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In this paper we study the density noise correlations of the two component Fermi gas in optical lattices.
Three different types of phases, the BCS state (Bardeen, Cooper, and Schieffer), the FFLO state (Fulde, Ferrel,
Larkin, and Ovchinnikov), and the BP (breach pair) state are considered. We show how these states differ in
their noise correlations. The noise correlations are calculated not only at zero temperature, but also at nonzero
temperatures paying particular attention to how much the finite temperature effects might complicate the
detection of different phases. Since one-dimensional systems have been shown to be very promising candidates
to observe FFLO states, we apply our results also to the computation of correlation signals in a one-
dimensional lattice. We find that the density noise correlations reveal important information about the structure

of the underlying order parameter as well as about the quasiparticle dispersions.

DOI: 10.1103/PhysRevA.77.053602

I. INTRODUCTION

Recent studies in the experiments on ultracold Fermi
gases have shown great potential for elucidating long-
standing problems in many different fields of physics related
to strongly correlated fermions. For instance, in recent ex-
periments [ 1-6] spin-density imbalanced, or polarized, Fermi
gases were considered. Among other things, such systems
make it possible to study pairing with mismatched Fermi
surfaces, potentially leading to non-BCS- (Bardeen, Cooper,
and Schieffer) type pairing such as that appearing in FFLO
(Fulde, Ferrel, Larkin, and Ovchinnikov) states [7,8] or BP
(breach pair) states [9,10] (Sarma states). These possibilities
have been considered extensively in condensed-matter,
nuclear, and high-energy physics [11].

In optical lattices it is possible to study many different
physical problems with close analogs in the field of solid
state physics. However, in contrast to many solid state sys-
tems, ultracold gases in optical lattices provide a very clean
environment. In other words, these systems have very few
imperfections and if imperfections are of interest, they can be
introduced in a more controlled manner. In addition, since
optical lattices are made with lasers, the lattice geometry is
easy to vary [12—15] by changing the properties of the inter-
secting laser beams. For these reasons optical lattices enable
one to investigate various quantum many-body physics prob-
lems, such as those related to Mott insulators, phase coher-
ence, and superfluidity. Indeed, the possibility of a superfluid
alkali-metal-atom Fermi gas in an optical lattice has been
recently studied both theoretically [16-22], as well as experi-
mentally [23]. Furthermore, Feshbach resonances, molecules
of fermionic atoms, and p-wave interactions in a lower di-
mensional fermionic system have been studied using optical
lattices [24-26].

Density-density correlations tell us how strongly the
atomic densities at different positions are correlated. Often it
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is useful to focus on the deviation of the atomic density from
its mean value and subtract the background away. In such
cases one studies noise correlations, i.e., how the density
fluctuations at different positions are correlated. Measuring
noise correlations is a promising way to observe different
phases in an optical lattice since while densities can be very
similar for different phases, the noise correlations can still be
very different. As an example, one can mention the famous
phase transition between the superfluid Bose gas and the
Mott insulator [27,28]. In the Mott insulator phase one can
see the Bragg peaks in the noise correlations, but the noise
correlations vanish for a Bose-Einstein condensate. Experi-
mentally, noise correlations have been used as an indicator
for different phases in optical lattices for bosons [28] and to
observe fermionic antibunching for ideal fermions [29].
Also, noise correlations have been used to detect pairing cor-
relations in an interacting Fermi gas in a harmonic trap [30].

In this paper we study noise correlations in a cloud of
ultracold two component Fermi gas at finite temperatures.
We are motivated by the fact that via noise correlations one
can see subtle correlation effects which are not visible in the
lower order correlations functions. Not only are the noise
correlation signals very different for a superfluid and a nor-
mal Fermi gas, but noise correlations also differ between
different types of paired states. While we compute density-
density correlations also at zero temperature, special atten-
tion is paid to finite temperature calculations, since finite
temperature effects have not been extensively discussed be-
fore. We find that although finite temperature effects do
smooth out some sharp features present in zero temperature
calculations, qualitative and clear quantitative differences be-
tween phases can still exist at higher temperatures. Also, we
show how regions of gapless excitations are reflected in the
density-density correlations. For instance, gapless excitations
show up as the absence of correlations for certain momenta.
Moreover, they are also reflected in the value of the maxi-
mum correlation peak height; this quantitative signature per-
sists at finite temperature as well.
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Reducing the dimensionality of the system from three di-
mensions into one has been shown to favor the FFLO-type
modulated order parameters in free space [31-33] as well as
in a lattice [34]. This effect of dimensionality, together with
the general tendency of a lattice geometry to favor the FFLO
state due to nesting of the Fermi surfaces [22], makes one-
dimensional optical lattices a promising system to study the
FFLO state. For this reason, we apply our general results on
density-density correlations also to the one-dimensional (1D)
system. Very recently a similar one-dimensional problem
was also discussed at zero temperature using the density ma-
trix renormalization group (DMRG) algorithm [35]. Here we
compute the density-density correlations of the one-
dimensional system at representative points of the finite tem-
perature phase diagram of a polarized system. The noise cor-
relations in a one-dimensional system turn out to show
differences between different states which are straightfor-
ward to interpret and contain useful information on the un-
derlying pair-wave function as well as on the structure of the
quasiparticle dispersions.

This paper is organized as follows. In Sec. II we discuss
the physical system and present the Hamiltonian of the sys-
tem. In this section different paired phases are also discussed
In Sec. IIT we proceed to compute the noise correlation func-
tions for different paired phases at zero temperature and in
Sec. IV computations are generalized to nonzero tempera-
tures. In Sec. V noise correlations in a one-dimensional lat-
tice are discussed while making a clear connection with the
computed 1D phase diagram. We end with some concluding
remarks in Sec. VI.

