of the FF state, e.g., finite-size effects or
broken symmetries). Even if Q is determined from the full
thermodynamic potential, see Fig. 9, we can estimate T FF

BKT to
be less than 10−3.

Because of the very strong phase fluctuations from the
vanishing ρ̃FF

xx , we expect the FF state to be destroyed at
very low T . Since above TBKT any quasi-long-range phase
coherence could not survive, a constant Q in the phase of a
plane-wave ansatz characterizing the FF state is not consistent
with the BKT mechanism. Consequently, it is likely that the
FF-PSF boundary will probably be replaced by the NP-PS
boundary of the non-FF case. This is supported by the fact
that the difference between �FF and �N is quite small, and
the order parameter �0 of the FF state (�FF) is not very large.
Therefore, it is reasonable to expect that the FF state will
be easily replaced by the normal state when the fluctuations
are strong. Meanwhile, the isotropic SF phase will behave
similarly as in the non-FF case, and T SF

BKT should behave as
TBKT in Fig. 4. Then the behavior of the system will be the
same as in the non-FF case.

Strictly speaking, TBKT sets a threshold for the fluctuation
where the assumption of the smooth fluctuations of a spin-wave
form, or, equivalently, the small-q expansion of Sfl, turns out
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FIG. 7. (Color online) Left: Mean-field phase diagrams as functions of Eb and T with the FF ansatz at h = 0.5 and h = 0.8, respectively.
The new boundaries after including the FF ansatz are shown by thick curves, while the phase boundaries (thin curves) and the tricritical points
in the corresponding non-FF case are shown for comparison. Since in the case with h = 1 the FF state does not exist at zero temperature (cf.
Fig. 6), the case with h = 0.8 is used instead, where the PSN region exists at T = 0. The phase boundaries plotted as solid curves correspond
to first-order phase transitions, while the dashed curves correspond to continuous phase transitions. Middle and right: The density plots for the
values of �0 and Q of the FF states, zoomed in for the FF-related regions.

to be invalid due to the proliferation of free vortices which
destroy the (quasi-) long-range order and the phase coherence.
As was predicted by Nelson and Kosterlitz [68] in the isotropic
case, the superfluid density jumps from ρ = 2TBKT/π to
zero as T crosses TBKT from below. This has been observed
experimentally in 2D 4He films [74] and recently also in cold
Bose gases [75]. We expect it is also true for the anisotropic
FF state. On this account, above TBKT the action in Eq. (14)
is no longer of the spin-wave form. Since the FF state is
unstable at finite temperature due to the fluctuations, the
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FIG. 8. κ , ρ̃xx , and ρ̃zz of the FF state as functions of T . The
parameters are chosen from the FF-PSF boundary at T = 0. T ranges
from 0 to where the FF state can still be found.

PSF-SF boundaries shown in Fig. 10 are also vulnerable;
consequently, the region between the PSF-SF boundary (thick
green curves) and the PS-SF boundary (thick blue curves) in
the non-FF case would be affected by the instability. On the
PSF side across the PSF-SF boundary where particles start to
occupy the FF state, the fluctuations at finite temperatures will
destroy the FF state, and a new equilibrium between the NP
and the SF phase is established instead.

As a final remark, taking the BKT mechanism into account,
our results with the fluctuations above TBKT shown in the phase
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FIG. 9. The same as Fig. 8 but with Q determined by Eq. (21).
The transverse superfluid density ρ̃xx is magnified 100 times for the
sake of clarity.
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FIG. 10. (Color online) By including the FF state, newly obtained PSF-SF segments (thick green) for various h are added to the phase
diagrams of the corresponding non-FF cases. The non-FF results are plotted as in Fig. 4, namely with the red curves for the NP-PS boundaries
and the blue curves for the PS-SF boundaries, in which the thin curves are the MF results and the thick ones include the fluctuations. Also,
the pink dotted lines indicate the regions where no solution satisfies the phase equilibrium condition, and the black dot-dashed curves are T SF

