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Mixed Order Finite Element Modeling of Magnetic Material
Degradation Due to Cutting
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As a part of manufacturing of electrical machines, electrical sheets are cut to the desired shape by various cutting techniques
such as punching, laser cutting etc. This cutting process degrades the magnetic material near the cut-edge which should be included
in the finite element modeling of electrical machines. However, due to the nature of the cutting effects, the existing finite element
modeling of the cutting effect results in computationally heavy simulations. This paper investigates the application of mixed order
elements to model the cutting effect. The second order nodal triangular elements are used near the cut-edge whereas transition/first
order elements are applied in the remaining solution domain. Further, the accuracy of the presented method is analyzed with
the traditional method. According to the simulations, the mixed order elements returned accurate results significantly faster than
the traditional finite element based approaches. Further, the effect of the cutting on the machine performance is also studied by
comparing it’s results briefly.

Index Terms—Core loss, cutting, cut edge, electrical machines, finite element modeling, mixed order elements, punching, steel
laminations.

I. INTRODUCTION

ELECTRICAL machines are extensively used in electrical
power generation and as conversion devices. Therefore,

the government regulations around the world are encouraging
the usage of better efficiency machines and electrical designers
need to develop more optimized machines with lower losses.
One of the loss component, which is often neglected at the
design stage of an electrical machine are the losses due to the
cutting of electrical sheets. These losses present significant
challenges in terms of available standard loss models, compu-
tational cost etc. Clearly, a computationally efficient approach
may encourage the future machine designers to study these
losses and thus help in developing higher efficiency electrical
machines.

The material degradation due to the cutting of electrical
sheets is justified by various techniques. Electron backscatter
diffraction (EBSD), optical microscope [1] and, micro hard-
ness measurements [2] confirm the distortion in the grains
of magnetic material near the cut edge. The degradation
of magnetic material properties such as magnetic excitation
and core losses are further measured by experiments [3],
[4]. To include this degradation phenomenon in the electrical
machine design process various authors developed associated
loss models. Researchers have presented analytical loss models
[5] as well as finite element based loss models [3], [6], [7]. The
effect of the magnetic material degradation in different parts
of a machine such as the stator teeth and yoke was considered
by building factors [8] or by different magnetization curves
[3]. Among the finite element based loss models, the effect of
degradation is either quantified by a single degraded material
layer near the cut edge [9], [10] or by many such layers [6],
[7]. Many degraded layers present a gradual progression of
the magnetic material degradation near the cut edge, which is
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also closer to the actual physical phenomenon. However, the
resultant computational model becomes quite heavy for any
practical purpose.

Recently, the authors of [11] studied the application of
higher order elements to reduce the computation burden of
the inclusion of cutting related effects. However, this approach
will generate higher order elements in all the parts of electrical
machines which may not be required such as the air gap, the
stator slots, the rotor bars etc. Therefore, this paper analyses
the mixed order elements for modeling the cutting effect; i.e.
higher order elements near the cut edge and usually used linear
elements in the other parts of electrical machine.

The application of the mixed order finite elements is well
established in the mathematical finite element literature [12],
[13]. The mixed order elements are also applied in different
engineering domains [14], [15]. These elements are especially
beneficial when we have to model a specific phenomenon in
certain part of the solution domain efficiently. The developed
loss model related to cutting presents a high degree of variation
in permeability near the cut edge, which is normally repre-
sented by parabolic or exponential functions [6], [7]. However,
it is observed that the cutting effect is negligible after 5-10
mm distance from the cut-edge. Therefore, the application
of higher order elements in unaffected areas of iron can be
avoided by the application of mixed order elements.

This paper first reviews the theory of mixed order ele-
ments and describes the required shape/basis functions of the
presented finite element formulation. Further, suitable mixed
order elements are selected based on the loss model presented
in [11]. The accuracy of the mixed order elements is then
compared with a highly dense first order mesh. Two cases are
considered; a time stepping analysis of a stator tooth and a time
harmonic model of a cage induction machine at different loads.
At last, the benefits in terms of computational efficiency of the
presented mixed order finite element formulation is discussed
in comparison with the traditional method.
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Fig. 1. (a) First order reference element (b) Second order reference element.

II. METHOD

This section is divided into two parts; the first part deals
with the theory of mixed order elements, whereas the second
part presents the application of the mixed order elements in
the finite element model of electrical machines.