II. HAMILTONIAN OF THE SYSTEM

We assume in our calculation a three-dimensional cubic
optical lattice. The system is composed of a two component
Fermi gas where components are different hyperfine states
(for concreteness we assume °Li atoms). In terms of the field

operators \ffg(r) the Hamiltonian of the system is given by

H= 2

o=1,1

N h2V?
dr‘I’L(r)(—
2m

o

+Vy(r) ) W,(r)

- f f drdr' i) ¥{(r)g(r,r")

X ()W) = X pely
o=1.1

N h2Vv?

dr\I’L(r)(—
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o

+V,(r) - Ma)‘f’a(l')

>

o=1.1
+JJdrdr'\ff;(r)\l?[(r’)g(r,r')\Pl(r')\iq(r), (1)

where A=h/(27) and h is the Planck constant. w, is the
chemical potential of the component o and the lattice poten-
tial is given by Vo(r)st,E?zlsinz(kxl-), where s is the lattice
depth and E,=#2k>/(2m) is the recoil energy (k=/d and d
is the lattice constant). In the usual way the interaction be-
tween atoms is modeled by a contact potential
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wh’a

glrr’) = or-r'),

where a is the s-wave scattering length. The number operator
of the component o,

Ny= f dri(r) = f dr¥ (0, (r),

is expressed in terms of the density operator 7,(r)

=\f'£(r)‘ffg(r). In our case the field operators are fermionic,
which implies fermionic equal time anticommutation rela-
tions

(B (0), W (")} = UE ()W (") + P 5(e") W ()
= 8,p0(r —1'),

(Pl (0), T} = {P,(r), U yr')} =0, (2)

where &, is the Kronecker delta, and &(r—r’) is the Dirac
delta function.

A. Hubbard model

In a sufficiently deep lattice we can expand the field op-
erators in terms of the well localized (lowest band) Wannier
functions as

Vo(r) = 2 wilr)é, 3)

where w;(r) is Wannier function centered around a lattice
point i, and ¢, ; is a fermionic annihilation operator which
annihilates fermions of component ¢ at site i.

In assuming that only the lowest band states are occupied
we are assuming temperatures which are much lower than
the band gap. We can estimate the energy of the vibrational
levels by approximating lattice wells with harmonic oscilla-
tors and in this way find that temperatures should satisfy a
criterion

ha |2sE,
kBT < - -, (4)
d m

where kj is the Boltzmann constant. If, for concreteness, we
assume °Li atoms in a cubic lattice with a lattice spacing 505
nm, the above condition implies temperatures much below
5 wuK for a lattice depth of 10E,.

It is assumed that only tunneling between the nearest
neighbors is of importance. This assumption of tight binding
is reasonable when the Wannier functions are well localized.
In other words, overlap integrals between the next nearest
neighbor Wannier functions are small compared to overlap
integrals between the nearest neighbor Wannier functions.
This always happens when the lattice is deep enough [36].
Using this approximation one finds the Hubbard Hamiltonian
[37]
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FIG. 1. (Color online) The phase diagram of Fermi gas in a 3D
lattice [22]. Colors (or shading): BCS or BP states=blue or dark
gray, FFLO=yellow or light gray, phase separation=red or gray,
and normal gas=white. The parameters were such that the average
filling fraction (ny+n)/2=0.2, J=0.07E,, and U/(2J)=-1.86.
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where (m,n), means a sum over the nearest neighbors in the
a direction and hopping strength is defined by

m

h2v?
Jaz—fdrwfl(r)<— 5 +SE, > sinz(kx,»))wnwﬁa(r).

Furthermore, the dominant on site interaction coupling
strength is given by

47h*a

U= fdr|w,~(r)|4.

In our calculations we have approximated the Wannier func-
tions with a harmonic oscillator ground state in each poten-
tial well.

The most stringent criteria for temperatures follows from
the fact that critical temperature for the superfluidity is typi-
cally much less than the Fermi energy, which in turn is less
than the bandwidth. This means that in the regime of greatest
interest, the temperature should be of same order or less than
the tunneling energy scale J.

B. Ground state ansatz at zero temperature

On a mean-field level in the homogeneous system the
ground state ansatz at zero temperature, which includes the
possibility of the BCS state [38], the breach pair (BP) state
[9,10], and the plane wave FFLO state [7,8] can be expressed
as [39]

|‘PGS>= H CAI,—k+q H CA%k H (”k,q+vk,qé-{kéi,—k+q)|o>’

KEG, kEG,  kEG,
(6)

where |0) is the vacuum state. In area G, both quasiparticle
dispersions E;x q,E| i q are positive, in area G, E| (=0
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and E;y <0, and in area G3 E;y (=0 and E| ) 4 <0. Area
G, is populated by pairs with a quasimomentum q. Area G,
is populated by atoms of the component | in the quasimo-
mentum states k€ G, while the area G; is populated by |
atoms in the quasimomentum states —k+q. By diagonalizing
the mean-field theory one finds the quasiparticle dispersions

EI*k + € ,—k+g 2
E\ kg™

+ A2 kT Clkeg (g
2 2 ’
where A is the pairing gap and the single particle dispersions

are
3
€ri= 2 2J(1 = cos(k,d)) = L,

a=1

The quasiparticle amplitudes u 4 and vy 4 are given by

1
ui!qz 5(1 +

Based on the properties of this ansatz, it can be classified
further. When the wave vector q#0, the ground state is
called the FFLO state, which breaks the translational sym-
metry. If q=0 and both quasiparticle dispersions E; y,E|
are positive for all k vectors, the ground state is called the
BCS state, and finally, if =0 and E, <0 for some k vec-
tors, the ground state is called the BP state. This last case
involves phase separation in the momentum space.

