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Virtual Machine Consolidation with Multiple Usage Prediction
for Energy-Efficient Cloud Data Centers

Nguyen Trung Hieu, Mario Di Francesco, Member, IEEE, and Antti Ylä-Jääski, Member, IEEE

Abstract—Virtual machine consolidation aims at reducing the number of active physical servers in a data center so as to decrease the
total power consumption. In this context, most of the existing solutions rely on aggressive virtual machine migration, thus resulting in
unnecessary overhead and energy wastage. Besides, virtual machine consolidation should take into account multiple resource types at
the same time, since CPU is not the only critical resource in cloud data centers. In fact, also memory and network bandwidth can become
a bottleneck, possibly causing violations in the service level agreement. This article presents a virtual machine consolidation algorithm
with multiple usage prediction (VMCUP-M) to improve the energy efficiency of cloud data centers. In this context, multiple usage refers
to both resource types and the horizon employed to predict future utilization. Our algorithm is executed during the virtual machine
consolidation process to estimate the long-term utilization of multiple resource types based on the local history of the considered
servers. The joint use of current and predicted resource utilization allows for a reliable characterization of overloaded and underloaded
servers, thereby reducing both the load and the power consumption after consolidation. We evaluate our solution through simulations
on both synthetic and real-world workloads. The obtained results show that consolidation with multiple usage prediction reduces the
number of migrations and the power consumption of the servers while complying with the service level agreement.

Index Terms—Virtual machine consolidation, virtual machine migration, multiple resource prediction, cloud computing, data centers.

F

1 INTRODUCTION

COMMERCIAL cloud Infrastructure-as-a-Service (IaaS)
providers, such as Amazon EC2, offer several types

of virtual machines (VMs) that differ in their amount of
resources based on the pay-as-you-go model [1]. This al-
lows cloud users to run their applications on the most
appropriate virtual machine instances and pay for the actual
resources that are used [2, 3]. However, the resources sup-
plied by cloud providers can vary over time due to highly
dynamic workloads that require resizing, creating and (or)
terminating VMs. Furthermore, such resources consist of
multiple types (or dimensions) including CPU, memory, disk
and network bandwidth. As a consequence, if the owners
of cloud data centers cannot effectively schedule and reallo-
cate heterogeneous VM instances and resource types, some
hosts might become overloaded while other hosts may be
underutilized. Eventually, such an unbalanced use of hosts
results in unnecessary activation of servers, thus increasing
the actual costs [4–6]. Conversely, increasing the workload
of some VMs may cause the corresponding physical servers
to be overloaded, possibly affecting the quality of service
(QoS) experienced by the hosted applications. In fact, the
QoS level offered to cloud users needs to fulfill the service
level agreement (SLA) of the cloud provider [7, 8].

The live VM migration technology enables the consoli-
dation of VMs, thus allowing cloud providers to reallocate
VMs into a few physical servers and switch off unused
machines [9–11]. This approach helps improve the resource
utilization and allows energy savings while keeping a sat-
isfactory level of QoS [12]. VM migration is closely related
to the problem of determining when a server is overloaded
(i.e., a hot spot) or underloaded (i.e., a cold spot), which has
been studied in the literature [9, 10, 13]. The main challenge
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is to decide whether a host is overloaded or underutilized
due to the diverse set of user applications and the variability
of the VM workloads with time, especially in a cloud data
center with thousands of heterogeneous machines. In this
context, several VM consolidation schemes have simply
taken the current utilization of a single resource (i.e., CPU)
into account while deciding whether a physical server is
overloaded or underutilized [4, 10]. Other schemes consider
the current CPU, memory, storage and (or) network usage,
then transform them into a single metric [9, 13]. In any case,
as they are purely based on the last observed utilization for
decision making, existing solutions may cause unnecessary
migrations and eventually increase overheads: the energy
for VM migration, the performance degradation of hosted
applications, and the extra network communication [14, 15].
Consequently, more efficient schemes are needed to cor-
rectly take decisions on VM migration. In other words,
hot and cold spots should be reliably determined across
multiple resources to limit the frequency of VM migrations.

When a server is overloaded, it is challenging to de-
termine which and how many VMs should be selected for
migration to suitable hosts. As migration is expensive, VM
selection plays an important role to limit the number of VMs
migrations. Additionally, the target physical server should
also be correctly selected for placing a VM under migration.
For instance, the target host should not be overloaded in
both the current and the future period of time after allo-
cating the migrated VM. During the migration process, if
there is no active physical server with sufficient resources
available, an inactive server is started and the selected
VMs are allocated on such a machine. On the other hand,
when a host is underutilized, all VMs from such a host
are selected for migration if they can be consolidated into
other hosts without causing overutilization. Idle servers are
then switched to a low-power state to save energy [16, 17].
However, switching the power state of a host from idle
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to a low-power state and vice versa consumes additional
energy [15]. Besides, migration decisions do not only affect
the performance of the hosted applications but also that of
the data center as a whole. Therefore, as VM migrations
and server switches are essential for power reduction, it is
even more important to avoid massive migrations and limit
power state switches.

This article presents a VM consolidation algorithm called
VMCUP-M that embeds both multiple resource and multi-
ple step usage prediction. In particular, VMCUP-M consol-
idates VMs according to the usage of multiple resources
and a tunable horizon to predict future utilization. This
article extends our previous work [18, 19] as follows. We
first present an efficient multiple usage prediction (MUP)
approach to estimate the long-term utilization of each re-
source type based on the local history of the considered
servers. The joint use of current and predicted utilization
allows for a reliable characterization of overloaded and
underutilized servers, thus enabling cloud providers to in-
crease their compliance with the SLA. We also propose an
efficient algorithm, called VM consolidation with multiple
usage prediction (VMCUP-M), for energy-efficient cloud
data centers. VMCUP-M considers VMs by using two inde-
pendent procedures, namely, overloaded server migration
and underloaded server migration, which have a polyno-
mial time complexity on the number of the VMs to be
allocated in the data center. Through extensive simulations
on both synthetic and real-world workloads, we show that
the proposed MUP scheme can easily be integrated into
existing VM selection and placement algorithms to increase
the performance of a data center. Furthermore, we also show
that the proposed VMCUP-M algorithm reduces the energy
consumption while limiting the number of active servers,
VM migrations and power state changes, thus achieving a
better compliance with the SLA than the state of the art.

