
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Zhu, Chao; Pastor Figueroa, Giancarlo; Xiao, Yu; Li, Yong; Ylä-Jääski, Antti
Fog following me: Latency and quality balanced task allocation in vehicular fog computing

Published in:
2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

DOI:
10.1109/SAHCN.2018.8397129

Published: 01/06/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Zhu, C., Pastor Figueroa, G., Xiao, Y., Li, Y., & Ylä-Jääski, A. (2018). Fog following me: Latency and quality
balanced task allocation in vehicular fog computing. In 2018 15th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON) (Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks workshops). IEEE.
https://doi.org/10.1109/SAHCN.2018.8397129

https://doi.org/10.1109/SAHCN.2018.8397129
https://doi.org/10.1109/SAHCN.2018.8397129


Fog Following Me: Latency and Quality Balanced
Task Allocation in Vehicular Fog Computing

Chao Zhu†, Giancarlo Pastor†, Yu Xiao†, Yong Li∗, Antti Ylä-Jääski†
†Aalto University, Espoo, Finland
∗ Tsinghua University, Beijing, China

Email: †{chao.1.zhu, giancarlo.pastor, yu.xiao, antti.yla-jaaski}@aalto.fi, ∗liyong07@tsinghua.edu.cn

Abstract—Emerging vehicular applications, such as real-time
situational awareness and cooperative lane change, demand for
sufficient computing resources at the edge to conduct time-critical
and data-intensive tasks. This paper proposes Fog Following Me
(Folo), a novel solution for latency and quality balanced task
allocation in vehicular fog computing. Folo is designed to support
the mobility of vehicles, including ones generating tasks and the
others serving as fog nodes. We formulate the process of task
allocation across stationary and mobile fog nodes into a joint
optimization problem, with constraints on service latency, quality
loss, and fog capacity. As it is a NP-hard problem, we linearize
it and solve it using Mixed Integer Linear Programming. To
evaluate the effectiveness of Folo, we simulate the mobility of
fog nodes at different times of day based on real-world taxi
traces, and implement two representative tasks, including video
streaming and real-time object recognition. Compared with naive
and random fog node selection, the latency and quality balanced
task allocation provided by Folo achieves higher performance.
More specifically, Folo shortens the average service latency by
up to 41% while reducing the quality loss by up to 60%.

I. INTRODUCTION

Future vehicles are becoming more intelligent and fully
connected. The white paper [1] published by 5G Automotive
Association describes emerging vehicular applications, such
as real-time situational awareness, high-definition local maps,
and see-through for passing. These applications involve data-
intensive and latency-sensitive computing tasks, such as pat-
tern recognition [2], [3] and augmented reality (AR) [4], [5].

The cloud model is not applicable to environments where
operations are latency-critical. For example, the prevention of
collisions and accidents cannot afford the latency caused by
the round trip between vehicle and remote cloud. To solve
this issue, a new computing paradigm called fog computing
[6] has been proposed. Its key idea is to push intelligence (e.g.
computing resources, application services) to the edge where
the data is being generated and acted upon [7]. In the rest
of this paper, fog nodes refer to the computing nodes at the
edge, while Vehicular Fog Computing (VFC) stands for fog
computing for vehicular applications.

Due to the mobility of vehicles, the computing and commu-
nication workload generated by vehicular applications varies
with time and location. Meanwhile, as proposed by Xiao et al.
[8] and Satyanarayanan et al. [9], fog nodes in VFC scenarios
can be either stationary or mobile ones. For example, commer-
cial fleets with sufficient computing resources and network

This work was partially funded by Nokia Center for Advanced Research.

connectivity can be turned into mobile fog nodes to handle
the tasks generated by neighboring vehicles and passengers.
The mobility of fog nodes opens up new opportunities like
on-demand computing [8]. However, it also adds a layer of
complexity to the process of task allocation in vehicular fog
computing.

Inspired by [10], we explore a novel dimension, Quality
Loss of Results (QLR) to represent the user acquired service
with lower or less-than-optimal quality compared with the
perfect result. For the vehicular applications designed for
improving driving safety and efficiency, they are supposed
to satisfy certain constraints on service latency and quality
loss. According to [10], service latency could be reduced to
certain extent by relaxing the tolerance of quality loss. In this
paper, we propose Folo, a dynamic task allocation solution that
balances service latency and quality loss under constraints. We
quantify the tolerance of quality loss with concrete levels of
QLR, and formulate the process of task allocation across sta-
tionary and mobile fog nodes as a joint optimization problem.
The objectives of optimization include minimizing the average
service latency and reducing the overall quality loss. As it
proves to be a NP-hard problem, we linearize it and solve it
using Mixed Integer Linear Programing (MILP).