In Fig. 1 we show an example phase diagram of the po-
larized system in a three-dimensional lattice [22]. At low
temperatures, phase separation is favored for low polariza-
tion, while for larger polarization the FFLO state is energeti-
cally favorable in substantially large parts of the phase dia-
gram. At nonzero temperatures the BP state can be
energetically stable and occupy regions of the phase diagram
close to the critical temperature. Although we do not show it
in the figure, for low polarization quasiparticle dispersions of
the BP state can be gapped while for higher polarization they
are gapless. Very close to the critical temperature the disper-
sions are always gapless for the polarized system. Note that
only BCS-normal phase separation was considered, not
BCS-FFLO coexistence, which could make the parameter
window where FFLO occurs even wider.

eT»k + El.—k'H] )
ZV’[(fT,k + 61,—k+q)/2]2 + AZ

vi’q =1- ui’q. (8)

III. NOISE CORRELATIONS

Our aim is to compute the noise correlation functions
which are defined by [27]

Gaﬁ(r’rl) = <ﬁa(r’t)ﬁﬁ(r,’t)> - <ﬁa(r7t)><ﬁﬁ(rlst)>
= (Wi (e, )T )P4 )W (1)
+ 8apd(r —1"){ (1, 1)) = (o (1,07 g(x" 1)),
)

where « and B are component indices, r and r’ are the po-
sitions, and 7 is time. The term with Dirac’s delta function is
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due to the normal ordering of the density-density expectation
value.

Often in experiments a gas which has been trapped is
released and the gas expands. When collisions during the
expansion can be ignored and the expansion is ballistic, the
density-density correlations after the expansion reflect corre-
lations in momentum space at t=0. Therefore, correlations
can be computed using the wave function in momentum
space prior to expansion. Positions in real space after time ¢
are related to k vectors through r=rk/m. In other words at
long times (the saddle point approximation of the free evo-
lution amounts to the limit > md?/#),

wilr,1) ~ e QAR

where R;=d(i,,iy,i;) (i, are integers) is a lattice vector and
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Gapr,r) = A(W)* 2 & QORFQEIRun(el & 680

i,jm.n

+ Oapdlr — 1" )(7io(r, 1)) = (A(r, 0))(rip(r’,1)).
(1

A. Noise correlations of the BCS state at zero temperature

We review here the noise correlations of the BCS state.
The usual unpolarized BCS ground state is extracted from
the ansatz in Eq. (6) by setting both chemical potentials to be
equal and q=0. For the BCS state both quasiparticle disper-
sions are positive. Because the BCS ground state is presented
in momentum space, for simplicity we express the densities
in Eq. (10) in terms of the operators in the momentum space

mr
r)=—.
Qr)=~~
Thus the densities become A(r)? ) ) )
| ity =20 ARk Rk Ry G
na(r,1) = (g(r,0) = A1) 2 QUORUE ¢, ), (10) ijkiky l
v (12)
where R;;=R;~R; and A(¢) is a time dependent scale factor
which depends on the Wannier functions. The correlation
functions in Eq. (9) now become and similarly for the noise correlations in Eq. (11),
|
N _AD* iQ(r)-R;+iQ(r') R, ,—ik| R+iky Ri—iks R, +iky R,/ at At 2 4
Gapltr) =2 B (RO R R R Ry R G G )
i,j,m,n,
kKo ky
+ 5&,35(r - r,)<ﬁa(r9[)> - <ﬁa(r’t)><ﬁﬁ(r,’t)>’ (13)

where M is the number of lattice sites. Now one needs the

. A AF A a AT oA
expectation values <Ca,klcﬂ,k3cﬁ,k4ca,k2> and (ca’klca,kz) For
the latter term one gets

g (14)

<\I’BCS|CAL,k1CAa,k2|wBCS> = 5k1k2|vk1

and using this the densities in Eq. (12) can be expressed as

. A’ S omiIR.
(M, (r,1)) = e > QKR 12, (15)
i,j.k

Now the number of particles is the same for both the com-
ponents as it should be. When the lattice is large, i.e., when
the lattice size is M > 1, the exponential terms only add con-
structively when Q(r)—k=0 and we can approximate the
densities as

m

(a(r,0) =AW’ 2 5<r— h—tk>|vk|2- (16)
k

Nonvanishing four operator expectation values are

(Wes|€hwl | o€ -8k Wpes)

= S [vil* + (1 = S |vier Ploi?

>

2

s

R AT N N
<\I}BCS|C?(l),kc‘((l),k’CT(L),k’CT(L),k|WBCS> =(1- 5kk')|vk’|2|vk
(17)

and combining these results and taking the limit of large
lattices, we find

Gn(l',l") =Gu(l',l")

fitk ik’
:A(t)z |Mk|2|vk|25<r—_)6(r, + ),
k m

hik hik'
Goo(r,r')=—A(t)*D, |vk|45<r - —) 6(r’ - —)
" m m

+ brr_r,)<ﬁo'(r’t)>7 (18)

where k=k+33_2n,mt,/d and k'=k+3}_2m,m,/d,
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where K is a lattice momentum, X, are orthogonal unit vec-
tors, and n; and m; are integers. Because |uy|*|v\ >~ A? the
noise correlation G| between different components vanishes
with vanishing gap A and is thus identically zero in the nor-
mal state. One can see that the noise correlations in the BCS
state differ crucially from this. Because in the BCS state
momenta k and —k are correlated, the noise correlation sig-
nal is pronounced only if

3 A

, Eﬁ2n,-mxi

r+r' =2, —.
-1 md

The continuum result [27] is similar, but peaks appear when
r+r'=0. In the continuum limit our result reduces to the
known result.

On the other hand, correlations of the single component
Gy and G| show a hole when

2hn,mwx;
g S 2t
md

>

i=1

and n;# 0 for at least one i [40]. The reason for this is the
fermionic antibunching related to Pauli blocking, i.e., two or
more identical fermions cannot be in the same momentum
state. This fermionic antibunching was also measured in the
noise correlations of an ideal Fermi gas [29].

In Fig. 2 we demonstrate the BCS noise correlations at
T=0. In Fig. 2(a) we show a cut in the z=0 plane of the BCS
noise correlation between the components while in Fig. 2(b)
we plot the column integrated BCS-state noise correlations

Gy (x,y) = f dzGy | (x,y,2,— x + htg,/m,— y

+htq,/m,— z + fitq,/m).

As one can see from Fig. 2, the noise correlations reflect
underlying lattice structure and strongly nonspherical struc-
ture of the Fermi surface. We can see also from Figs. 2(a)
and 2(b) that the peaks are highest near the Fermi surfaces
where €+ €| _,=0. In the weakly interacting BCS limit cor-
relations are strongly peaked at the Fermi surface, but the
distribution of the peak heights becomes broad in the BEC
limit, and the signal approaches the interference signal of the
Bose-Einstein condensate.