The rest of this article is organized as follows. Sec-
tion 2 discusses the related work and highlights the re-
lated limitations. Section 3 introduces the multiple usage
prediction scheme for VM consolidation and evaluates the
effectiveness of the proposed prediction approach. Section 4
describes and analyzes the VMCUP-M algorithm. Section 5
presents the experimental setup and compares the results
obtained by our proposed scheme with existing solutions for
VM consolidation. Finally, Section 6 concludes the article.

2 RELATED WORK

In this section, we review relevant approaches proposed in
the literature on cloud and distributed computing.

Some works addressed VM consolidation through mi-
gration to optimize power consumption [4, 9, 10, 20]. In such
cases, static hot and cold thresholds were used to determine
whether a host is overloaded or underutilized, respectively.
As a consequence, these approaches keep the current (CPU)
utilization of a server between the two thresholds. However,
setting static thresholds and using the current utilization of a
single resource are not effective measures for environments
with dynamic workloads, in which the utilization of VMs
running on a server continuously changes over multiple re-
source dimensions. The work in [10] proposed a set of met-
rics to rank servers by considering an adaptive upper bound

based on a statistical analysis of historical CPU data. Even
though the used thresholds are not static, these approaches
only use the current CPU utilization as the main criterion
to decide on VM migrations. Thus, they do not allow for
a reliable characterization of overloaded and underloaded
servers, eventually resulting in unnecessary migrations and
energy wastage. The impact of multiple types of resources
on the detection of hot and cold servers was not considered
in that work either. The work in [4] presented an energy–
aware task consolidation (ETC) technique. In particular, ETC
minimizes energy consumption by restricting only single
resource (CPU) usage below a specified threshold. The main
limitations of this work are that it is restricted to CPU
utilization only and does not explicitly support overloaded
and underloaded host management mechanisms.

A linear regression-based CPU usage prediction (LiR-
CUP) was presented in [21] for VM migration. Specifically,
future CPU usage is estimated to predict overloaded and
underloaded hosts based on historical data of each server.
Based on that, some of VMs are migrated to other hosts
before a SLA violation occurs. Consequently, such a solution
relies on early migration of VMs even when the current re-
source usage of the considered hosts is still acceptable, thus
resulting in unnecessary migrations. Furthermore, LiRCUP
considers only a single type of resource and applies ag-
gressive VM migration, while our scheme supports multiple
types of resources and allows for a reliable characterization
of overloaded and underloaded servers in the long-term
future. The work in [22] used two learning algorithms (i.e.,
neural networks and linear regression) to predict future
resource requirements in the cloud with respect to time.
Their study showed that models based on neural networks
obtain superior prediction accuracy than linear regression.
However, the training of neural network models takes sig-
nificant time which depends on the size of the input as well
as the frequency of prediction. Therefore, it is important
to determine effective learning algorithms for consolidating
VMs in cloud data centers with thousands of heterogeneous
machines and diverse resource types. The work in [23] pre-
dicted the number of VM requests along with their amounts
of CPU and memory resources. Based on these metrics, the
proposed framework provides an accurate estimation of the
number of needed physical machines, thus reducing energy
consumption by putting to sleep unneeded machines. How-
ever, while providing a solution to predict the number of
VM requests and the number of activated servers are im-
portant starting from the VM submission phase, overloaded
and underloaded host detection algorithms are even more
important to support continuous consolidation of already–
placed VMs on the least number of physical servers.

Sandpiper [13] combined three dimensions into a single
volume metric as the product of CPU, memory and network
utilization. The same work [13] also introduced a black-box
and gray-box (BG) strategy, based on the volume criterion,
for VM consolidation in large data centers. BG sorts over-
loaded servers based on their volume metric and the VMs
in each server based on their volume-to-size ratio (VSR). BG
then considers the server with the highest volume first; the
VM to be migrated is then the one with the highest VSR. The
BG scheme also adopts the volume metric to select target
servers, i.e., they are sorted by increasing volume to allocate
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Algorithm 1: UP(p, d,m)

1 Set X← 0, y← 0, β ← 0;
2 // Training dataset: X (input) and y (output)
3 for t = 0 to n−m do
4 Xt,0 = 1;
5 for i = 0 to m do
6 Xt,i+1 = Ud

i (p);

7 yt = Ud
t (p); //yt ∈ y

8 // Estimate the regression coefficients β with OLS
9 β ← (XTX)−1XTy;

10 // Estimate the future resource usage
11 Ud

t+1(p) = Ud(p) · β;
12 return Ud

t+1(p).

the VMs under migration. The major limitation of the BG
scheme is that it does not enable a reliable characterization
of overloaded and underloaded servers. Moreover, the BG
scheme does not support migrating underloaded servers
and is limited to homogeneous physical machines.

Other works have explicitly addressed energy-efficient
cloud data centers. The solution in [24] modeled VM place-
ment under network-aware SLA metrics as an integer pro-
gramming model, then derived approximation algorithms
with a low time complexity. The work in [25] proposed
scheduling and runtime adaptation mechanisms that are
eco-friendly by explicitly taking into account the carbon
footprint associated with operating a cloud data center. The
approach in [26] explicitly considered SLAs for allocating
physical resources (i.e., CPU cores) to VMs, with focus on
resource isolation. All these solutions, however, do not con-
sider VM machine migration as a method to increase energy
efficiency of data centers. The work in [27], instead, targeted
distributed load management through software agents and
live VM migration. However, the proposed solution was not
evaluated in terms of impact on SLAs.

3 MULTIPLE USAGE PREDICTION

In this section, we first formally define the VM consolidation
problem. We then present the proposed multiple usage pre-
diction (MUP) scheme and its performance for forecasting
future resource utilization.

3.1 Notations and Metrics

Let us consider a cloud data center that provides comput-
ing resources in the form of VM instances according to
the Infrastructure as a Service (IaaS) delivery model. We
specifically consider the VM consolidation problem as con-
sisting of the following phases: determining when a server
is overloaded, then migrating the potential VMs from such a
server to maintain a certain QoS; determining when a server
is underloaded, then migrating all VMs from such a server
to minimize energy consumption; selecting the potential
VM that should be migrated from an overloaded server to
limit the number of VMs migrations; finally, finding a new
placement for the VMs under migration.

We denote a set of M heterogeneous physical servers in
a cloud data center as P = 〈p1, p2, . . . , pM 〉. Each server

TABLE 1. Multiple resource and multiple step usage prediction
(UP(p, d,m+ k − 1), m = 1, p ∈ P , d ∈ D and k ∈ K).