To evaluate the effectiveness of Folo, we use a set of real-
world taxi traces collected in Shanghai city to simulate the
mobility of fog nodes at different times of day, and implement
two example tasks, including video streaming and real-time
object recognition. We measure the resource consumption
of the example tasks through real-world experiments, and
analyze the performance of vehicle-to-fog communications
using an inter-vehicle communication simulator. Compared
with the existing solutions, such as naive and random fog node
selection, Folo shortens the average service latency, reduces
the overall quality loss, and achieves better balance between
service latency and quality loss.

The key contributions of this work are summarized below:

• We develop Folo, a novel solution for latency and quality
balanced task allocation across stationary and mobile fog
nodes in VFC.

• We formulate the process of task allocation as a joint
optimization problem, and solve it with MILP.

• We evaluate the effectiveness of Folo through simulation,
using real-world application profiles and taxi traces as



Enter Zone

Leave Zone

Fog Node

Client Vehicle

Zone Head

S2: S
ending Request

S1: Broadcast 

S3: Task Assignment

Enter/Leave
Notification

A

B

Request

Task ID

Application Type

Task Profiles

Task Generator

Fog Candidates

Fig. 1: Overview of Folo. A light magenta circle represents
the communication range of the client vehicle in the center.
Here the communication is limited to one hop for DSRC.

input. The results show that Folo outperforms the existing
solutions in terms of service latency and quality.

The rest of the paper is organized as follows. Section II gives
an overview of Folo. Section III describes the system model
and constraints. The optimization problem is formulated and
solved in Section IV. Section V explains the experiments for
collecting the data to be used for evaluation in Section VI.
Section VII discusses the related works before we conclude
in Section VIII.

II. SYSTEM OVERVIEW

In this section, we define the related terms and give an
overview of the process of task allocation in Folo.

A. Related Terms

Fog Nodes In Folo, we consider two types of fog nodes.
* Stationary Fog Nodes: The computing nodes co-located

with cellular base stations, Wi-Fi access points, road side
units, or any other stationary infrastructure.

* Mobile Fog Nodes: The computing nodes carried by
moving vehicles with on-board DSRC [11] and LTE
communication modules.

Tasks The process of an application can be decomposed
into a set of tasks. For example, AR-based driving assistance
consists of tasks such as video streaming and object recogni-
tion. Each task has its own workload profiles, and latency and
quality constraints. In Folo, task is considered to be the basic
unit for task allocation. In other words, task cannot be divided
into sub-tasks from the perspective of task allocation.

Client Vehicles Vehicles that generate tasks are defined as
client vehicles. Each client vehicle may generate more than
one task at the same time. Tasks from one client vehicle can
be assigned to different fog nodes.

Service Zones It is safe to assume that urban areas in
modern cities are fully covered by cellular networks. Similarly
with [12], we divide an urban area into Service Zones, and
select a stationary fog node within the zone to manage and
coordinate all the fog nodes in the same zone. The coordinator

is called Zone Head. To simplify the system model, we always
select a LTE base station to be the zone head, and assume that
mobile fog nodes are deployed on commercial fleets, such as
buses and taxis. Mobile fog nodes always inform the zone head
when they enter or leave the zone, utilizing the existing cellular
registration mechanisms. Additionally, they report periodically
their locations, moving directions, and available capacities to
the zone head. Note that locations (and dynamics) of fog
nodes, client vehicles, and base stations are transparent to
Folo. A potential step forward would be to integrate stochastic
geometry tools [13] to the optimization formulation to relieve
simulations.

B. Process of Task Allocation

Figure 1 illustrates the process of task allocation in Folo.
The whole process consists of 4 operations.

1) Discovering fog nodes: In the initial stage, a client
vehicle needs to figure out which fog nodes are located
within its communication range. It broadcasts one-hop probe
messages over DSRC, and collects responses from fog nodes.
Any fog nodes that respond are included in the list of fog
candidates. In Figure 1, the fog candidates for the client
vehicle A are the fog nodes within A’s communication range.

2) Sending requests: After discovering fog candidates, the
client vehicle sends a request to the zone head over LTE. The
request contains information about the tasks to be offloaded
to fog candidates.

* Task ID: The unique ID of a task.
* Application Type: The type of the application.
* Task Profiles: Description of the generated workload and

the task-specific constraints, such as data size, tolerable
latency and supported video resolutions.

* Task Generator: The client vehicle which generates data
and sends the request.

* Fog Candidates: The fog nodes within the client vehicle’s
communication range.