In Fig. 2(c) we show the BCS-state correlations of a
single component in the z=0 plane. As is clear, the BCS-state
noise correlation of a single component shows similar anti-
bunching behavior as the ideal Fermi gas noise correlation. If
r:r’+2i3=12ﬁn,~m)2,-/(md) and n; #0 for at least one i, then
the noise correlation of a single component shows the holes.
However, the BCS-state noise correlation of a single compo-
nent does also show the bunching peak when r=r’. This
result differs from the ideal gas result where such a peak is
absent.

B. Noise correlations of the BP state at zero temperature

The ground state in Eq. (6) is the BP state when q=0 and
one of the quasiparticle dispersions E,  is negative for some

PHYSICAL REVIEW A 77, 053602 (2008)
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FIG. 2. (Color online) In (a) we show a cut of the BCS noise
correlations between components in the z=0 plane. In (b) we show
the integrated BCS correlations between the components. In (c) we
demonstrate the noise correlation of a single component in the plane
z=0. As parameters we used the average filling fraction (n;
+n))/2=0.30, polarization P=(ny—n))/(n;+n)=0.0, A/(2J)
=1.03, and U/(2J)=-3.0. All these examples are calculated at T
=0. In (a) and (b) we choose r'=-r and in (c) we choose y’'=y,
z=z'=0, and x'=x+%27/(md). Color coding is such that light
colors imply high peaks and dark colors imply low peaks.

values of the momentum k. This implies that in the BP state
| 6| =]y — p | >2A. The BP state is a gapless state, because
one of the quasiparticle dispersions changes its sign when the
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momentum varies. The BP state at zero temperature is ex-
pressed as

Wep =TT ¢] o IT &0 TT (e +0id]ié] 010).

KEG; kEG,  kEG,
(19)
In the area G; both quasiparticle dispersions Ejy q.E| kq

=0, in the area G, E| x =0 and E; <0, and in the area G;
E; =0 and E| , <0.
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Now we can calculate the required expectation values
similarly as before. We find that the densities in the BP state
(in a large lattice) are

h
<ﬁm)(r,l)> =A(f)22 5<1' - %)[1 - H(ET(l),k)
K

+ O(E; 1) O(E | 1) |vil*], (20)

and nonvanishing expectation values in the noise correlations
in Eq. (13) are in turn given by

<\I'BP|CA?kCAI,_erAL,—k’5¢,k|q’BP> = (1 = S (1 = O(E )1 = UE| 1)) + OE; ) O(E | ) G(ET,k’)0(E1,k’)|vk|2|vk’|2
+ 0(E ) 0(E 1) (1 = OE | )vil® + 0E; 1) 6(E | ) (1 = 6(E ) vie ]
+ S OE 1) OCE | 1[0 (Pl 1)1l Ve
= (1= 8 [(1 = O(E;(1y3)) (1 = O(E; () 5)) + O(E; ) O(E | 1) O(E; o) O ) oy *|oger|*
+ O(E; ) O(E | 1) (1 = O(E; () ) |oil* + OE; x) O(E | ) (1 = O(E; () |vier ] (21)

Subtracting the densities cancels out most of these terms and
again for large lattices we get strongly peaked behavior and

ik
Gy p(rr) =AW 5<r_ L)
k

m

2

b}

hik'
X 5(1" + 7) O(E; k) H(El,k)|“k|2|vk

G(,-(,-(I',I',) =- A(l‘)42 { 5(1- — th)
k m

hik'
X 5(1" - ) O(E; 1) O(E | 1) [vyl*

m
+[1 = OE )] [ + 8 =r) i (r.0). (22)

In the correlation between different components there are
now areas where peaks are absent. The reason for this is that
the BP state has phase separation in the momentum space.
Because in the BP state there is no pairing between momenta
k and -k, if E k< 0 or E < 0, in contrast to the BCS state,
there are no correlations between the points

3

ﬁ2n[7Tt)?i
>
md

r+r' =

i=1

in this region.

In Fig. 3 we demonstrate the BP-state noise correlations at
T=0. In Fig. 3(a) we have plotted the BP-state noise corre-
lation at the z=0 plane while in Fig. 3(b) we show the cor-
responding column integrated noise correlation. From Fig.

3(a) one can see clear areas without correlation peaks in the
BP noise correlation due to the fact that these areas are popu-
lated only by atoms of the majority component which are
unpaired. From the integrated correlations in Fig. 3(b) we
can see that the peaks are now relatively low in the area
between the Fermi surfaces. This differs substantially from
the integrated BCS noise correlation [see Fig. 2(b)].

Results in this section are intended mainly as a reference
since the BP state is not expected to be the ground state at
zero temperature. Depending on polarization the ground state
at zero temperature can be the BCS state, phase separation
[41], or the FFLO-type state [22]. However, at nonzero tem-
peratures the BP state can be the minimum of the free energy
[42].

C. Noise correlations of the plane wave FFLO state
at zero temperature

The FFLO ground state is presented in Eq. (6). Contrary
to the BCS state and the BP state, in the FFLO state the
parameter q # 0 and the translational invariance is broken. In
this case the order parameter is given by A(R))
=A, exp(iq-R;), where R; is a lattice vector. In the FFLO
state the other Fermi surface has been effectively shifted by
the wave vector q.

The densities in the FFLO state are (in the limit of large
lattices) given by

(i (r,0))y = A2 5<r - @)
K m

X[1 = O(E;yq) + OE; 1 g) OE| 1.0 |vigl’].
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FIG. 3. (Color online) In this figure we demonstrate examples of
the BP noise correlations between the components at 7=0. In (a) we
demonstrate a cut in the z=0 plane while in (b) we show the column
integrated BP noise correlation. Parameters we used were A/(2J)
=0.318, (w1 +u,)/2.0=2.18, and Spu=pu;—pu =1.14. In (a) the cor-
relations vanish in the dotted area. We have chosen r’ =—r and color
coding is such that light colors imply high peaks and dark colors
imply low peaks.