Step (k) Inputs of MUP Output Usage prediction
1 Ud

t (p) Ud
t+1(p) UP(p, d, 1)

2 Ud
t (p), U

d
t+1(p) Ud

t+2(p) UP(p, d, 2)
3 Ud

t (p), U
d
t+1(p), U

d
t+2(p) Ud

t+3(p) UP(p, d, 3)

is uniquely identified in the form p = 〈pi, vm, r̂d〉 with
multiple types of resources, d ∈ {1, ..., D}, D ∈ N, where:
pi is the unique identifier of a server; vm is a set of VM
instances that are allocated to p; and r̂d = {r̂1, r̂2, ..., r̂D}
describes the type and the amount of the d-th resource con-
sumed, where each dimension corresponds to one type of
physical resource (e.g., CPU, memory, storage and network
bandwidth).

A VM instance can be represented similarly to the re-
source dimensions of physical servers. In detail, we use an
instance in the form v = 〈vi, rd〉 to uniquely identify a VM.
To this end, we denote a set of N VMs to be allocated to the
system as V = 〈v1, v2, . . . , vN 〉.

Let Ud
t (p) be the utilization of resource d ∈ {1, ..., D} of

a server p at time t. Then Ud
t (p) of type d is defined as the

total resource usage of all running VMs in p divided by the
total resource capacity of the considered server

Ud
t (p) =

udt (p) + wd(p)

r̂d(p)
, (1)

where udt (p) is the total resource usage of the d-th dimension
of an already placed set vm of VMs that are allocated to p
at time t, udt (p) =

∑
v∈vm(p) r

d(v); wd(p) is the initial load
of the d-th resource of p, and r̂d(p) is the amount of the d-th
resource consumed1 by the considered server p.

3.2 Usage Prediction
Let us assume that the last n observed utilizations for
resource type d of a server p – namely Ud

(t+1)−n(p), ..., U
d
t (p)

– are known. The goal of prediction is to estimate the future
resource usage Ud

t+1(p). To this regard, we used multiple
linear regression to estimate the relationship between the
input variables and the output [28]. Such a method is
especially attractive for consolidating VMs in cloud data
centers with millions of heterogeneous machines and re-
source types due to its time complexity, especially if com-
pared to other solutions in the state of the art [22]. In our
usage prediction scheme, UP (Algorithm 1), the predicted
resource usage Ud

t+1(p) of a server p is defined as the linear
prediction function according to m independent utilizations,
i.e., Ud(p) = [1, Ud

(t+1)−m(p), . . . , Ud
t (p)]

T , m < n, by a
straight line as follows:

Ud
t+1(p) = β0 +

m∑
i=1

βi · Ud
i (p), (2)

where βi, i ∈ {0, . . . ,m} are the regression coefficients
estimated according to the n last observations and m + 1
is the regressor size of the prediction model. The regression
model in Eq. (2) is obtained by determining the coefficient
parameters β = [β0, . . . , βm]T so that the regression line has

1. For instance, d=1 refers to CPU and r̂1(p)=0.8 indicates the amount
of the CPU consumed (i.e., 80% of CPU utilization).
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Fig. 1. Prediction of CPU resource usage in the Google cluster traces: (a) one-step prediction; (b) six-step prediction and (c) impact
of the number of steps on usage prediction.
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Fig. 2. Prediction of memory resource usage in the Google cluster traces: (a) one-step prediction; (b) six-step prediction and (c)
impact of the number of steps on usage prediction.

the best fit for the training data. The original least squares
(OLS) [28] is a popular method that estimates the (m + 1)-
dimensional vector of β as follows:

β = (XTX)−1XTy, (3)

where X is the (n − m) × (m + 1) matrix of input vari-
ables and y is the (n − m) × 1 vector of output variables,
respectively. In Eq. (3), XT is the transpose of X.

3.3 Multiple Usage Prediction
In our multiple usage prediction scheme (MUP) we aim at
predicting the long-term usage of multiple resource types
d ∈ {1, ..., D} of a server p over a time period K ∈ N. This
requires predicting the usage of the resource type d at the k-
th step ahead in time, where k ∈ {1, . . . ,K}. In other words,
we have to estimate Ud

t+k(p) from the current resource
utilization Ud

t (p). Specifically, we predict the multiple re-
source and multiple step usage, i.e., Ud

t+1(p), ..., U
d
t+k(p),

by iterating the usage prediction UP corresponding to the
regressor size (m+ k − 1), as follows:

Ud
t+1(p) = f1(U

d
(t+1)−m(p), ..., Ud

t (p)) = UP(p, d,m),

Ud
t+2(p) = f2(U

d
(t+1)−m(p), ..., Ud

t (p), U
d
t+1(p))

= UP(p, d,m+ 1),

Ud
t+k(p) = fk(U

d
(t+1)−m(p), ..., Ud

t (p), U
d
t+1(p), ..., U

d
(t+k)−1(p))

= UP(p, d,m+ k − 1).

Table 1 illustrates how the usage prediction (UP) scheme
is iterated to obtain the parameters in the multiple usage
prediction (MUP) algorithm. Note that the predicted output
at each step is fed back as an input to the next prediction
step. This helps minimize the least square error while up-
dating the coefficient parameters at each prediction step.

3.4 Performance of Multiple Usage Prediction
In the following, we first evaluate the performance of
our proposed MUP prediction scheme by using the real
workload traces in the Google Cluster Data dataset [29],
consisting of approximately 12,000 machines. In detail, the
Google trace provides the resource usage about CPU, mem-
ory and disk for each task. The related values are collected
every five minutes over a time span of 29 days (May 2011).
Based on that, we have derived the total resource usage
over a duration of 24 hours by summing up the CPU and
memory usage of all the running tasks in the system. This
resource utilization reported by the Google cluster indicates
the actual resource consumption of CPU and memory. In
the considered dataset, both the CPU and memory resource
utilization increase linearly with time.

We applied the Leave-One-Out cross-validation tech-
nique [30] for estimating the accuracy of the MUP scheme.
In such a strategy, each observation [x(i),y(i)], i ∈
{1, . . . , n} in the sample dataset of size n is successively
taken out and the remaining n − 1 observations of the
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set are used to train the prediction model to estimate the
predicted resource usage ŷ(i). The actual output y(i) ∈ y
is then used to validate the predicted output ŷ(i) inferred
by the fitted model. We evaluated the accuracy of the MUP
scheme under the following metrics (the higher the better):
the R2 prediction accuracy, the mean absolute percentage
error (MAPE), and the PRED(25) measure [22, 31].