3) Assigning tasks to fog candidates: When receiving a
request from any client vehicle, the zone head executes the
task allocation algorithm to decide where to run the tasks. We
will present the details of the algorithm in Section IV.

4) Scheduling task migration: Due to the mobility of client
vehicles and mobile fog nodes, the connection between them
may not last until the assigned tasks complete. For example,
the execution of a task may be interrupted when the corre-
sponding fog node moves out from the current service zone.
In that case, the zone head of the current service zone must
call another fog node to take over the task.

III. SYSTEM MODELING AND CONSTRAINTS

A. System Model

In this section, we present the system model of Folo. We
define Ki as the set of tasks generated by the client vehicle
i, and Ji as the set of fog candidates for the client vehicle i.
We define a binary variable xik to indicate whether the task k



Notations Definitions
k,K task index, set
i, I client vehicle index, set
j,J fog node index, set
Ki the set of tasks generated by client vehicle i
Ji the set of fog candidates available for client vehicle i
qk the QLR level of task k

D(qk) data size of task k with the QLR level equal to qk
xjk whether task k is assigned to fog node j
xij whether fog node j is available for client vehicle i
xik whether task k is generated by client vehicle i
R(qk) the demand from task k with QLR level equal to qk
P (qk) the processing delay of task k with QLR level equal to qk
Cij data rate between client vehicle i and fog node j.
Sj capacity of fog node j
τk the maximum tolerable service latency of task k
` RTT overhead

Q = {qk} the set of selected QLR levels
X = {xjk} the set of selected fog nodes

TABLE I: Notations and definitions

is generated by i, and another binary variable xij to indicate
whether fog node j is available for i.

xik =

{
1, k ∈ Ki

0, Otherwise
, xij =

{
1, j ∈ Ji
0, Otherwise

(1)

Further, we define a binary variable xjk to indicate whether
task k is assigned to fog node j. The task k will be successfully
assigned to fog node j only if fog node j is available for task
k’s generator. Hence,

∀i ∈ I, j ∈ J , k ∈ K, xjk ≤ min{xik, xij} (2)

1) Service Latency: Given limited bandwidth, the transmis-
sion delay depends on the size of data to be transmitted. For
each task k, we define qk as the level of QLR, and D(qk) as
the corresponding size of data to be transmitted. We calculate
the transmission delay TComm

k based on the transmission data
rate Cij of the link between the client vehicle i and the selected
fog node j.

TComm
k =

∑

i∈I,j∈J

D(qk)xjk
Cij

(3)

We use P (qk) to denote the processing delay of task k with
QLR equal to qk, and calculate the processing latency TProc

k

as follows:
TProc
k = P (qk) (4)

The service latency for each task consists of transmission
delay, processing latency, and a constant overhead `. ` captures
the round trip time (RTT) between a client vehicle and a fog
node. The service latency of each task k is formulated as
follows:

Tk = TComm
k + TProc

k + ` (5)

B. Constraints

1) Quality Loss Constraint: The tolerance of quality loss is
application specific. In Folo, we define 5 levels of QRL. Level
1 represents the strictest quality demand, while Level 5 refers

to the highest tolerance for quality loss. The QLR constraint
for task k can be modeled as follows.

∀k ∈ K, qk ∈ {1, 2, 3, 4, 5} (6)

In practice, qk can be defined based on video resolution in
case of video streaming.

2) Assignment Constraint: Task is supposed to be the basic
unit for task allocation. Thus, it must be assigned as a whole
to one fog node.

∀k ∈ K,
∑

j∈J
xjk = 1 (7)

3) Service Latency Constraint: The maximum tolerable
service latency is determined by the type of application.
According to measurements in [14], the maximum tolerable
service latency of an AR navigation application is 250 ms and
that of a video streaming application may reach 1 second. We
use τk to denote the maximum tolerable service latency of task
k. To guarantee that the task would be completed in time, a
service constraint is given as follows:

∀k ∈ K, T (k) ≤ τk (8)

4) Capacity Constraint: The demand for capacity (e.g.
CPU, GPU, memory) is affected by the expected quality and
service latency. The total demand from one fog node cannot
exceed its capacity. We define Sj as the capacity of fog node
j, and R(qk) as the demand from task k with QLR qk. We
formulate the capacity constraint as below.

∀j ∈ J ,
∑

k∈K
R(qk)xjk ≤ Sj (9)

IV. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

We denote the maximum service latency of all tasks by
T = max

k∈K
{Tk}, and the summation of the QLR levels of all

tasks by Qsum =
∑

j∈J ,k∈K
{qkxjk}.