A. Mixed order elements

The order of a finite element represents the polynomial
order of the associated variable. Therefore, first order elements
represent linear shape functions, second order elements deal
with shape functions of a polynomial degree two and so
on. For most of the finite element based applications, a
uniform order of the elements is maintained in the entire
solution domain due to relatively easier implementation and
solution requirements. However, some specific applications
may demand mixed order elements i.e. two or more different
types of elements in the same solution domain. This paper will
study the application of mixed, second order and first order
elements in a solution domain. As the associated finite element
variable needs to be continuous at transition between second
and first order elements; different shape function will be used
for these transition elements.

As per the theory of the nodal shape functions; every nodal
shape function should attain a value 1 with the associated node
whereas it should attain a value zero at all other nodes in the
domain. Based on this criterion, the shape functions of first
order reference element (Fig. 1a) are N1

1 , N1
2 and, N1

3 in the
ξ η reference frame and are presented in (1). Similarly, the
shape functions of second order reference element Fig. 1b are
described in (2).

N1
1 = 1− ξ − η N1

2 = ξ N1
3 = η (1)

N2
1 = N1

1 − 0.5N2
4 − 0.5N2

6 N2
4 = 4(1− ξ − η)ξ

N2
2 = N1

2 − 0.5N2
4 − 0.5N2

5 N2
5 = 4ξη

N2
3 = N1

3 − 0.5N2
5 − 0.5N2

6 N2
6 = 4(1− ξ − η)η (2)

However, as stated earlier, special shape functions are
needed in the case of transition elements. Two types of
transition elements are possible in this case of second and
first nodal mixed order elements. Either a transition element
has one edge linked with second order element and the other
two are with the first order elements or vice-versa. This paper
terms these transition elements as Te1 and Te2 . As presented
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Fig. 2. (a) Transition reference element 1 ( Te1) (b) Transition reference
element 2 ( Te2).
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Fig. 3. (a) Shape function NTe1
1 (b) Shape function NTe1

2 (c) Shape function
NTe1

3 (d) Shape function NTe1
4 .

in Fig. 2, Te1 contains 4 nodes whereas Te2 contains 5 nodes
in an element. The corresponding reference shape functions
are described in (3) and (4) respectively. The application of
transition elements will ensure the continuity of the global
shape function in the solution domain. Further, for better
understanding, the behaviour of the shape functions of the
transition element Te1 are plotted in Fig. 3 as an example.
As the edge containing nodes 1, 4 and, 2 in Te1 is also
associated with a second order element, the corresponding
shape functions have polynomial order of 2. Moreover, the
same can be interpreted for Te2.

NTe1
1 = N1
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4 NTe1
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4 (3)
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B. Higher order finite element with material degradation

This paper uses the measurement results and the cut-edge
dependent material model described in [11]. The effect of
cutting on the magnetic permeability of the material depends
primarily on two parameters: the cut-edge distance and the
magnetic field strength (magnetic saturation). The cut distance
dependent permeability function is presented in (5).

µ(H,x) = µnd(H)(1− e−axe−bH) (5)

p(B(H,x), x) = c(1 + e−dx)B2(H,x) (6)

The permeabilities of the degraded and nondegraded iron
material are denoted by µ and µnd respectively. x is the
cut distance and H is the magnetic field strength. As the
magnetic field strength is assumed constant across the width
of lamination; the multiplication of H with (5) will provide
local magnetic flux density. Similarly, the cut-edge dependent
specific core loss density is presented in (6). Here B(H,x)
is local magnetic flux density with fitting parameters c and
d. Moreover with the Epstein frame, the average magnetic
flux density and average loss density are measured. Therefore
the cut-edge dependent local functions in (5) and (6) need
to be averaged across the width of the lamination samples.
The fitting parameters are then obtained with the help of
the nonlinear least-square solver of MATLAB. For the given
experimental test, data fitting parameters a = 795 (1/m), b =
0.001664 (A/m), −1 c = 0.835 (W/kg T 2) and, d = 925 (1/m)
are obtained.

The application of third order nodal triangular elements to
model the cutting effect is also presented in detail in [11].
In a similar fashion, the stiffness matrix S in the magnetic
vector potential based AV finite element formulation will be
modified as presented in (7). The source vector is presented
as f.