Figure 1 and Figure 2 show the performance of the pro-
posed prediction approach for CPU and memory compared
to the real resource usage. The results show that the values
predicted by MUP are always close to the real ones even
during peaks. Specifically, the results show that the MUP
prediction scheme obtains the best performance for a one-
step CPU and memory usage prediction (Figure 1a and
Figure 2a) and then gets worse as the number of steps
increases, i.e., when the number of steps is equal to six
(Figure 1b and Figure 2b). This happens since the distri-
bution of the actual resource utilization in the considered
dataset is linear over time. Figure 1c and Figure 2c compare
the responsiveness of the prediction accuracy for different
values of the steps ahead, up to k = 12 (corresponding
to one hour). According to the R2 prediction accuracy, the
measured values decrease from 0.995 to 0.935 for CPU and
from 0.997 to 0.908 for memory as the number of steps
k ∈ {1, ..., 12}. In particular, we found that R2 = 0.963
for CPU and R2 = 0.948 for memory usage are achieved
with setting K = 6 corresponding to a future period of
30 minutes. Additionally, the MAPE values also decrease
with increasing the number of steps k for both the CPU
and memory resource types. Besides, the PRED(25) has
correct prediction rate of one for all the prediction steps,
thus indicating that the proposed MUP is a perfect fit. In the
rest of this article, we set the number of prediction steps to
K = 6. This ensures that the R2 prediction accuracy is larger
than 0.948 for both the CPU and memory resource types.

4 VM CONSOLIDATION WITH MUP
In this section, we present our VM consolidation with mul-
tiple usage prediction (VMCUP-M) algorithm to reduce the
energy consumption of a cloud data center. The VMCUP-
M algorithm itself makes use of two major functions:
overloaded host detection with multiple usage prediction
(OHD-MUP) and underloaded host detection with multiple
usage prediction (UHD-MUP). In the following, we first
describe these functions then analyze the time complexity
of VMCUP-M.

4.1 Overutilized Host Detection
The proposed overloaded server detection OHD-MUP is
presented in Algorithm 2 based on the prediction scheme in-
troduced in Section 3.3. Accordingly, a server is considered
overloaded in any resources d ∈ {1, ..., D} if the following
conditions are satisfied (h is referred to as a hot threshold,
k ∈ {1, ...,K}):
• the server is overloaded in both the current and the

future period of time, i.e., Ud
t (p) > hd and Ud

t+k(p) >
hd;

• the server is currently operating normally and is
overloaded in the future period of time, i.e., Ud

t (p) ≤
hd and Ud

t+k(p) > hd.
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Fig. 3. CPU resource usage of a cloud server in our university
measured every five minutes over 24 hours.

This indicates that the server is a potential candidate for
migration because it is overloaded in both the current and
the future time period or overloaded in the near future.
Thus, migrating the VMs from this server increases the
compliance with the SLA.

As an example, Figure 3 shows the CPU utilization of a
cloud server in our university measured every five minutes
over 24 hours. The figure illustrates how existing algorithms
based on the current CPU utilization as the main criterion to
detect an overloaded server may cause an unreliable over-
loaded host detection. Specifically, we have considered the
following criterion: a host is considered overloaded when
the current CPU usage exceeds the threshold hcpu = 0.8 (i.e.,
80% of load). In Figure 3, the small circles on the top of the
trace denote false hot detection points because the load of
the considered host will rapidly decrease in the short-term
future. In such a situation, the VMs allocated to a server
do not need to be migrated to reduce the resource load. For
the same trace, the OHD-MUP algorithm reported only one
point as a hot spot, i.e., the one marked with the rectangle in
the period of time from 600 to 670 minutes. In this period,
some VMs need to be migrated to avoid SLA violations.
The example shows how MUP plays an important role in
decision making on overloaded servers and how OHD-
MUP avoids unnecessary VM migrations due to varying
resource demands. In a cloud data center with thousands
of machines and a high variability of the VM workloads
with time, determining VM migration simply based on a
static threshold may result in hundreds of hot spots or
even worse. Instead, our proposed OHD-MUP leverages
the current and multiple predicted utilization so as to limit
the number of hot spots to the few ones that are really
necessary.

4.2 Underutilized Host Detection
Algorithm 3 (UHD-MUP) describes the underloaded server
detection with multiple usage prediction. When no host is
overutilized, the one with the lowest value of maximum
resource utilization in the data center is considered. We de-
fine such a server p as underutilized if its multiple predicted
resource is equal or below the current resource utilization.
This indicates that the server is currently underutilized and
its load will decrease in the considered time period, thus the
host is a potential candidate to be switched to a low-power
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Algorithm 2: OHD-MUP(p,D,m,K)

1 for ∀d in D do
2 for ∀k in K do
3 Ud

t+k(p)← UP(p, d,m+ k − 1);
4 if Ud

t+k(p) ≤ hd then return false ;

5 return true

Algorithm 3: UHD-MUP(p,D,m,K)

1 for ∀d in D do
2 for ∀k in K do
3 Ud

t+k(p)← UP(p, d,m+ k − 1);
4 if Ud

t+k(p) > Ud
t (p) then return false ;

5 return true

mode for energy saving. The joint use of both current and
predicted utilization metrics (over diverse resources and
multiple steps) allows to correctly identify underutilized
servers. If the load of the considered server will increase
above the current usage in any time instant during the
considered period, the algorithm takes no action. After
migrating all VMs on underloaded server, the idle server
is switched to a low-power mode.

It is worth emphasizing that we do not employ any static
cold thresholds for underutilized host detection. Instead,
our UHD-MUP algorithm considers as potential candidates
for migration, at each evaluation step, all the VMs from
the server with the lowest value of maximum resource
utilization. However, migration is only carried out if there is
a target server with enough resources to accommodate the
migration of the candidate VMs. This allows for additional
flexibility as no cold threshold needs to be explicitly defined.