Folo aims at minimizing the maximum service latency T
while minimizing the total quality loss Qsum. However, these
two objectives are coupled by qk and cannot be optimized
simultaneously. In the following, we investigate the trade-off
between the two objectives and define the joint objectives
function as ϕtT + ϕqQ

sum, where ϕt, ϕq ∈ [0, 1] are two
scalar weights.

We use X = {xjk} to denote the set of selected fog nodes,
and Q = {qk} to denote the set of selected QLR levels. The
optimization problem is formulated as:

ξ1 : min
X ,Q

ϕtT + ϕqQ
sum (10)



s.t.

∀j, k, xjk ∈ {0, 1}, qk ∈ {1, 2, 3, 4, 5} (10a)

∀k,
∑

i∈I,j∈J
(
D(qk)

Cij
+ P (qk) + `)xjk ≤ τk (10b)

∀j,
∑

k∈K
R(qk)xjk ≤ Sj (10c)

∀k,
∑

j∈J
xjk = 1 (10d)

T = max
∀k∈K

{
∑

i∈I,j∈J
(
D(qk)

Cij
+ P (qk) + `)xjk} (10e)

Qsum =
∑

j∈J ,k∈K
qkxjk (10f)

∀i, j, k, xjk ≤ min{xij , xik} (10g)

Proposition 1: ξ1 is a NP-hard problem.
Proof 1: Consider a special case where ϕt = 0, ϕq = 1, which
means the aim is to minimize the sum of QLR levels. Here we
define q̄k as the quality gain in the result of task k. It stands for
the opposite of QLR. Hence, the objective of minimizing the
sum of QLR levels can be transformed into maximizing the
total quality gain. For simplification, we remove Constraint
(10b). Additionally, we relax Constraint (10c) by assuming
that the resource requirement of task k is exactly equal to its
quality gain q̄k. Furthermore, we let one client vehicle generate
only one task, and set one fog node in each service area. We
define x̄k to indicate whether the task k is assigned to the fog
node, and S to denote the resource capacity of the fog node.
Hence, we get a simplified optimization problem:

ξ2 : max
∑

i∈I
q̄kx̄k (11)

s.t.
∑

k∈K
q̄kx̄k ≤ S (11a)

x̄k ∈ {0, 1} (11b)

Problem ξ2 is a classic Subset Sum Problem, which has been
proven to be a NP-complete problem [15]. Thus, we prove
that Problem ξ1 is a NP-hard problem.

B. Problem Linearizion

Problem ξ1 is a non-linear optimization problem since
Constraint (10b) and Constraint (10c) contain a production of
two variables qk and xjk. To cast the optimization into linear
programming (LP), we define yjk = qkxjk and use Y = {yjk}
to denote the set of variable yjk. Furthermore, we relax the
discrete variable qk into continuous one, which is qk ∈ [1, 5].

According to [10], we consider two linear approximate
trade-off functions, P (qk) = atqk+bt, and R(qk) = arqk+br.
Additionally, we introduce a new variable t with an additional
constraint t ≥ max

k∈K
Tk.

xjk qk xjkqk Constraints Implication

0 0 ≤ qk ≤ 5 0

yjk ≤ 0

yjk = 0
yjk ≤ qk

yjk ≥ qk − 5
yjk ≥ 0

1 0 ≤ qk ≤ 5 qk

yjk ≤ 5

yjk = qk
yjk ≤ qk
yjk ≥ qk
yjk ≥ 0

TABLE II: All possible values of yjk

When D(qk) = adqk + bd, P (qk) = atqk + bt, R(qk) =
arqk + br, we get a MILP problem that is equal to Problem
10:

ξ3 : min
X ,Q,Y,t

ϕtt+ ϕq

∑

j∈J ,k∈K
qkxjk (12)

s.t.

∀j, k, xjk ∈ {0, 1}, 1 ≤ qk ≤ 5 (12a)
∀j, k, 0 ≤ yjk ≤ 5xjk (12b)

∀j, k, qk − 5(1− xjk) ≤ yjk ≤ qk (12c)

∀k,
∑

i∈I,j∈J
(
bd
Cij

+ bt + `)xjk + (
ad
Cij

+ at)yjk ≤ τk (12d)

∀j,
∑

k∈K
brxjk + aryjk ≤ Sj (12e)

∀k,
∑

j∈J
xjk = 1 (12f)

∀k,
∑

i∈I,j∈J
(
bd
Cij

+ bt + `)xjk + (
ad
Cij

+ at)yjk ≤ t (12g)

∀i, j, k, xjk ≤ xij , xjk ≤ xik (12h)

Proof 2: We prove that the Constraints (12b) and (12c) are
equal to the constraint yjk = xjkqk by listing all the possible
products in Table II.