(i, (r,0)) = A1) 2 5<r - M)
Kk m

X[1 = O(E| 1) + OE 1) OE| ) lvicl]-
(23)

In the same way that we computed the noise correlations in
the BCS and BP states, we find the noise correlation in the
FFLO state as

G (r,r") =A()*D 5(1‘ - th)
" m

(k' —
X 5(r’ + %) NE k) OE | k.q)

2

Xy q*lvkq

s

PHYSICAL REVIEW A 77, 053602 (2008)

G (r,r) =AY 5(r+ M)
K m

2

[}

hik'
X 5(1" - " ) G(ET,k’q) H(El’kyq)|uk,q|2|vk’q

G(rr)=-A0*Y 5(r - fik)
K m
ik’
X 5(1" - t7> O(E; xq) 9(E¢,k,q)|vk,q|4
+[1= O )] [ + 8 =) (r,0), (24)

Because in the FFLO state momenta k and —k+q are corre-
lated, the points

0.5
O e
E
2
= 0
5
2
S -025
-0.5 e a2
~0.5 -0.25 0 025 05
0.5 Bedes
= @
2 0.25}i
= i
=}
by 0
[e]
@
T
=
-0.25

205 -0.25 0 025 05

units of x [ht/(md)]

FIG. 4. (Color online) In this figure we show the FFLO-state
noise correlation (G; i) at the temperature 7=0. In (a) we show a
cut in the z=0 plane while (b) shows the column integrated signal.
Parameters we used were ¢,=0.25(w/d), g,=¢.=0, polarization
P=(n;=n))/(ny+n)=0.168, A/(2J)=0.16, and U/(2J)=-1.86. In
(a) correlations vanish in the dotted areas. We choose r+r’
—(Aht/m)q=0 and color coding is again such that light colors imply
high peaks and dark colors imply low peaks.
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are now correlated in the expanded cloud. Since the FFLO
state arises only when there is some polarization in the sys-
tem, at 7=0 the FFLO state is always a gapless state, i.e.,
one of the quasiparticle dispersions E,y 4 changes its sign
when momentum k varies.

Multimode FFLO states also leave clear signatures on the
noise correlations. For example, for the two mode FFLO
state, i.e., the state where the gap is given by A(R;)
=A, cos(q-R;), the order parameter can be written as

iQR; | ,-iqR;
A(R;) = Aq cos(q - R) = Ao(%)

na -U ik VR A A
== U(¢1 €)= v > e HDRE 8 )
k.k’

RIS 1, 4 LR -US A 4
= elq Rlﬁ% <CT,kC1,—k—q> +e 1q Rlﬁ% <CT,kci,—k+q>'

Therefore the only nonvanishing expectation values in the
momentum space are (¢ xC| _k+q) and (¢; k€| _k—q)- This im-
plies that an T atom in the momentum state k is paired with
| atoms in the momentum states —k+q and —k—q. Because
in the single mode FFLO state points r and —r+#rq/m are
correlated after free expansion, in the two mode FFLO state
r is correlated with —r+#%tq/m and -r-#irq/m after free
expansion. For this reason with the two mode FFLO state
one can see pronounced correlation peaks when r
+r’ = Arq/m=0. Actually for the multimode FFLO state, one
could use noise correlations to perform a “Fourier analysis”
of the periodic order parameter and probe more complicated
spatial dependencies than those discussed here.

In Fig. 4 we show the FFLO-state noise correlations (G|)
at zero temperature. Figure 4(a) shows the FFLO-state noise
correlation in the z=0 plane, and Fig. 4(b) demonstrates the
integrated FFLO noise correlation. As one can see, the Fermi
surface shift creates asymmetry, which remains also in the
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integrated signal. Gapless regions of the FFLO state are
again reflected as areas without correlation peaks and this is
clearly presented in Fig. 4(a).

IV. NOISE CORRELATIONS AT NONZERO
TEMPERATURE

Until now we have assumed zero temperature, but now
we generalize our computations to nonzero temperatures. At
nonzero temperatures it is useful to write the lowest energy
state by using fermionic quasiparticle operators ¥,y , and
i/;k,q. Creation and annihilation operators can be written in
terms of these operators as

A ~ ~F
C1k = UkqY1kq ™ Vkq?| kg

Cl—keq= Uk q¥ kgt Uk,q’/y}-,k,q' (25)

Now the lowest energy state ansatz is given by
Weo =11 ﬂ,k,qﬂ,k,qm% (26)
k

and the lowest energy state is an ideal gas of quasiparticles.
In other words, the state in Eq. (26) is the vacuum state for
these quasiparticle operators.

The nonvanishing two-operator expectation values in the
densities in Eq. (12) at nonzero temperatures are

<6J1r,kéT,k’> = Sl o F(E 1 gg) + [igT1 = AE 1 )T}

<CAI,—k+qél,—k’+q> = 5kk’{|“k,q|2f(Ei,k,q) + |vk,q|2[1 _f(ET,k,q)]}a
(27)

where the Fermi-Dirac distribution is given by
E)=——F—",
f(E) B/ kgD 4 |
while nonvanishing four-operator expectation values in the

noise correlations in Eq. (13) at nonzero temperatures are
given by

<CA.Tr,kCAI,_k’+qCAL,—k’+qCAT,k> = |ug o *|ter o *FE1 k JF(E 1 ) + [t g Towr o FE 1) (1= FE g o))

+ |y Pvi g FE i ) (1= FIE| 1)) + [oir o Tor (1 = AE o ) (1 = FE | k)

+ Oer{

i o 0ical TAE k QFE | 1eq) + (1= FE; s ) (1 = FE | NIIHE] 18] 108108110

= |uk,q|2|uk’,q|2f(ET,k,q)f(ET,k’,q) + |Mk,q|2|vk’,q|2f(ET,k,q)(1 _f(EL,k’,q))
+ |uk’,q|2|vk,q|2f(ET,k’,q)(1 _f(El,k,q)) + |Uk’,q|2|vk,q|2(l _f(El,k’,q))(] _f(El,k,q))
+ El(k’{|uk,q|2|vk,q|2[f(ET,k,q)f(E1,k,q) +(1 _f(ET,k,q))(l _f(El,k,q))]
=k o F(E k) = [0k gl*(1 = F(E 1 g} (28)

Because the densities again cancel out most of the terms, the noise correlations turn out to be quite simple,
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— |ty o F(E | o) = [0ieq* L1 = FE} g )]

+0(r =) (r,1)).