4.3 Virtual Machine Selection and Placement

Once an overloaded server p is considered, the most utilized
resource of a server p is the critical resource which drives the
consolidation process, because it becomes a bottleneck for
the server. To this regard, the next step is to select a potential
VM running on p for migration to reduce the resource
load. We thus define the type (or dimension) of the hottest
resource d̂ ∈ {1, . . . , D) and the resource temperature ratio
RT (p) of an overutilized server p at time t as:

d̂ = argmax
d∈{1,...,D}

Ud
t (p), (4)

RT (p) = (U d̂
t (p)− hd̂)2. (5)

We then introduce a VM selection policy – namely, the
minimum resource temperature (MRT) – that migrates a VM
v to reduce the resource temperature of a given server p the
most. As migration is expensive, our goal is to select only
the VMs that contribute the most to the host load. Let vm(p)
be a set of VMs currently allocated to the host p. The MRT
policy finds a VM v ∈ vm(p) such that ∀a ∈ vm(p) the
following conditions hold:

RT (p|vm(p) \ v)
RAMu(v)

≥ RT (p|vm(p) \ a)
RAMu(a)

. (6)

Algorithm 4: PABFD-MUP(P, v,D,m,K)

1 Set p← ∅; minPower ←MAX;
2 for ∀pi in P do
3 if ∀d ∈ D; rd(v) + udt (pi) + wd(pi) ≤ r̂d(pi) then
4 oldPower ← getPower(pi);
5 Place v on pi, update Ud

t (pi);
6 newPower ← getPower(pi);
7 incPower ← newPower − oldPower;
8 if incPower < minPower AND

OHD-MUP(pi, D,m,K) = false then
9 minPower ← incPower; p← pi;

10 else Release v from pi, update Ud
t (pi);

11 return p

where RAMu(v) is the amount of memory currently uti-
lized by the VM v and is updated at each consolidation
interval. Recall that the cost of migrating a VM is mostly
determined by its memory size. Eq. (6) ensures that the
memory used by the selected VM is small enough to effec-
tively limit the migration overhead [9, 13]. Furthermore, the
VM v selected by Eq. (6) is the most appropriate to reduce
the resource temperature, i.e., RT (p|vm(p)\v), with respect
to other VMs allocated to a given server p, thus reducing the
number of migrations.

We also extend the power-aware best fit decreasing
(PABFD) algorithm introduced in [10] for multiple resource
VM placement, with focus on energy efficiency. In particular,
we embed the MUP scheme into PABFD through a new
VM placement algorithm called PABFD-MUP (Algorithm 4).
Accordingly, PABFD-MUP selects a target physical server
based not only on the least increased power consumption
but also on its utilization stability, which can be predicted
by using the MUP scheme. Importantly, PABFD-MUP de-
creases the chance of the target host being overloaded in the
future period of time after placing the migrating VM.

4.4 The VMCUP-M Algorithm

VMCUP-M is detailed by Algorithm 5. It executes periodi-
cally to evaluate the VM consolidation process based on the
future prediction resource usage of the considered servers.

The overloaded server migration procedure takes place
until all servers in P have been considered (line 2). If a sever
pi is overloaded (line 3), the next step is to select the VMs
to be migrated. In our VMCUP-M algorithm, the VM v is
selected according to the minimum resource temperature
(MRT) policy (line 4). After selecting the VM v to be
migrated, the appropriate server for placing the migrating
VM v is obtained by the power aware best fit decreasing
with multiple usage prediction (PABFD-MUP) algorithm
(line 5). If server p exists, then v is placed to p and the server
p is updated with new values forUd

t (line 6). Otherwise, if all
the servers are not already active, an inactive server pinact
is switched to an active state for allocating the selected VM
(lines 7-10). The VM placement should be rejected if a server
p does not satisfy the demands of all the resources in v or
is overutilized after accepting v in the current and future
period of time.
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Algorithm 5: VMCUP-M(P,D,m,K)

1 // Overloaded server migration with MUP;
2 for ∀pi in P do
3 while OHD-MUP(pi, D,m,K) = true do
4 v ← MRT(pi);
5 p← PABFD-MUP(P \ {pi}, v,D,m,K);
6 if p 6= ∅ then Place v on p, update Ud

t (p) ;
7 else if ∃pinact then
8 Switch pinact to an idle mode;
9 Place v on pinact, update Ud

t (pinact);
10 P ← P ∪ {pinact};
11 else break;

12 // Underloaded server migration with MUP;
13 Set status← true;
14 while status = true do
15 Set p← p0;
16 for ∀pi in P do
17 if maxd∈D U

d
t (p) > maxd∈D U

d
t (pi) then

18 p← pi;

19 if UHD-MUP(p,D,m,K) = true then
20 Set W ← ∅;
21 for ∀vi in p do
22 s← PABFD-MUP(P \ {p}, vi, D,m,K);
23 if s = ∅ then status← false; break;
24 else W ←W ∪ {s};
25 if status = true then
26 for ∀vi in p do
27 Remove server s from W in FIFO order;
28 Place vi on s, update Ud

t (s);

29 Switch p to a low-power mode;
P ← P \ {p};

The underloaded server migration procedure starts
when no host is overutilized and the host with the low-
est value of maximum resource utilization is considered
(lines 15-18). Recall that our model defines a server as cold
when its resource usage over a given time period is equal or
below the current utilization. If a server p is underutilized,
all VMs placed in p need to be migrated before switching p
to a low-power mode. For each VM vi in p, if a set of poten-
tial serversW is found by the PABFD-MUP algorithm, then
all placed VMs in p are migrated in sequence to a physical
server s in W (lines 21-28). To this end, the cold server p
is switched to a low-power state. If at least one VM in a
cold spot p cannot find a new placement, the underloaded
server migration procedure does not migrate the VMs and p
is kept active. The underloaded server migration procedure
continues until a server with the lowest utilization has not
been considered as a cold spot.

4.5 Complexity Analysis
In this section, we analyze the time complexity of VMCUP-
M that consists of the two independent phases in Algo-
rithm 5. Let us define: M as the number of active servers
in the system; N as the number of VMs to be allocated in
the data center; Nvm as the average number of VMs hosted

on a physical machine; and n as the history size of each
resource utilization. We then detail our analysis as follows.

4.5.1 Complexity of Overloaded Server Migration
We calculate the time complexity of the for loop in Algo-
rithm 5. At each step, exactly one server is considered and
M is decreased by one. After M iterations, P will be empty.
Therefore, the time complexity of the for loop is the same as
the number of hosts M .

We then calculate the time complexity inside the for loop
that consists of three phases. In the first phase, the time
complexity of the OHD-MUP algorithm is mainly based on
the complexity of the UP algorithm, i.e., it takesO(D·n·(m+
K)) time to check if a server is overutilized. In the second
phase (i.e., the MRT function), a total of O(Nvm) time is
needed to find an appropriate candidate. The third phase
(i.e., the PABFD-MUP function) takes a total of O(M ·D ·n ·
(m+K)) time. Thus, the time complexity inside the for loop
isO(D ·n·(m+K)·Nvm)+O(D2 ·n2 ·(m+K)2 ·M). Clearly,
in the multiple resource model, the number of resources D
that need to be considered is usually a small constant when
adopting the D-dimensional usage prediction (e.g., 2, 3 or
4). Furthermore, n, m and K are typically small numbers.
Therefore, the time complexity becomes O(Nvm) +O(M).