C. Dynamic Task Allocation Algorithm

We propose an Dynamic Task Allocation (DTA) algorithm
and describe the detailed algorithm in Algorithm 1.

1) Initialization: In a service zone, the client vehicles
which are located in the service zone generate tasks and send
service requests to the zone head. The zone head would collect
the information and add the tasks to the unassigned tasks set
U , as shown in Line 1. In Line 2, DTA generates an empty
set A to load the tasks assigned by the zone head.

2) MILP Based Optimization: To execute the optimized
task allocation, we propose a MILP Based Optimization
(MBO) algorithm and illustrate the workflow of MBO in
Figure 2. The input of MBO is the unassigned tasks set, which
contains the information about client vehicles set I, fog nodes
set J , tasks set I. Next, based on information of tasks and
location of vehicles, the MBO formulates the optimization
matrix, which contains the available fog nodes information xij ,
the host vehicle information xik, and the transmission data rate
information Cij between client vehicles and fog nodes. In the
final stage, the MBO would take the end-to-end latency and



Algorithm 1 DTA: Dynamic Task Allocation
Input: Traces of client vehicles and mobile fog nodes; Loca-

tion of zone head; Unassigned task set U
Output: Assignment decision set X ; QLR set Q ; Assigned

task set A
1: Initialize unassigned task set U
2: Initialize assigned task set A = �
3: while K 6= � do
4: Execute MBO for k ∈ U , calculate X ,Q
5: t→ A, Remove k from U
6: Transmit and process assigned task t ∈ A
7: switch (Events)
8: case New task knew:
9: knew → U

10: case Service interrupted task kbreak:
11: Remove kbreak from A, kbreak → U
12: Execute MBO for migrating task kbreak

13: end switch
14: Remove finished task kdone from A
15: end while

Matrix

Formulation 
MILP

Solver

 Output

Tasks Assignment:

X = {xjk}X = {xjk}

QLR Assignment:

Q = {qk}Q = {qk}

∑

∀j∈J ,k∈K
qkxjk

∑

∀j∈J ,k∈K
qkxjk

Input Matrix

Minimize The Overall QLR of Tasks!

 
max

∀i∈I,j∈J ,k∈K
(
D(qk)

Cij
+ P (qk) + ℓ)xjkmax

∀i∈I,j∈J ,k∈K
(
D(qk)

Cij
+ P (qk) + ℓ)xjkMinimize The Maximum Latency of Tasks:

I,J ,KI,J ,K xij , xik, Cijxij , xik, Cij

Fig. 2: Workflow of MBO

overall quality loss of tasks into consideration and implements
a MILP solver to get the balanced optimization solution.

3) Event Handling: In Folo, the zone head detects events
occurred in its service zone. In this paper, we consider two
types of events:

• New Tasks: The zone head receives a new request from
a client vehicle.

• Service Interruption: The connection between a client
vehicle and a mobile fog node may break down, when
they are moving towards different directions for example.
We assume that mobile fog nodes keep monitoring the
channel states and would report to the zone head when
the disconnection is going to happen. The zone head will
then find another fog node for the task to migrate to, as
described from Line 11 to Line 12.

Video Streaming
Type Server Client

Hardware Desktop Phone Phone Phone
OS Linux Android 7.0 Android 7.0 Android 7.0

Model N.A. Huawei Mate9 Huawei P10 Huawei P10
CPU 4x3.2GHz 4x2.36GHz 4x2.36GHz 4x2.36GHz

Memory 32GB 6GB 4GB 4GB

Object Recognition
Type Server Client

Hardware LapTop Web Camera
Model HP-zbook G3 Logitech HD
GPU Quadro M2000M N.A.
CPU 8x2.7GHz N.A.

TABLE III: Experiments Hardwares

(a) Video Streaming

●

10.0

10.5

11.0

11.5

12.0

5 4 3 2 1
QLR Level

M
em

or
y 

U
sa

ge
 (

%
)

Video Resolution
● 320*240

640*480
960*720

1280*960
1920*1080

(b) QLR v.s. Memory consumption

(c) Real-time Object Recognition in
AR mode

●

0

50

100

150

200

5 4 3 2 1
QLR Level

A
ve

ra
ge

 P
ro

ce
ss

in
g 

T
im

e 
(m

s)

Video Resolution
● 320*240

640*480
960*720

1280*960
1920*1080

(d) QLR v.s. Processing Time

Fig. 3: Application Profiles

V. EXPERIMENTS

To test Folo, we implemented two example tasks, namely,
video streaming and real-time object recognition. We chose
these two tasks because they are building blocks of many
vehicular applications, such as AR-based driving assistance.
In the experiments, we explore the impact of the variation
of service quality on the service latency and the amount of
resource consumption. This section describes the experiments
for creating task profiles and analyzing the performance of
vehicle-to-fog communication. The hardware devices used for
experiment are listed in Table III. The experimental results are
used later for configuring the simulator described in Section
VI.