At nonzero temperatures the state is the BCS state if q=0
and the densities are equal, and the BP state if q=0 and the
densities are different. Since at finite temperatures the system
can support polarization due to thermal effects even if both
quasiparticle dispersions are always positive, we call the
state the gapless BP state if q=0 and one of the quasiparticle
dispersions changes its sign.

Figure 5 demonstrates why the noise correlations are a
better indicator of the superfluidity than densities and how
the BCS-state noise correlation between the components
changes quite substantially when the temperature rises and
the gap is reduced. Figure 5(a) shows a cut of the BCS-state
density in the z=0 plane when the temperature is kgT/(2J)
=0.196 (i.e., just below the critical temperature). Figure 5(b)
shows a similar result just above the critical temperature. In
Figs. 5(c) and 5(d) we compare the column integrated BCS-
state noise correlations between the components at the tem-
peratures kpT/(2J)=0.0, and kzT/(2J)=0.196, respectively.
By comparing Figs. 5(a) and 5(b), one can see that the den-
sities are almost the same for the BCS state and the normal
state. On the other hand, in the normal state the noise corre-
lation is identically zero. Thermal effects are strongly present
in the results in Fig. 5(d). While not clear with the param-
eters chosen here, it is possible that the correlations peak in
two areas, close to the center of the figure as well as near the
Fermi surface. In the zero temperature result in Fig. 5(c)
there are high peaks only near the Fermi surface. The reason
for this difference between low and higher temperatures is
that when the temperature rises the peak heights around the
Fermi surface are reduced with reduced gap while closer to

(29)

0.5 1 0.5 ey 0.25
5 5 FIG. 5. (Color online) (a)
0.8 0.2

g 0.25 § 0.25 shows a cut of the BCS-state den-
= 06 = E 0.15 sity in the z=0 plane when the
‘; 0 “; 05 01 temperature is kgT/(2J)=0.196
@ 0.4 ) ' (just below T.) while figure (b)
g -0.25 0.0 < -0.25 0.05 shows a cut of the normal-state
05 density in the z=0 plane when the
—0-_50_5 o055 0 025 05 0 05 _0.2.5 0 025 05 0 tf.:mperature is  kgT/(2J)=0.20
units of x [ht/(md)] units of x [ht/(md)] (]USt above Tz‘) (C) and (d) show
the integrated BCS-state noise
(b) (d) correlations between components
05 1 05 at temperatures kzT/(2J)=0.0 and
=5 g kgT/(2J)=0.196, respectively.
£ o025 0.8 = 025 0.1 The other parameters used were
Z 06 = ny=n;=0.20, U/(2J)=-1.86, in
> 0 : ..g‘ 0 figures (a) and (d) A/(2J)=0.09,
g 04 2 0.05 and in figure (c) A/(2J)=0.35.
T _0.25 S —0.25 Color coding is again such that
> 0.2 light colors imply high peaks and

05 0 -0.5 0 dark colors imply low peaks.

Z05-025 0 025 05 -05-025 0 025 05

units of x [ht/(md)]

units of x [ht/(md)]
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the center, the thermal effects are relatively weaker.

Figure 6 demonstrates how the temperature contributes to
the gapless BP-state superfluid noise correlations. As one can
see, when temperature rises the peakless areas become
smaller and eventually vanish. The reason for this is in the
temperature fluctuations, which enables the system to carry
polarization even with gapped dispersions. These figures
show also that the peakless areas vanish only gradually,
when the temperature becomes nonzero.

Finally, Fig. 7 demonstrates how temperature influences
the noise correlations of the FFLO state. The states corre-
spond to minima of the free energy at their respective tem-
peratures. Figures 7(a) and 7(b) show an example of what
happens to the correlation between components on the z=0
plane when temperature rises from kgT/(2J)=0.0475 to
kgT/(2J)=0.095. Figures 7(c) and 7(d) demonstrate the same
for the column integrated noise correlations. As one can see
from the figures, sharp areas without correlation peaks again
disappear with increasing temperatures. However, the shift in
the positions of the peaks persists even at nonzero tempera-
tures.

It might not be easy to detect the gapless states via noise
correlations because at the temperature regime where the
gapless BP state becomes the lowest energy state, the noise
correlations of the gapless BP state and the nongapless BP
state appear quite similar. On the other hand, by monitoring
the peak heights at z=0 (and at r’=-r), one can identify the
gapless states. The reason for this is that in the gapless BP

0.5p &
5 =
£ ° :
= E 0.25]
= s -
= <
by -
o 5 0
= 2
5 =
S5
-0.25]
oghii

kg T/(2J)=0.35

FIG. 6. (Color online) This
figure demonstrates how tempera-
ture contributes to the noise corre-
lations of the gapless BP state. In
these figures the temperature
gradually increases, while other
things remain equal. The last fig-
ure corresponds to the minimum

0 025

units of x [ht/(md)] 05 of the grand potential with polar-
ization P=(ny=n))/(ny+n))
=0.40, average filling fraction

(ny+n))/2=0.30, A/(2J)=0.318,
and coupling strength U/(2J)=
—-3.0. We have chosen r+r’=0.
All figures show the cut in the z
=0 plane. At the upper row the
dotted areas are peakless. Color
coding is such that light colors im-
ply high peaks and dark colors im-
ply low peaks.