BKT

obtained in the non-FF case. Because the PSF-SF segments are quite close to the PS-SF boundaries of the non-FF case, we only focus on the
relevant part in each plot to demonstrate the difference clearly. In these plots h ranges from 0.1 to 0.6 as the PSF-SF boundary does not exist
when h � 0.7.

diagrams are not quantitatively reliable because the small-q
expansion becomes less reliable, although qualitatively they
still give some useful information. Our calculations already
show that the regions of the phase diagrams with paired states
are reduced significantly from the MF results at high T due to
fluctuations. In order to draw more quantitative conclusions, a
more complete calculation of the thermal fluctuations at higher
temperatures is required, e.g., with the original fluctuation
action in Eqs. (12) and (13). In addition, throughout our
calculation the NP is taken as a free Fermi gas. This could
be improved by describing it as a Fermi liquid [76] which
would lower the energy of the normal phase. We expect that
this difference can modify the phase diagrams quantitatively
but not change them qualitatively.

IV. SUMMARY AND DISCUSSIONS

By studying the phase diagram of 2D imbalanced Fermi
gases based on the thermodynamic potential on the MF level,
we find the existence of the FF state at zero temperature.
The possibility of FF state at finite temperatures and its effect
on the BKT mechanism are discussed by including phase
fluctuations. We also obtained the superfluid density tensor for

the anisotropic FF state which always has vanishing transverse
component.

The effect of the phase fluctuations is demonstrated, which
turns out to be very strong for the FF state and possibly destroys
the FF-related phases at finite temperatures. Therefore, it
would be quite difficult to experimentally observe the FF
state in nearly infinite continuum 2D Fermi gases, unless
extremely low temperatures can be achieved. Since the strong
phase fluctuations destroying the quasi-long-range order and
phase coherence result in a breakdown of the spin-wave
approximation of the fluctuation action, an improved study of
the FF state at finite temperatures should take into account the
fluctuations more completely. We note, as an interesting line
of research, that a dispersion relation for collective excitations
including higher-order terms ∝q4 has been introduced for
unitary Fermi gases by Salasnich et al. [77] and applied at
the finite (low) temperature in Ref. [78]. Besides, a recent
experiment with Niobium nitride films [79] has shown that
the standard BKT mechanism which only considers the
phase fluctuations might not be enough to accurately describe
the 2D superconductor (superfluid) phase transition, and a
comprehensive consideration including also the amplitude
fluctuations might be necessary [80].
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Another candidate for an inhomogeneous order parameter
is the LO state, which does not have the problem of a vanishing
transverse superfluid density [4]; however, it was also claimed
to be unstable to a nematic phase at nonzero temperatures [33].
There has been one paper studying the BKT phase transition
of the LO (stripe) state for an anisotropic 2D system composed
of coupled 1D tubes [81], where several different BKT critical
temperatures associated with different defects are discussed
and found to be linearly dependent on the intertube coupling.
Nevertheless, it is an open and important question whether a
more general FFLO-type state can be stable against thermal
fluctuations and how this might affect the BKT mechanism.
In addition, other mechanisms, such as optical lattices and
trapping potentials, can reduce the role of fluctuations be-
cause of broken symmetries [40,42]. Also a mass imbalance
[72,82] or spin-orbit coupling effects [83,84] can enhance
the Fermi-surface asymmetry and increase the stability
of the FFLO state. These topics will be considered in our future
work.
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APPENDIX A: HUBBARD-STRATONOVICH
TRANSFORMATION

For the sake of clarity, let us first introduce the notations
used in the appendices as well as in the main text. Within the
Euclidean space-time (dimension 1 + d with 1 for time and
d for space), the coordinate vector is denoted as x = (τ,x),
and the momentum as k = (i(ikn),k) with the Matsubara
frequency ikn = (2n + 1)π/β (fermionic) or ikn = 2nπ/β