A. Application Profiling

We implemented video streaming based on Kurento [16],
an open source platform for WebRTC-based real-time com-
munications. As shown in Figure 3a, we ran the Kurento
media server on a Linux desktop and a client application
on three Android phones. The client application captures
video and sends it to the media server. We measured the



Fog Node
Client Vehicle

(a) Concentric Circles Roads

0

200

400

600

800

LTE DSRC
Access Technologies

T
hr

ou
gh

pu
t(

kb
ps

)

Transmission Distance
100m
200m
300m

400m
500m
600m

(b) Throughput

Fig. 4: Network performance of LTE vs. DSRC

CPU/GPU/memory usage of the media server while receiving
video streams from the phones.

We tested 5 different video resolutions, {1920 * 1080, 1280
* 960, 960 * 720, 640 * 480, 320 * 240}. The frame rate of
video streaming was limited to 14 fps, due to the hardware
constraint. We define the QLR level of video streaming based
on video resolution. The highest resolution corresponds to the
lowest QLR level, and vice versa. As shown in Figure 3b, the
memory usage increases with video resolution, and decreases
nearly linearly with the QLR level. Based on the results, we
build a linear model R(qk) to estimate the memory usage (in
MB) based on the QLR level.

R(qk) = −27.5× qk + 247.5 (13)

Given a fixed frame rate, the data size depends on the
video resolution. We assume that the transmission video is
compressed with the Youtube-HD standard. According to [17],
we formulate the data size (in KB) of each frame D(qk) as
follows:

D(qk) = −7.7× qk + 41.2 (14)

In the second experiment, we implemented an AR-based
object recognition application based on Yolo [18]. As show in
the Figure 3c, the objects recognized from video streams are
labeled in the camera view. Similarly with video streaming, we
define the QLR level of this task also based on video resolu-
tion. In experiments, we measured the processing time taken
to recognize objects from each frame. Figure 3d compares the
processing time between 5 QLR levels. As the processing time
has a nearly negative linear correlation with the QLR level,
we formulate the processing time (in ms) per frame P (qk) as
follows:

P (qk) = −16.56× qk + 176.5 (15)

B. Network Performance

Dedicated Short-range Communication (DSRC) and LTE
are the most popular vehicular networking technologies.
DSRC is designed based on IEEE 802.11p. The data rate of
DSRC can reach up to 27Mb/s with hundreds meters coverage
[19]. Compared with DSRC, LTE has a much wider coverage
and more deterministic quality of service (QoS) guarantees.
According to the reports in [20], LTE can support User
Equipments with high mobility at speed of 350 km/h.

In this paper, vehicles broadcast beacons over DSRC for
mutual handshaking, such as detecting fog nodes and schedul-
ing task migration. Additionally, DSRC channels are respon-
sible for data transmission between client vehicles and mobile
fog nodes. On the other hand, LTE is used for communications
between client vehicles and the corresponding zone head
(base station), such as sending requests and notifications of
entering/leaving a service zone. The zone head itself is also a
stationary fog node.

We simulate the scenarios of real-time video streaming
using VeinsLTE [21]. VeinsLTE is an extension of Veins
[22], which is an open source Inter-vehicle communication
(IVC) simulator. VeinsLTE connects a microscope road traffic
simulator SUMO [23] with a network simulation engine called
OMNET++ through Traffic Control Interface (TraCI). With
VeinsLTE, vehicles in simulation can either exchange data
with each other through DSRC, or connect to base stations
over LTE.

In SUMO, we build 6 near round concentric roads. Each
road contains two lanes, and the distance between the neigh-
boring roads is set to 100 meters. As shown in Figure 4a,
we place one fog node in the center of the concentric roads,
and add a video streaming module to the application layer
of a client vehicle in VeinsLTE. The client vehicle moving at
speed of 20m/s is continuously sending video data to the fog
node in the center. By settling the client vehicle onto different
roads, we could measure the throughput of video streaming
with varying communication distance.