By combining the complexity of the for loop and of
its inner statements together, the time complexity becomes
O(M · Nvm) + O(M2). Indeed, the total number of active
physical machines in the data center can be approximated
as M ≈ N

Nvm
. Hence, the complexity of overloaded server

migration procedure is O(N2) in the worst-case scenario, in
which each VM is allocated on exactly one server.

4.5.2 Complexity of Underloaded Server Migration
A total of O(M · D) time is needed to find a server p with
the lowest value of maximum resource utilization. UHD-
MUP then takes O(D · n · (m + K)) time to check if a
server p is underutilized. For each VM in a considered cold
server p, it takes a total of O(M · D · n · (m + K)) time to
find an appropriate candidate server, since there are Nvm

placed VMs to be considered for migration. Thus, the time
complexity becomes O(Nvm ·M · D · n · (m +K)), hence,
O(M ·D) +O(D2 · n2 · (m+K)2 ·Nvm ·M).

Again, M ≈ N
Nvm

and in the worst-case scenario all
servers in a data center are underutilized; therefore, the total
time complexity of underloaded server migration procedure
is O(N2).

4.5.3 Complexity of the VMCUP-M Algorithm
In the VMCUP-M algorithm, the overloaded server mi-
gration and underloaded server migration procedures take
place independently from each other. Therefore, the overall
time complexity of VMCUP-M is O(N2).

5 PERFORMANCE EVALUATION

To evaluate the effectiveness of our proposed scheme in a
practical cloud scenario, we used the CloudSim simulation
toolkit [32] and the same experimental setup as [10] for
comparison purposes. We extended CloudSim to handle
multiple types of resources. We then implemented VMCUP-
M on top of such an extended version of CloudSim.
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5.1 Experimental Setup
Before proceeding further, let us introduce the experimental
setup used in the rest of this article. We considered a data
center comprising 800 heterogeneous hosts: half of the hosts
are HP ProLiant ML110 G4 servers with 1,860 MIPS per
core, and the other half are HP ProLiant ML110 G5 servers
with 2,660 MIPS per core. Each server has 2 cores, 4 GB
of memory and 1 GB/s of network bandwidth. The power
consumption of active2 servers in the simulation is derived
from the corresponding figures in the Standard Performance
Evaluation Corporation (SPEC) [33] power benchmark re-
sults as a function of the utilization level, similarly to [10].

We considered four different types of VMs whose
CPU and memory correspond to the following Ama-
zon EC2 [34] instances: High-CPU Medium Instance
(2,500 MIPS, 0.87 GB); Extra Large Instance (2,000 MIPS,
1.74 GB); Small Instance (1,000 MIPS, 1.74 GB); and Micro
Instance (500 MIPS, 613 MB). Initially, VMs are allocated
according to the resource requirements defined by the VMs.

The utilization of the VMs follows the traces from two
real-world workloads. The first publicly available workload
consists of the resource usage from the Google Cluster
Data (GCD) dataset which provides traces over a 29 days
period in May 2011 [29]. The GCD workload comprises
672,003 jobs, each with one or more tasks, and contains the
normalized value of the average number of used cores and
the utilized memory. To create the CPU and the memory
utilization of VMs, the tasks of each job were aggregated
by summing their CPU and memory consumption every
five minutes in a period of 24 hours. We then extracted the
VM workloads over the first ten days period by filtering the
utilization of CPU and memory from 5% to 90%, resulting
in a total of 1,600 VMs. The second real-world workload we
considered consists of the CPU and the memory utilization
of 11,746 PlanetLab VMs measured every five minutes [10].
In particular, we extracted the CPU and memory usage of
VMs from ten days of the PlanetLab VMs workload traces
collected in March and April 2011. We then filtered the
utilization of CPU and memory from 2% to 100%, resulting
in a total of 1,473 VMs. The characteristics of the VMs and
their resource utilization in the GCD and PlanetLab traces
are presented in Table 2.

In the synthetic workload, we assumed that the CPU
and the memory utilization of the VMs followed a uniform
distribution as in [10] for comparison purposes. Moreover,
we generated the CPU and memory utilization of 800 VMs,
each allocated to exactly one server. According to the re-
source dimensions of the considered3 workloads, we set D
= 2 and adopted a bi-dimensional VM consolidation with
prediction. At the beginning of the simulation, VMs were
randomly assigned a workload trace from one of the VMs
in the traces.

5.2 Evaluation Metrics and Comparison Benchmarks
We evaluated VMCUP-M over a time span of 24 hours for
the all workload traces in our experiments. We set the initial
number of input variables to m = 1 according to [22] and

2. The power consumption of inactive servers is assumed negligible.
3. We would like to recall that our proposed MUP scheme also sup-

ports additional resource types, such as disk and network bandwidth.

TABLE 2. Characteristics of the considered workload traces.

Workload Date VMs Res. Mean (%) St. dev (%) Median

GCD 10 days 1,600 CPU 21.84 13.62 18
May 2011 Mem 19.55 16.66 12

PlanetLab 10 days 1,473 CPU 19.77 14.55 15
Mar. - Apr. 2011 Mem 6.27 6.01 5

the number of steps to K = 6 according to our preliminary
investigation detailed in Section 3.4. We measured the re-
source usage every five minutes. After one hour from the
beginning of the simulation (i.e., at n = 12), the VMCUP-M
consolidation process started and it was applied to every
active host in the cloud data center every five minutes. We
then evaluated the following metrics:

• energy, as the total consumption of all the physical
machines in a data center during their lifetime;

• number of active servers;
• number of migrations per VM;
• number of power state changes per server;
• SLA compliance, in terms of the average number of

SLA violations4 (the lower the better).

We compared our proposed method with the static and
dynamic hot thresholds for overutilized host detection ap-
proaches in [10]:

• Static threshold (THR): the hot CPU and memory
threshold is set to 80% of load, i.e., hcpu = 0.8
and hmem = 0.8. The algorithm considers a host as
overloaded if the current utilization of any resource
exceeds the corresponding hot threshold.

• A dynamic threshold based on local regression (LR).
The algorithm detects overloaded hosts based on the
estimated CPU and memory utilization thresholds.