(bosonic), where β = 1/T is the inverse of temperature.
However, when there is no risk of confusion between vectors
and numbers, sometimes x (or k) can also be used for the
norm of x (or k). The vector product in d space is indicated
as k · x while the product of space-time vectors is written
as kx, e.g., ikx = ik · x − iknτ . The discrete momentum
space and the continuous coordinate space are linked via
the Fourier transformation and the Fourier series formulae
f (k) = 1

V
∫

f (x)e−ikxdx and f (x) = ∑
k f (k)eikx , where

∑
k

includes the summation over the Matsubara frequencies as well
as the momenta and V = Vβ with V as the total volume of the
d-dimensional space. In the continuum limit the summation
over the spacial momenta can be carried out as an integration.

According to the standard Hubbard-Stratonovich
transformation, a bosonic field operator �̂(x) is
introduced via the functional integral relation 1 ∝ ∫

D�̂∗

D�̂e− ∫
dx[�̂∗(x)−gψ̂

†
↑(x)ψ̂†

↓(x)](1/g)[�̂(x)−gψ̂↓(x)ψ̂↑(x)] which
is inserted to the microscopic partition function
Z = ∫

Dψ̂
†
↑Dψ̂↑Dψ̂

†
↓Dψ̂↓e−S . Here

S =
∫

dx

[∑
σ

ψ̂†
σ (x)∂τ ψ̂σ (x) + Ĥ (x)

]
=

∫
dxdx ′

[
−

∑
σ

ψ̂†
σ (x)G−1

0σ (x,x ′)ψ̂σ (x ′) − gψ̂
†
↑(x)ψ̂†

↓(x ′)ψ̂↓(x ′)ψ̂↑(x)δ(x − x ′)

]
,

where G−1
0σ (x,x ′) = (−∂τ − ε̂ + μσ )δ(x − x ′) is the inverse of a free fermion propagator for species σ . Then a new action S̃ in

the resulting partition function Z = ∫
Dψ̂

†
↑Dψ̂↑Dψ̂

†
↓Dψ̂↓D�̂∗D�̂e−S̃ can be written in a quadratic form,

S̃ =
∫

dxdx ′
{

|�̂(x)|2
g

δ(x − x ′) −
∑

σ

ψ̂†
σ (x)G−1

0σ (x,x ′)ψ̂σ (x ′) − [ψ̂†
↑(x)�̂(x)ψ̂†

↓(x ′) + ψ̂↓(x ′)�̂∗(x)ψ̂↑(x)]δ(x − x ′)

}
.

By using the Nambu-Gorkov basis ̂† = (ψ̂†
↑,ψ̂↓) and

̂ = (ψ̂↑,ψ̂
†
↓)T , the action can be expressed as

S̃ =
∫

dxdx ′
[ |�̂(x)|2

g
δ(x − x ′) − ̂†(x)G−1(x,x ′)̂(x ′)

]
,

where

G−1(x,x ′) =
(−∂τ − ε̂ + μ↑ �̂(x)

�̂∗(x) −∂τ + ε̂ − μ↓

)
δ(x − x ′).

In the momentum space the action becomes

S̃ = V
∑

q

|�̂(q)|2
g

− V
∑
k,k′

̂†(−k)G−1(k,k′)̂(k′),

with

G−1(k,k′) =
(

(ik′
n − εk′ + μ↑)δk,k′ �̂(k − k′)
�̂∗(−k + k′) (ik′

n + εk′ − μ↓)δk,k′

)

as the Fourier transform of G−1(x,x ′).

Integrating out the Fermi fields, we get the effective bosonic
action,

Seff =
∫

dx
|�̂(x)|2

g
− Tr ln[−βG−1(x,x ′)]

= V
∑
iqn,q

|�̂(q)|2
g

− Tr ln[−βG−1(k,k′)], (A1)

where Tr means the trace over the Nambu space as well as
the (1 + d) coordinate or momentum space. Since for a matrix
operation tr ln = ln det (here tr means only the trace in the
Nambu space) and G−1 is a 2 × 2 matrix, the minus sign
inside the logarithm makes no difference and will be dropped
for simplicity.