S(A, x)A = f (7)

The entries of the stiffness matrix Sij can be represented in
terms of the reluctivity ν and the nodal shape functions φ in
the domain Ω. The effect of cutting in terms of the degradation
of permeability from (5) is presented in the form of the
cut distance dependent reluctivity ν(A, x). The numerical
integration in (8) is performed with the help of the Gaussian
quadrature and for convenience the same number of integration
points are used in the second order and transition elements.

Sij(A, x) =

∫
Ω

ν(A, x)∇φi · ∇φjdΩ (8)

C. FEM implementation

A time stepping analysis of a stator tooth and a time-
harmonic analysis of a cage induction machine are presented in
this paper. The finite element analysis code with three different
types of elements (first, third and mixed order) is written
in MATLAB environment. A voltage source time harmonic
model for cage induction machine is used [16], [17]. The
effect of the stator end winding impedances is taken into
account with the help of circuit equations and the rotor bars
are considered as short circuited. The nonlinearity in iron
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Fig. 4. Behavior of magnetic flux density near the cut edge with applied
magnetic flux density of 0.5 T and the selection of appropriate order of finite
elements near the cut edge

are handled with the Newton-Raphson method and the eddy
currents are not considered in the iron laminations during the
field simulation. The resultant nonlinear system of equations
is presented in (9).[

S + M̃ (Ds)T KT

KDs G̃
s

]
.

[
Ã
ĩ
s

]
=
[

0
−Ṽ

s

]
(9)

Here, the magnetic vector potential Ã and the supply current
ĩ
s

are unknowns and the symbol˜denote the complex nature
of the matrices. Further, S and M̃ are the stiffness and mass
matrices. The stator flux linkage is represented by the matrix
Ds. Moreover, the stator winding impedance is included in
the form of the matrix G̃

s
with Ṽ

s
is the voltage source .

The effect of cutting will be reflected in the stiffness matrix
S which is assembled as per (8).

III. RESULTS

A. Selection of mixed order elements

The behaviour of the magnetic flux density near the cut edge
was analyzed in [11]. The distribution of the magnetic flux
density near the cut-edge depends on the distance from the cut
edge as well as the magnetic field. The major effect happens
between magnetic field strengths 50 A/m to 1000 A/m. Fig. 4
represents the magnetic flux density distribution near the cut
edge when the average magnetic flux density of 0.5 T was
enforced. Based on this flux density distribution a separate
geometric region of 2.5 mm width can be introduced near the
cut edge, which will represent the degraded material due to
the cutting. Further analyzing the flux distribution and ease
of implementation of the mixed order elements in the finite
element tool, it was decided that the second order elements
will be applied in the degraded region. Moving away from
the cut edge, adjacent to second order elements, there will
be transition elements. Thereafter, first order elements will be
applied in the rest of the domain.

B. Accuracy of mixed order elements

The accuracy of the mixed order elements is analyzed by
comparing a highly dense first order mesh. A cage induction
motor stator tooth was selected as an example. First, 2-D time
stepping finite element analysis of the cage induction machine
was carried out without considering the cutting effect. After-
wards, a stator tooth was extracted for the study of the cutting
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TABLE I
MESH DATA

Mesh Elements Nodes

First Order 4328 2256

Third order 68 343

Mixed order 211 265

0.005

(a)

0 0.5

1 1.5

2

(b)

Fig. 5. (a) Highly dense first order mesh (b) Magnetic flux density at 35th
timestep.

(a)

0 0.5

1 1.5

2

(b)

Fig. 6. (a) Third order mesh (b) Magnetic flux density at 35th timestep.

effect. Dirichlet boundary conditions and source currents are
applied to the studied meshes. The mesh properties are listed in
Table I. The meshes of studied stator tooth are shown in Figs.
5a , 6a and, 7a. Further, it should be noted that in general 4-5
different material layers of 0.5 mm-1 mm width of first order
elements are normally introduced near the cut-edge [4], [6],
[7]. Therefore, the first order reference mesh presented here
can be treated as a reasonable mesh to model the presented
cutting effect.

Et =

√∑N
el=1[(Ah

el,t −A1
el,t)Ωel]2√∑N

el=1(A1
el,tΩel)2

(10)

G =

√∑400
t=1E

2
t

400
(11)

(a)

0 0.5

1 1.5

2

(b)

Fig. 7. (a) Mixed order mesh. First order, second order and, transition
element Te1 are shown by white, red and, blue colors respectively. There
is no transition element Te2 in the presented mesh. (b) Magnetic flux density
at 35th timestep.