0 0.25

state the maximum peak height is always smaller than
A(#)*/8 while in the nongapless state the maximum is always
bigger than this. This can be seen from the fact that the term
lug|*|lvi]® peaks on the Fermi surface corresponding to the
average chemical potential. On the other hand, near this sur-
face the peak heights are

|uk|2|vk|2{f(ET,k)f(El,k) +[1 _f(ET,k)][l _f(El,k)]}
~ i{f(A + Su/2)f(A = Sui2)

+[1=f(A = sw2)][1 - f(A+ ou2)]},

where du=p;—pu| and then the term in the curly brackets is
bigger than 1/2, when A * Su/2 >0 (and the state is gapped)
and otherwise always lower than 1/2.

In Fig. 8 we show the height of the maximum of peak
height as a function of the polarization [Fig. 8(a)] and as a
function of chemical potential difference [Fig. 8(b)]. Figure
8(a) shows that when the polarization P rises then the maxi-
mum peak height becomes smaller and drops suddenly to
zero when the gas becomes normal. With our parameters this
happens when the polarization is about 0.35. By inspecting
Fig. 8(b) it is clear that when the BP state is gapless, i.e.,
when du>2A, the maximum peak height is indeed smaller
than 1/8, a result which was made plausible above.
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FIG. 7. (Color online) Finite
temperature noise correlations
(Gy)) of the FFLO state. (a) and
(b) show cuts in the z=0 plane,
while (c) and (d) are the column
integrated correlations. (a) and (c)
were calculated at kgT/(2J)
=0.0475 and (b) and (d) were cal-

units of x [ht/(md)]

culated at kgT/(2J)=0.095. In all
figures we used the coupling
strength U/(2J)=-1.86. In (a) and
(d) () P=0.208, (ny+n))/2=0.46,
q,=0.26(7/d), ¢q,=q.=0, and
A/(2J)=0.14. In (b) and (d) P
=024,  (ny+n))/2=037, g,
=0.21(w/d),  ¢qy=¢.=0, and
A/(2J)=0.046. We have chosen
r+r’—(ft/m)q=0. In (a) correla-
tions vanish in the dotted areas.
Color coding is again such that
light colors imply high peaks and
dark colors imply low peaks.
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V. NOISE CORRELATIONS IN A ONE-DIMENSIONAL
LATTICE

We call the lattice one-dimensional (1D) when J,>J,
=J.. In other words a 1D lattice can be realized with a three-
dimensional (3D) lattice with a very strong confinement in
two directions and weaker confinement in the third one.
Since the FFLO-type states are more favorable in 1D than
they are in 3D [31-34] and the differences between different
phases can be more pronounced in 1D than in 3D, we now
consider the noise correlations in 1D lattices. We assume that
the gas in a 1D lattice is released in only one direction (in
our case x direction). The released gas creates a set of almost
identical one-dimensional tubes.

Figure 9 shows an example of the phase diagram in a 1D
lattice [34]. Tt is clear that the FFLO region is remarkably
large and occupies the entire superfluid region at 7=0. On
the other hand, the expected region for phase separation be-
tween the normal gas and the BCS state (red) is dramatically
smaller than in 3D [22]. When the temperature rises there are
phase transitions between the FFLO state and, depending on
polarization, phase separation, the BCS or BP states, or the
normal gas phases. In Fig. 9 we also denote by dashed lines
those values of temperature and polarization we have used in
our following noise correlation computations.

Figure 10 demonstrates how temperature contributes to
the noise correlations in a 1D lattice. As is clear, when the
temperature becomes nonzero the gapless region does not
vanish suddenly. Also, there is a phase transition between the

0 025 05

units of x [ht/(md)]

FFLO state and the gapless BP state when the temperature is
(with our parameters) between kzT/(2J,)=0.095 and
kgT/(2J,)=0.104. One can identify this phase transition from
the fact that in the FFLO state the noise correlation is not
symmetric with respect to x=0, while the gapless BP-state
noise correlation is symmetric. For the two-mode FFLO state
we expect a mirror image of the FFLO-state noise correlation
shown here to appear. This mirror image would correspond
to correlations with the pair momenta —¢,. The figure which
has been calculated at highest temperature [kzT/(2J,)
=0.104] shows that the gapless BP-state noise correlation is
again always below 1/8.

In Fig. 11 we show how the polarization contributes to the
noise correlations in a 1D lattice. When the polarization is
between P=0.32 and P=0.35 the nongapless state becomes
gapless and as one can see that the maximum of the gapped
BP-state noise correlation is always bigger than 1/8. When
the polarization is between P=0.35 and P=0.48, there is a
phase transition from the BP-superfluid state to the FFLO
state which is visible in the pronounced asymmetry.

In one-dimensional systems, exact solutions for the prob-
lem of interacting fermions exist [43-45]. Moreover, density
matrix renormalization group (DMRG) calculations can be
applied in one dimension to provide exact numerical results.
It is known that mean-field results deviate considerably from
the exact ones in one dimension. In Ref. [46], mean-field
calculations within the one-dimensional Hubbard model
(which is the case we consider) were compared to the exact
solutions [43—45]. The ground state energies were found to
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FIG. 8. (Color online) This figure demonstrates how the polar-
ization contributes to the maximum peak height. (a) shows the
maximum peak height as a function of the polarization, while (b)
shows the maximum peak height as a function of the chemical
potential difference (w;—pu))/(2A)= 6w/ (2A). We used the param-
eters kgT/(2J)=0.45 and an average filling fraction (ny+n)/2
=0.30. We have canceled the time dependence of the maximum
peak height by dividing the maximum peak height by the scaling
factor A(7)*. The horizontal lines show the value 1/8.

be very similar, deviating at maximum a few percent. How-
ever, the mean-field calculations were found to overestimate
the excitation gap energy considerably, typically by a factor
of 1.5-3. The deviations are at their strongest at half filling.
These results imply that while the low temperature structure
in the phase diagram of Fig. 9 is not likely to be affected by
the mean-field approximation, the critical temperatures are
probably higher than given by the exact solution. The domi-
nance of the FFLO state at low temperatures and for a large
range of polarizations, as shown by the mean-field results in
Fig. 9, is firmly established also by recent exact [47,48] and
DMRG numerical studies [35,49]. Note that the reference
[35] considers also noise correlations. It is interesting that
our results for the FFLO correlations at zero temperature are
quite similar with the more accurate computations using
DMRG by Liischer et al. [35]. In particular, both results
show an area in momentum space where correlation peaks
are absent as well as pronounced asymmetry. In the single
mode FFLO ansatz the signals from both *¢ are naturally
missing while DMRG computation is done for a trapped ge-
ometry and does show strong correlations corresponding to
both *¢. In summary, our results on the structure of the
noise correlations for different states in 1D are essentially
not affected by the use of mean-field approximation; only the
precise values of temperatures where these states occur are to
be determined more carefully.