Now the original functional integral of Fermi fields has
been transformed into an integral over the Bose field �̂.
However, since the action is a complicated function of �̂,
in general it cannot be carried out explicitly unless some
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approximation is made. A widely used one is the MF
approximation, also referred to as the saddle-point method,
which is a good approximation if the fields vary smoothly and
no strong correlation is present. In the MF approximation the
integral over the field �̂ is replaced by using its expectation
value 〈�̂〉 = �s. This parameter is also referred to as the
order parameter, and it satisfies the saddle-point condition
δSs/δ�

∗
s = 0. For a constant �s, �s(k − k′) = �sδk,k′ and

G−1
s ≡ G−1(�s) is diagonal in momentum space. In this case,

the functional integral reduces to Z ∝ e−Ss with [26,85]

Ss ≡ Seff(�s) = V|�s|2
g

−
∑

k

ln
[
detβG−1

s (k)
]
. (A2)

In general, �s might not be constant, and in momentum
space G−1 might not be diagonal. This may cause some
problems, especially when we need to invert G−1 into G.
However, for the FF ansatz �s(x) = �0e

2iQ·x whose Fourier
transform is �s(k) = �0δk,2Q, the coordinate-dependent phase
can be removed by shifting the momenta of ψ̂↑(k) and ψ̂↓(k)
into Q + k and Q − k, respectively, which automatically
means that the total momentum is 2Q. This shift is a special
case of the gauge transformation in Eq. (5). The resulting G̃−1

s
becomes diagonal as

G̃−1
s (k,k′) = G̃−1

s (k)δk,k′

=
(

ikn − εQ+k + μ↑ �0

�0 ikn + εQ−k − μ↓

)
δk,k′ ,

and �s reduces to �0.

APPENDIX B: FLUCTUATION ACTION OBTAINED
FROM THE SADDLE-POINT ACTION

In Appendix A the derivation of the saddle-point action
does not involve fluctuations. For an arbitrary form of the
order parameter, the inverse Nambu propagator G−1

s is usually
not diagonal, which hinders the derivation of the explicit
expression of the action. The FF ansatz is a very special case for
which the momentum shift makes G̃−1

s diagonal. In this case
the derivation is almost the same as in the case of a constant
�s. One cannot expect a simple shift or transformation for an
order parameter with random fluctuations. However, as will be
seen below, the small-q expansion used in Sec. II C to obtain
the fluctuation action in a spin-wave form actually relaxes
the momentum constraint, e.g., δk−k′,q in Eq. (9), which is the
source of the problematic off-diagonal terms. With the small-q
expansion it becomes possible to generalize the saddle-point
calculation to include smooth fluctuations.

First, we note that there is a way to simplify the expression
of the full inverse Nambu propagator G̃−1. Since in Eq. (9) the
θ dependence appears only in the diagonal terms of K̃, it can
be absorbed into the chemical potentials in G̃−1

s [28]. Then we
can split G̃−1 into Ḡ−1

s + K̄, where K̄(k,k′) = η(k − k′)σ1 and
Ḡ−1

s is simply G̃−1
s with μσ replaced by μ̄σ ,

μ̄↑ = μ↑ − i∂τ θ

2
+ i

(∇θ · ∇Q + 1
2∇Q · ∇θ

)
2m

− (∇θ )2

8m
,

μ̄↓ = μ↓ − i∂τ θ

2
− i

(∇θ · ∇−Q + 1
2∇−Q · ∇θ

)
2m

− (∇θ )2

8m
.