Two sinusoidal voltage supply periods of 200 time steps
per period were studied. As part of the result, we obtain the
magnetic vector potential in the discretized solution domain.
The calculated magnetic flux density distribution at 35th time
step was also plotted in Figs. 5b, 6b and, 7b. The error at a
time step Et (10) and, the average error across all time steps
G (11) are calculated. The magnetic vector potential solution
of the reference first order mesh at the centroid of the element
el is presented as A1

el,t and the one at the same geometric
location with the corresponding mixed order mesh solution is
Ah

el,t. Ωel is the area of the element el. G was approximately
2.96 · 10−4 for the studied mixed order elements based stator
tooth case. Moreover, similar error magnitude (G=2.84 ·10−4)
was observed in the third order mesh.

C. Time harmonic model of induction machine

As the comparative analysis of a stator tooth with the
mixed order elements was found satisfactory, a case with the
complete machine geometry was also analyzed. The motor
data is presented in Table II. The selected meshes of first order,
third order and, mixed order elements are shown in Figs. 8a,
8b and, 8c. The mesh data is specified in Table III. We can
observe a progressive decrease in the number of nodes of first
order, third order and mixed order element meshes.

TABLE II
MOTOR DATA

Shaft Power 37 kW

Voltage 400 V

Frequency 50 Hz

Connection Star

Pole pairs 2

Stator outer diameter 310 mm

Stator inner diameter 200 mm

Air gap 0.8 mm

Number of stator slots 48

Number of rotor slots 40
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(a)

(b)

(c)

Fig. 8. (a) Dense first order mesh for induction machine. (b) Third order
mesh for induction machine. (c) Mixed order mesh for induction machine.
First order, second order, transition elements Te1 and Te2 are shown by white,
red, blue and green colors respectively.

The time harmonic analysis was carried out for no load and
full load cases and the machine performance parameters such
as stator current and torque were calculated. The distribution
of magnetic flux density at full load with the mixed order
elements is presented in Fig. 9. It is clear from the simulation
results of the stator tooth as well as the full machine that
cutting changes the magnetic flux desnity distribution near the
cut edge. The summary of results is presented in Table IV and

TABLE III
MESH DATA

Mesh Elements Nodes

First Order 17328 8717

Third order 1516 6901

Mixed
order

1982 2737

TABLE IV
TIME HARMONIC SIMULATION AT NO LOAD

Parameter Nondegraded Degraded %Difference

Stator Current (A) 28.1 28.7 2.3

Stator Core Loss
(Mixed order) (W)

144. 159.2 10.4

Stator Core Loss
(Third order) (W)

143.0 159.0 11.2

Stator Core Loss
(First order) (W)

143.5 159.2 11.0

TABLE V
TIME HARMONIC SIMULATION AT FULL LOAD

Parameter Nondegraded Degraded %Difference

Stator Current (A) 70.4 70.6 0.3

Torque (Nm) 250.6 250.3 -0.1

Stator Core Loss
(Mixed order) (W)

138.2 152.8 10.5

Stator Core Loss
(Third order) (W)

137.2 152.8 11.4

Stator Core Loss
(First order) (W)

137.6 153.0 11.2

Slip 0.0135 0.0135

Table V. As a result of the permeability deterioration due to
the cutting, the magnetizing current has increased in the no
load case. The core losses at 50 Hz were calculated based on
(6). A clear increase in the core losses can also be observed in
both no load and full load cases. There was a relatively minor
decrease in the torque of the machine due to cutting.

TABLE VI
ERROR IN TIME HARMONIC SIMULATION

Parameter No load
Nonde-
graded

No load
Degraded

Full load
Nonde-
graded

Full load
Degraded

Magnetic
Vector
Potential
(Mixed)

1.2 · 10−2 1.3·10−2 1.5 · 10−2 1.6·10−2

Stator
Current
(Mixed) 3.4 ·10−2 3.3 ·10−2 5.4 ·10−3 2.5 ·10−3

Magnetic
Vector
Potential
(Third order)

2.4 · 10−3 3.9·10−3 4.2 · 10−3 5.6·10−3

Stator
Current
(Third order) 1.5 ·10−2 1.4 ·10−2 3 ·10−3 6 ·10−3
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Fig. 9. Magnetic flux density distribution (a) Without cutting effect (b) With
cutting effect (c) Respective difference.