We performed VM consolidation with two different
strategies: one with MUP and the other without MUP. We
compared our results to the approaches proposed in [10]:
algorithms based on static (THR) and dynamic (LR) hot
threshold for overutilized host detection; the minimum mi-
gration time (MMT), maximum correlation (MC), minimum
utilization (MU) and random selection (RS) schemes for VM
selection; and the power-aware best fit decreasing (PABFD)
algorithm for VM placement. Furthermore, we compared
VMCUP-M to the multiple resource black-box and gray-
box (BG) scheme introduced in [13]. For a fair comparison,
we extended the volume metric originally defined in [13]
to consider two resources, i.e., CPU and memory. We also
adopted the underloaded server migration with and with-
out MUP in the considered BG algorithm.

5.3 Impact of Multiple Usage Prediction
We first evaluate the impact of MUP on the average number
of hot spots, cold spots and active physical machines per
data center by varying the data center size between 200
and 1,400 hosts. The ratio of VMs to physical servers is
1:1 in the initial layout. The MRT VM selection policy and
the PABFD-MUP VM placement algorithm are used while
consolidating VMs. In the plots, we reported the average

4. Specifically, we consider SLA violations due to both overutilization
(i.e., the percentage of time during which active servers have experi-
enced 100% utilization of any resource) and migration (i.e, the overall
performance degradation while migrating VMs) as defined in [10].
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Fig. 4. Impact of the MUP scheme on the average number of hot and cold spots per data center for the: (a) random; (b) GCD and
(c) PlanetLab workloads.
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Fig. 5. Impact of the MUP scheme on the average number of active machines per data center for the: (a) random; (b) GCD and (c)
PlanetLab workloads.

values over a time span of 24 hours for the random, the
GCD and the PlanetLab workload traces. In particular, the
average number of hot and cold spots per data center
are shown in Figure 4 for two different overloaded host
detection approaches, i.e, THR and LR. The results show
that VM consolidation with MUP significantly reduces the
number of real hot and cold spots in the system. Specifically,
for the random workload trace (Figure 4a), MUP obtains a
93% reduction in both hot and cold spots compared to the
algorithms without prediction for a cloud data center with
1,400 of machines. Additionally, for the GCD workload trace
(Figure 4b), MUP reduces the number of hot and cold spots
of more than 87% for the considered thresholds. The results
are similar for the PlanetLab workload trace (Figure 4c). As
a consequence, the algorithms correctly identify overloaded
and underutilized servers in the system when using MUP.

Next, we study the impact of MUP on the average
number of active machines per data center for the random
(Figure 5a), GCD (Figure 5b) and PlanetLab (Figure 5c)
workload traces. The obtained results show that the over-
loaded and underloaded host detection approaches with
MUP need the smallest number of active servers, even when
the size of data center is high. In contrast, THR and LR
without MUP result in the highest number of servers used.
In fact, these algorithms take only current resource utiliza-
tion as the main criterion for hot and cold spots detection,
thus fail to reliably detect hot and cold spots due to the

varying resource demands of VMs. As a result, they incur
in unnecessary migrations, eventually resulting in powering
on additional servers for placing the migrating VMs.

5.4 Experimental Results

In the following, we compare the performance of VMCUP-
M against the other considered schemes for VM consolida-
tion over the random and two real-world workloads.

5.4.1 Random Workload

We first compare the energy consumption of VMCUP-
M with the different VM selection policies for the THR
(Figure 6a) and LR (Figure 6b) algorithms. In this case,
VMCUP-M clearly obtains the best performance compared
to THR and LR without prediction for all the considered VM
selection policies. In particular, the results show that VM
consolidation with MUP can decrease the energy consump-
tion by more than 4.4% (THR) and 8% (LR). This indicates
that VMCUP-M can correctly predict underutilized servers
and minimizes the energy costs by switching idle hosts to a
low-power state. Specifically, the proposed MRT selection
scheme has the smallest energy consumption among the
considered schemes. Without MUP, the decrease in the
energy consumption with MRT is apparent with respect to
MMT (more than 4.22%) and MU (3.56%), while it is limited
if compared to MC and RS. Overall, the obtained results
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Fig. 6. Energy consumption of VMCUP-M for the random workload trace with: (a) the THR and (b) the LR overloaded host
detection schemes. Number of active servers for MRT and MMT as a function of time (c).
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Fig. 7. Performance of VMCUP-M under the THR and LR algorithms with different VM selection policies for the random workload
trace: (a) number of migrations per VM; (b) number of power state changes per server and (c) SLA compliance.

show that VMCUP-M combined with MRT significantly
reduces the energy consumption by avoiding unnecessary
migrations and server switches while adapting to the vary-
ing resource needs of VMs.

Figure 6c compares the performance of MRT with the
MMT VM selection scheme in terms of the number of
powered-on servers over time. In this case, MRT clearly
obtains the best performance for both the THR and LR
overutilized host detection approaches. Without MUP, the
algorithms simply use the current resource load for making
decisions. Therefore, it may incorrectly forecast overloaded
and underloaded servers, thus resulting in unnecessary mi-
grations, eventually increasing the number of active physi-
cal machines. When MUP is employed, the VM consolida-
tion procedure decreases the number of active servers to
a smaller number which is almost constant over time. As a
consequence, MUP helps avoid rapid changes in the number
of active machines in a cloud data center.

We now focus on the number of migrations per VM,
switches per server, and SLA violations, shown in Figure 7
with THR (top part of the figures) and LR (bottom part
of the figures). VMCUP-M obtains the best performance,
compared to all other VM selection policies. Figure 7a
shows the number of migrations per VM in the system with
multiple usage prediction is the smallest one. The figure
shows that VMCUP-M reduces the number of migrations

of more than 93% compared to all other schemes due to
temporary resource load. Figure 7b shows that the number
of power state changes per server with MUP is much smaller
for all considered VM selection policies. The reduction in
the server switches is more than 94% (THR) and 88% (LR)
for all considered VM selection schemes because VMCUP-M
correctly forecasts underutilized servers. This helps to limit
the frequency of server switches from idle to a low-power
state and vice versa. It is important to remember that hosts
cannot perform any useful processing while changing their
power states. Figure 7c shows that VMCUP-M significantly
reduces the number of SLA violations compared to the
considered VM selection schemes. As a consequence, the
reported results demonstrate that the proposed approach is
effective while consolidating VMs.