PHYSICAL REVIEW A 77, 053602 (2008)

0 0.05 0.1 0.15 0.2
kgT/(2J)

FIG. 9. (Color online) The phase diagram of Fermi gas in an
effectively 1D lattice [34]. Colors (or shading): BCS or PB states
=blue or dark gray, FFLO=yellow or light gray, phase separation
=red or gray, and normal gas=white. The parameters are such that
the average filling fraction (n;+n)/2=0.2, J,=0.07E,, and U=
—0.2E,. The dashed lines show the values P=0.40 and kzT/(2J,)
=0.104 used in Figs. 10 and 11.

VI. CONCLUSIONS

In this paper we have presented, at the mean-field level,
the noise correlations of the two component Fermi gas in an
optical lattice. We have shown that the noise correlations are
a promising way to detect different phases in optical lattices.
The different superfluid phases (BCS, FFLO, and BP) can be
distinguished via the noise correlations and by mapping the
correlations more extensively; a “Fourier analysis” of the
multimode FFLO state is possible and could be used to re-
veal the structure of the more complicated periodic order
parameters. We computed the noise correlations also at non-
zero temperatures and demonstrated that the differences be-
tween the correlations of different states can persist at finite
temperatures and some qualitative features are insensitive to
temperature. Also, regions of gapless quasiparticle disper-
sions can be visible in the noise correlation signals.

Other probes also exist. By letting the gas expand freely,
one can measure the momentum distribution by simply im-
aging the density distribution of the expanded cloud. From
this momentum distribution one can, in principle, infer some
important properties of the system. For example, one could
detect the gapless BP state in this way [50]. However, this
method does not appear to be a promising way to detect
modulated phases [35]. Spectroscopic means can also be
considered. For example, using two-photon Bragg spectros-
copy [51,52] one can probe the systems response at specific
momenta and in that way gain information on the quasipar-
ticle excitations [53-55]. We are not aware of anyone ana-
lyzing this problem for fermions in optical lattices. tf spec-
troscopy has been proposed [56] for detecting a spatially
nonuniform FFLO order parameter: an additional spectral
peak appears due to quasiparticles at the nodes of the order
parameter. One very appealing property of noise correlation
signals is their sensitivity to interactions and pairing effects.
If pairing does not take place, noise correlations between
different components vanish. This is in contrast to other
methods where the influence of the other component is less
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FIG. 10. (Color online) This
figure demonstrates how tempera-
ture contributes to the noise corre-
lations in a 1D lattice. In these fig-
ures we gradually increase the
temperature while keeping a po-
larization P=0.40 and an average
filling fraction (n;+n;)/2=0.20
fixed. The figures in the upper row
and bottom left show the FFLO-
state noise correlations. The figure
in the bottom right shows the gap-
less BP-state noise correlation. In
the first figure the dashed lines
show the gapless region and in the
bottom right figure the dashed line
shows the value 1/8. We choose
x+x"+htg,/m=0 in all these fig-
ures. In the BPstate ¢,=0.

FIG. 11. (Color online) This
figure shows how polarization
contributes to the noise correla-
tions in a 1D lattice. Here we
gradually increase the polarization
while keeping the temperature
fixed at kgT/(2J,)=0.104 and an
average filling fraction at (n;
+n,)/2=0.20. The upper left fig-
ure shows the BCS-state noise
correlation and the upper right fig-
ure shows the gapped BP-state
noise correlations. The bottom left
figure shows the gapless BP-state
noise correlation and the figure on
the bottom right is the FFLO-state
noise correlation. The dashed line
shows the value 1/8. We choose
x+x"+htq,/m=0 in all these fig-
ures. In the BCS and the BP states

q,=0.
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direct. Noise correlations can be especially useful in distin-
guishing between possible pseudogap effects and superfluid-
ity. Pseudogap implies noncondensed pairs, then noise corre-
lations between momenta k+q and —k+q appear not only
for a single or a few discrete values of q, but for a thermally
distributed set of q values. The appearance of correlations
only for a certain q signals condensation of the pairs.
Density-density correlations of a one-dimensional system
were also discussed quite extensively and were shown to
contain very clear information on the structure of the pair-
wave function as well as on the quasiparticle dispersions. In
one-dimensional systems, order parameter modulations are
favored and possible problems with signals becoming
smoothed out by column integration can be avoided. For this
reason they are very attractive candidates to observe FFLO-
type states experimentally. However, how to balance the re-
quirements of sufficiently reduced dimensionality with suffi-
cient phase coherence [33] is to a large extent still unclear.
It is physically possible that in a three-dimensional system
a phase separation occurs between the normal state and the
BCS state if the system is polarized [41,42,57]. This means
that the normal state exists in one part of the lattice and the

PHYSICAL REVIEW A 77, 053602 (2008)

BCS state exists in another part of the lattice, typically in the
core if a harmonic trap potential is included. However, other
more exotic possibilities also exist [34]. Interestingly, the
phase separation between the normal gas and a paired state
could be visible in the noise correlations between compo-
nents. This follows from the fact that the noise correlations
between components in the normal state vanish, whereas in
the paired state the correlations are at their strongest around
the Fermi momentum. In a lattice superimposed by a trap the
local density, and therefore the local Fermi momentum, is
different in different areas of the gas. This may allow one to
identify spatial phase separation and shell structures of nor-
mal and paired states from the freely expanded cloud where
momentum has been mapped into position.
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