Their Fourier transforms are

μ̄↑(k,k′)

= μ↑δk,k′ +
∑

q

[
−qnθ (q)

2
− iθ (q)

4m
(k2 − k′2 + 3q · Q)

]

× δk−k′,q +
∑
q,q ′

θ (q)θ (q ′)q · q′

8m
δk−k′,q+q ′ ,

(B1)
μ̄↓(k,k′)

= μ↓δk,k′ −
∑

q

[
qnθ (q)

2
− iθ (q)

4m
(k2 − k′2 − 3q · Q)

]

× δk−k′,q +
∑
q,q ′

θ (q)θ (q ′)q · q′

8m
δk−k′,q+q ′ .

Note that it would seem as if by absorbing the θ -dependent
terms into the chemical potentials, we do not only simplify
the perturbative matrix K̄ but also loosen the requirement
that θ should be smooth in space-time. Furthermore, if we
only consider the phase fluctuations, the perturbative part
K̄ vanishes and the remaining part Ḡ−1

s is in a saddle-point
form. However, this simplification is only superficial since it
moves the difficulties into Ḡ−1

s , because μ̄σ is no longer a
c-number but an operator which involves off-diagonal terms
in the momentum space.

In small-q expansion, we assume that the fluctuations of θ

change much more smoothly and slowly than the Fermi fields,
so the functional integral over the Fermi fields can be carried
out adiabatically. In this way the momentum (or position)
of θ is no longer associated with the Fermi fields since the
field θ can be taken as a constant, and the difficulty of the
off-diagonal terms no longer exists. It then becomes possible
to carry out independent Fourier transformations of the Fermi
fields without involving θ (x) and we get

μ̄↑ = μ↑ − i∂τ θ

2
+ i

[
i∇θ · (k + Q) + 1

2∇Q · ∇θ
]

2m
− (∇θ )2

8m
,

μ̄↓ = μ↓− i∂τ θ

2
− i

[
i∇θ · (k − Q) + 1

2∇−Q · ∇θ
]

2m
− (∇θ )2

8m
,

which are diagonal in momentum space. From these we
define

μ̄ = μ− i∂τ θ

2
− ∇θ · Q

2m
+ i

∇Q · ∇θ − ∇−Q · ∇θ

8m
− (∇θ )2

8m
,

h̄ = h − ∇θ · k
2m

+i
∇Q · ∇θ + ∇−Q · ∇θ

8m
. (B2)

Since these “barred” chemical potentials can be taken as
c-numbers during the fermionic functional integral, using μ̄σ

instead of μσ will not change the derivation for the saddle-point
action in Appendix A. Now with the phase fluctuations only,
the results in Eqs. (A2) and (4) can be directly generalized by
Eq. (B2), that is, we get S̄s with {μ̄,h̄} replacing {μ,h} in Ss.
To complete this adiabatic approximation of the functional
integral, we have to introduce an extra integral over the
coordinate of θ divided by V to ensure correct dimensions. It
means that we use the space-time average of the fluctuations
corresponding to the long-wavelength and low-frequency
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limit. Keeping the quadratic order of the derivatives of θ in the expansion of S̄s, we get S̄s = Ss + S̄fl with Ss given in Eq. (A2)
[or Eq. (4)] and

S̄fl = V
2

∫
dx

V

[
κ

(
∂θ

∂τ

)2

+ ρij∇iθ∇j θ + B++(∇Q · ∇θ )2 + B−−(∇−Q · ∇θ )2 + B+−(∇Q · ∇θ )(∇−Q · ∇θ )

+ (A+ · ∇θ )∇Q · ∇θ + (A− · ∇θ )∇−Q · ∇θ

]
, (B3)

where

κ = 1

V

∑
k

�2
0Xk + βEQkξ

2
QkYk

4E3
Qk

,

ρij = 1

V

∑
k

[
δij

4m

(
1 − ξQk

EQk
Xk

)
− βYkkikj

4m2
− Zk(kiQj + Qikj )

]
− κQiQj

m2
.