According to Figure 4b, the data rate in case of LTE remains
stable when the communication distance is within 300 meters.
When the distance exceeds 300 meters, the data rate decreases
with the distance. Unlike LTE, the transmission range of
DSRC is shorter than 300 meters, whereas single-hop DSRC
provides stable performance. Based on the collected results,
for the simulation described in Section VI, we set the default
data rate of DSRC to be 500kbps, and the data rates of LTE
to be {550kbps, 450kbps, 200kbps, 150kbps}, depending on
the channel state information. In addition, according to the
measurements in [19], we set the RTT overhead to be 20ms
for DSRC and 300ms for LTE. The other parameter values are
listed in Table IV.

VI. EVALUATION

We implemented the task allocation strategies in Folo using
Python. In particular, we utilized pyomo, a Python-based
open source software package that supports a diverse set of
optimization capabilities [24]. To evaluate the effectiveness of
Folo, as explained in Section VI-A, we simulate the mobility
of fog nodes based on real-world taxi traces, and configure the
task profiles according to Table IV. After that, we compare the
achieved service latency and quality loss between Folo and
previous works in Section VI-B.

A. Vehicle Mobility and Task Generation

We use a set of real-world taxi traces to simulate the
mobility of mobile fog nodes. The dataset contains the GPS



TABLE IV: Simulation Configuration

Parameters Value
ad, bd(KB) -7.7, 41.2
ar, br(MB) -27.5, 247.5
at, bt(ms) -16.56, 176.5
ϕt/ϕq 50, 100, 150, 450, 500

Resolution/QLR 1920p/1, 1280p/2, 960p/3, 640p/4, 320p/5
Frame Rate (fps) 14

Delay Tolerance (s) 1[19]
Last Time (s) 10

Mobile Fog Node Zone Head
Capacity (GB) 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 2.1

DSRC LTE
Range (m) 300 2000

Data Rate (kbps) 500 550, 450, 200, 150
RTT Overhead (ms) 20 300
No. Client Vehicles 100

09:55!"#$## 13:55!"%$##

(a) Visualization of taxi traces

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
No. Migration

C
D

F

Period:I
Period:II

(b) Mobility-related task migration

Fig. 5: Simulation of Mobile Fog Nodes

traces collected from April 13 to 30, 2015 in Shanghai city.
It was collected by the iData Laboratory of Tongji University
[25]. To evaluate the impact of the density of mobile fog nodes,
we select an area of 4 km2 acreage near Shanghai Pudong
Airport, and collect the traces within the area during two time
periods.

* Time Period I: 09 : 55 ∼ 10 : 00, April 20, 2015
* Time Period II: 13 : 55 ∼ 14 : 00, April 20, 2015

Time Period I belongs to rush hour. As visualized in Figure
5a, the density of taxis traces in Time Period I is higher. In
details, 172 taxis appeared in the selected area during the first
time period, compared with 120 taxis in the latter.

Besides the taxis, we generate another 100 vehicle routes in
SUMO, following the method used in [26]. These vehicles act
as client vehicles and generate video streams to be processed
on fog nodes. Video streams are generated by randomly chosen
client vehicles every second. A random number (not greater
than 8) of video streams are generated every time, with each
stream lasting for 10 seconds. Each run of our simulation lasts
for 60 seconds. For example, in the first minute of Time Period
I, 33 client vehicles generate 66 video streams, while 35 client
vehicles are chosen to generate 70 video streams during the
first minute of Time Period II.

When a client vehicle or a mobile fog node on duty is
moving out of the current service zone, the ongoing tasks are
supposed to be migrated to other fog nodes. Figure 5b shows
the number of task migration occurred during Time Period I
and II. According to the figure, task migration happens more
often in Time Period I when the density of mobile fog node

(a) Time Period I (b) Time Period II

Fig. 6: Service Performance v.s. Scalar Weight

is higher. 1

B. Comparison between Task Allocation Strategies

As mentioned in Section III, the scalar weight ϕt and ϕq

represent the optimization tendency toward service latency and
quality, respectively. The task allocation strategy is latency
sensitive when ϕt/ϕq is higher. Otherwise, it is quality sensi-
tive. We tune the ratio of the scalar weights, ϕt/ϕq , from 50
to 500, and compare the results between the two time periods
in Figure 6.

When the density of mobile fog node is high, as illustrated
in Figure 6a, the average service latency is around 350 ms
when the QLR level is 1. The service latency decreases with
the tolerance of quality loss. For example, when the QLR
level increases to 4, the average latency would drop to 200ms.
Compared with Figure 6b where less mobile fog nodes are
available, the service latency in Figure 6a is on average 50ms
shorter.

According to Figure 6, we define 3 versions of DTA based
on the value of ϕt/ϕq .