The error in the mixed order element based FEM simulation
solution i.e. the real component of the magnetic vector poten-
tial (10) and the supply current are calculated and presented in
Table VI. Although, the magnitude of the error in the magnetic
vector potential is not significant, it is higher than in the stator
tooth case. Therefore, the error in the different mesh cases
without any cutting effect are also calculated. It seems that
the majority of the error in the finite element simulations is
generated due the different mesh topologies rather than due

0

0.5

1

1.5

2

10
-3

Fig. 10. Spatial distribution of error

TABLE VII
COMPUTATION TIME IN SECONDS

Test cases First order Third order Mixed order

Stator teeth 153 1.31 1.21

Stator
teeth (per
iteration)

5.9·10−2 7.8·10−4 5.9·10−4

Full machine 310.15 158.47 9.45

Full
machine (per
iteration)

3.10 1.58 0.94

to cutting effect. Further, the spatial distribution of the error
presented in Fig. 10 shows that the respective errors belong
to the regions away from the major cutting edges. As a result,
the errors in the solution are concluded to be at acceptable
level.

D. Computation time

The main aim of the application of the mixed order elements
was to reduce the computation time to model the cutting effect.
The computation time of the finite element simulation depends
on the nature of the resultant linear system of equations. In
general, a resultant matrix system with a large number of
unknowns and a higher number of non-zero entries results in a
higher computation time. With the first order elements, a good
sparse system matrix can be obtained however, the number of
unknowns will be large. A uniform higher order system will
lower the number of unknowns, but the sparseness will be
less. Therefore, with the mixed order elements we are able
to place higher order elements just where we need; i.e. near
the cut edge. This system may result in a good compromise
between the number of unknowns and the sparseness of
resultant system of equation; thus it may improve the overall
computational efficiency. For example, the sparsity (percentage
of zeros in the system matrix) in the studied stator tooth case
was 99.70 %, 95.43 % and, 96.48 % for the first order, third
order and mixed order meshes respectively.

The computation time of the studied meshes was noted
with a quad core CPU with maximum processor speed of 3.6
GHz and summarized in Table VII. There are two orders of
magnitude decrease in the computation time for the third order
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and the mixed order meshes with respect to the dense mesh in
the case of stator tooth. Further, the mixed order mesh for the
time harmonic case was more than 30 and 15 times faster than
the first order and third order meshes respectively. Overall, the
mixed order mesh proves to be more efficient than the third
order and first order meshes in the context of modeling the
cutting effect. Based on the literature, the mesh density of the
studied meshes are considered reasonable in this context.

Further, the effect of different meshes on the computation
time with the error in the magnetic vector potential is analyzed.
For this purpose, four different meshes of first order and four
of mixed order were selected. The numbers of nodes of the
first-order meshes were 8717, 5178, 4315 and 2552. Similarly,
the mixed-order meshes with 7276, 4322, 3067 and 2737
nodes were selected. The obtained solutions from these meshes
were compared with a very dense first-order mesh with 15518
nodes. While selecting the mesh densities, care was taken such
that highly coarse and highly dense meshes of both types will
result in quite similar accuracies with the reference solution.
Figure 11 represents the computation time and error in the
finite element simulation of the cage induction machine at no-
load when the cutting effect was considered. In line with the
above presented results, the mixed order meshes prove to be
more computationally efficient for the studied case.
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Fig. 11. Computation time and error comparison with first order and mixed
order meshes

IV. CONCLUSION AND FUTURE WORK

A mixed order based finite element formulation was pre-
sented in the context of modeling of cutting related effects in
electrical machines. The accuracy of the mixed order elements
was found to be within an acceptable range when compared
to that of a dense first order mesh of a stator tooth in
a time-stepping finite element analysis. Further, a complete
machine geometry was also simulated with the presented
mixed order finite element formulation and the effect of cutting
on the machine performance was discussed. The mixed order
elements proved to be more computationally efficient in the
simulations.

As part of a future work, a separate mesh layer, just adjacent
to the magnetically degraded layer should help in generating
more uniform transition elements and subsequently should
reduce possible numerical inaccuracies. Further, as the world
is moving towards more energy efficient machines, application
of efficient techniques such as the mixed order finite elements

may motivate machine designers to include the associated
cutting effects at the design stage.
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