5.4.2 Real Workloads

We now compare the energy consumption of VMCUP-M
under different VM selection policies for the GCD workload
trace with THR (Figure 8a) and LR (Figure 8b). In this case,
VMCUP-M reduces the power consumption of 5.6% or more
(THR) and 4.6% or more (LR) with respect to algorithms
without MUP. The results indicate that consolidating VMs
with MUP plays an important role in minimizing energy
costs. Moreover, MRT also achieves the lowest energy con-
sumption compared to all other VM selection policies, even
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Fig. 8. Energy consumption of VMCUP-M for the GCD workload trace with: (a) the THR and (b) the LR overloaded host detection
schemes. Number of active servers for MRT and MMT as a function of time (c).
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Fig. 9. Energy consumption of VMCUP-M for the PlanetLab workload trace with: (a) the THR and (b) the LR overloaded host
detection schemes. Number of active servers for MRT and MMT as a function of time (c).

without prediction. Figure 8c shows that VM consolidation
with multiple usage prediction clearly obtains the smaller
number of active hosts in the system. This is because
VMCUP-M not only takes into account the current state of
resources but also future usage.

For the PlanetLab workload trace, VMCUP-M signifi-
cantly reduces the energy consumption while consolidating
VMs for most of the VM selection policies under the THR
(Figure 9a) and the LR (Figure 9b) hot thresholds. It reduces
the energy of 4.4% than MMT and 9.07% than MU; however,
it has a slightly higher energy consumption than the MC
and RS selection schemes. Thus happens as the PlanetLab
VMs traces are mainly CPU-bound. Besides, the memory
utilization of VMs in PlanetLab is almost constant over time.
In terms of the number of active servers, Figure 9c shows
that the algorithms with MUP achieve the smaller number
of active hosts in the system.

We then evaluate the performance of VMCUP-M in
terms of the number of migrations per VM, switches per
server, and average SLA violations, shown in Figure 10 and
Figure 11. We separate the THR (top part of the figures)
and the LR (bottom part of the figures) hot threshold al-
gorithms into sub-figures. VMCUP-M reduces the number
of migrations per VM by more than 65% (Figure 10a) for
GCD; and by more than 92% for PlanetLab (Figure 11a) for
both the THR and LR algorithms, respectively. The results
are similar for the number of power state changes per

server (Figure 10b and Figure 11b). These results are due
to the fact that VMCUP-M correctly predicts overutilized
and underutilized servers based on current as well as future
load. Furthermore, VMCUP-M also effectively finds the
suitable destination hosts while evaluating VM migration,
thus avoiding unnecessary migrations from the selected
target hosts in near future. VMCUP-M reduces the average
SLA violation percentage, i.e., more than 16% (with the GCD
workload, shown in Figure 10c); and more than 22% (with
the PlanetLab workload, shown in Figure 11c) for both THR
and LR, compared to the other approaches by using a MUP
of the overloaded hosts. This ensures that the destination
servers do not become overutilized while migrating VMs.

Finally, we observe that the proposed MUP scheme is
able to cooperate with the existing VM selection policies (i.e,
MMT, MC, MU and RS) to lower the energy consumption,
limit the frequency of VM migrations and server switches
while getting a better compliance with the SLA. Further-
more, MUP can jointly applied with existing VM placement
algorithms (i.e., PABFD) to correctly select the target host
that does not become a hot spot in the long-term future.

5.4.3 Comparison Between VMCUP-M and BG
In this section, we compare our proposed VMCUP-M ap-
proach against the BG algorithm. In detail, Figure 12 shows
the performance of VMCUP-M in terms of energy consump-
tion. We can see that VMCUP-M consumes less energy than
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Fig. 10. Performance of VMCUP-M under the THR and LR algorithms with different VM selection policies for the GCD workload
trace: (a) number of migrations per VM; (b) number of power state changes per server and (c) SLA compliance.
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Fig. 11. Performance of VMCUP-M under the THR and LR algorithms with different VM selection policies for the PlanetLab
workload trace: (a) number of migrations per VM; (b) number of power state changes per server and (c) SLA compliance.

both BG and BG-MUP over the THR and LR overutilized
host detection approaches for both the random (Figure 12a)
and the GCD (Figure 12b) workloads. These results are due
to the fact that BG allocates the migrating VMs onto idle
servers first because they have the lowest volume metric.
Furthermore, Figure 12c shows the number of active hosts
over time under the random (top part of the figure) and the
GCD (bottom part of the figure) workloads. As a result, VM
consolidation with MUP plays an important role in reducing
the energy consumption and the number of active servers in
a data center.

Figure 13 compares the performance of VMCUP-M
against the BG algorithms for the random workload trace. In
particular, VMCUP-M significantly reduces both the num-
ber of migrations (Figure 13a) and the number of power
state changes per server (Figure 13b). These results are due
to the fact that VMCUP-M only selects the VMs that con-
tribute more to the considered overloaded server according
to its resource temperature. This helps avoid unnecessary
migrations and power state changes. VMCUP-M also re-
duces the average SLA violation percentage (Figure 13c),
compared to the BG algorithm by using MUP for the
overloaded and underloaded hosts. The reason is that the
destination servers do not become overutilized in neither
the current nor the future time period while migrating VMs.

To complete our analysis, we evaluate the performance

of VMCUP-M compared to BG for the GCD trace (Fig-
ure 14). Again, the improvement over THR and LR is appar-
ent. In particular, Figure 14a shows that VMCUP-M results
in the smallest number of migrations; especially VMCUP-
M reduces about 78.26% of the migrations. Furthermore,
VMCUP-M obtains a better performance than BG in terms
of the number of server switches (Figure 14b) and SLA
compliance (Figure 14c). Consequently, combining current
and future prediction of multiple resource usage results in a
reduction of both energy consumption and SLA violations.

6 CONCLUSION AND DISCUSSION

In this article, we addressed the VM consolidation problem
by adopting multiple usage prediction. Our aim was to
reduce the frequency of VM migrations and server switches
to save energy. To this end, we proposed a consolidation al-
gorithm with multiple usage prediction for energy-efficient
cloud data centers. The proposed algorithm effectively re-
duces the number of active servers, migrations, power state
changes and the energy consumption of the servers. Sim-
ulation results on both synthetic and real-world workload
traces confirmed that our approach can significantly de-
crease the energy consumption generated by active physical
machines, VM migrations and host switches with a better
compliance with the SLA.
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Fig. 12. Performance of VMCUP-M and BG with the THR and LR overutilized host detection approaches. Energy consumption
for the: (a) random workload trace and (b) GCD workload trace. Number of active servers for both the random (top) and GCD
(bottom) workload traces (c).
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Fig. 13. Performance of VMCUP-M and BG with THR and LR overutilized host detection approaches for the random workload
trace: (a) number of migrations per VM; (b) number of power state changes per server and (c) SLA compliance.

As a future work, we seek to evaluate the performance
of the proposed algorithm in real data centers. Furthermore,
we intend to characterize the impact of the network load on
the energy consumption of cloud data centers.
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