These generalize the results in Ref. [28] by including the FF ansatz. A± and Bs1s2 are complicated functions of μ, h, β, �0, and
Q, and the summation over spacial indices i and j is assumed, the factor V/2 is taken out for later convenience. Besides, some
terms linear in ∂τ θ , ∇θ , ∇±Q · ∇θ and their mixed products ∂τ θ∇θ , ∂τ θ∇±Q · ∇θ are omitted since their contributions vanish
after the overall integral (for ∂τ θ , note that θ is bosonic so

∫ β

0 dτ∂τ θ = 0 due to the periodic boundary condition).
The presence of the FF vector makes the expression of S̄fl very complicated. If Q = 0, we find that the contribution from

A± vanishes after the overall integral and the one from Bs1s2 corresponds to higher-order correction (quartic in momentum after
Fourier transformation), so only the first two terms survive. But with Q �= 0, there are lower-order contributions from A± and
Bs1s2 which are relevant. These can be calculated by using the following Fourier transformations:∫

dx

V (∇θ )∇±Q · ∇θ =
∑
q,p

∫
dx

V [∇θ (q)eiqx]∇±Q · ∇θ (p)eipx

=
∑
q,p

iqθ (q)i(p ± Q) · ipθ (p)δq,−p ≈ ±
∑

q

iq|θ (q)|2Q · q,

∫
dx

V
(∇s1Q · ∇θ

)(∇s2Q · ∇θ
) =

∑
q,p

∫
dx

V
[∇s1Q · ∇θ (q)eiqx

][∇s2Q · ∇θ (p)eipx
]

=
∑
q,p

[i(q + s1Q) · iqθ (q)][i(p + s2Q) · ipθ (p)]δq,−p

=
∑

q

[q4 − s1s2(Q · q)2]|θ (q)|2 ≈ −s1s2

∑
q

(Q · q)2|θ (q)|2,

where we used θ (−q) = θ∗(q) for real θ (x) and kept terms up to the quadratic order of q. Together with the Fourier transform
of the first two terms in S̄fl, we finally get

S̄fl = V
2

∑
q

[
κq2

n + ρij qiqj + i(A+ − A−) · q(Q · q) + (B+− − B++ − B−−)(Q · q)2
]|θ (q)|2 = V

2

∑
q

(
κq2

n + ρ̃ij qiqj

)|θ (q)|2,

(B4)

where ρ̃ij ≡ ρij + AiQj + AjQi + BQiQj with

A ≡ i

2
(A+ − A−) = − κ

2m2
Q −

∑
k

1

2
Zkk,

B ≡ B+− − B++ − B−− = − κ

4m2
.

In conclusion, we find

ρ̃ij = 1

V

∑
k

[
δij

4m

(
1 − ξQk

EQk
Xk

)
− βYkkikj

4m2

− 3Zk

2
(kiQj + Qikj )

]
− 9κQiQj

4m2
,

which is, in general, not diagonal if Q �= 0. However, we can
choose the direction of Q as, e.g. the z axis, then hQk = h −
Qkz

m
, such that Xk, Yk, and Zk are even in all spatial momentum

components ki except for kz (note that ξQk and EQk are always
even in k). Therefore,

∑
k Ykkikj = ∑

k Ykk
2
i δij ,

∑
k Zkki =∑

k Zkkzδiz, and ρ̃ij reduces to

ρ̃ij = 1

V

∑
k

[
δij

4m

(
1 − ξQk

EQk
Xk

)
− βYkk

2
i δij

4m2

− 3ZkkzQδizδjz

]
− 9κQ2δizδjz

4m2
.
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This expression is diagonal, but with ρ̃zz differing from
other diagonal elements. The results of κ and ρ̃ij ob-
tained in this way are consistent with those obtained in
Sec. II C by the direct small-q expansion of D22 in Eq. (13).

Similar derivation and results were presented in a recent
paper for the 3D case [86]. We emphasize that our deriva-
tion also is generally applicable to dimensions other than
two.
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[58] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and
J. Dalibard, Nature 441, 1118 (2006).

[59] K. Martiyanov, V. Makhalov, and A. Turlapov, Phys. Rev. Lett.
105, 030404 (2010).
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