* DTA Q: QLR Sensitive DTA with ϕt/ϕq = 50.
* DTA T: Latency Sensitive DTA with ϕt/ϕq = 500.
* DTA B: Balanced DTA with ϕt/ϕq = 150.

For comparison, we also implemented two strategies, namely,
Rand and Naive. These two have been presented in recent
publications [27], [28]. Rand refers to F.Rand.Assign in [27].
It randomly selects one fog node from the available candidates.
Naive always selects the fog node with the highest available
data rate, which is close to AVE+Naive in [28]. In our exper-
iments, we assume that the QLR level is randomly selected.

1) Service latency vs QLR: We compare the average service
latency and QLR levels among the 5 different strategies in
Figure 7a. We use the results of DTA B as baseline. The
lower the percentages are, the higher the performance is.
Here performance is measured by service latency and quality.
According to the results, DTA T leads to the shortest service
latency, while DTA Q gains the highest quality. Compared
with Naive which always chooses the fog node with the highest
data transmission rate, DTA T shortens the overall service
latency by 15% by increasing the QLR level. Compared

1As the GPS fixes included in the taxi traces are sparse, the actual need
for task migration could be less.



100%

100%

46%

144%
151%

79%

106%

94%

110%

118%

100%

100%

40%

152%

128%

89%

91%

112%

94%

130%

Period: I Period: II

DTA_B DTA_Q DTA_T Naive Rand DTA_B DTA_Q DTA_T Naive Rand
0.0

2.5

5.0

7.5

10.0

La
te

nc
y 

(1
00

m
s)

 +
 Q

LR Latency
QLR

(a) Latency and QLR Performance

13%

72%

15%

53%

46%

1%

0%

58%

42%

16%

42%

42%

33%

42%

26%

12%

79%

8%

72%

27%
0%

0%

81%

19%

32%

41%

27%

44%

40%

17%

Period: I Period: II

DTA_B DTA_Q DTA_T Naive Rand DTA_B DTA_Q DTA_T Naive Rand
0.0

0.5

1.0

1.5

pe
rc

en
ta

ge

<200ms
200~400ms
>400ms

(b) Service Latency Distribution

Fig. 7: Performance of task allocation Strategies

113%

116%

106%

110%

99%

109%

100%

100%

92%

102%

85%

105%

105%

112%

101%

107%

96%

105%

100%

100%

95%

102%

91%

103%

Period: I Period: II

0.5 0.7 0.9 1.1 1.3 1.5 0.5 0.7 0.9 1.1 1.3 1.5
0.0

2.5

5.0

7.5

10.0

Mobile Fog Node Capacity (GB)

La
te

nc
y 

(1
00

m
s)

 +
 Q

LR Latency
QLR

Fig. 8: Performance vs. Memory Capacity

1%
6%

47%

1% 3% 1%
6%

36%

3% 1%

Period: I Period: II

DTA_B DTA_Q DTA_T Naive Rand DTA_B DTA_Q DTA_T Naive Rand
0

10

20

30

40

50

O
ve

rf
lo

w
 P

er
ce

nt
ag

e

Fig. 9: Server Memory Overflow

with Rand and Naive, DTA Q achieves higher quality, while
DTA B achieves better balance between service latency and
quality loss. In general, these strategies also perform better
when the density of mobile fog node is higher. The impact is
less obvious in case of Rand, since Rand does not consider the
impact of the vehicle density on the networking performance.

We also compare the distribution of service latency in Figure
7b. In case of DTA B, most of tasks complete between 200ms
and 400ms. In case of DTA T, 42% of tasks are completed
within 200ms when the density of mobile fog node is high.
This is close to the result of Naive. Overall, DTA T still
outperforms Naive, since all tasks complete within 400ms
when DTA T is applied.

2) Memory Capacity vs. Performance: For the two tasks
we tested, memory usage becomes a performance bottleneck.
We notice that whenever the memory demand is satisfied, the
CPU/GPU demand can be satisfied. Thus, we evaluate the
performance with varying memory sizes. As shown in Table
IV, the memory size of a mobile fog node is by default set to
1.1GB, and that of a zone head is 2.1GB.

Figure 9 illustrates the memory overflow issues. Naive ends
up with serious memory overflow (up to 47%), as Naive
chooses fog nodes based on network conditions alone. Com-

pared with Rand, all the DTA-related strategies better balance
the resource consumption, and keep the memory overflow
under 3%.

We choose DTA B as example to evaluate the service
latency and QLR with different settings of memory capacity.
We tune the memory size of each mobile fog node from 0.5
GB to 1.5 GB. As shown in Figure 8, when the memory
capacity increases, both service latency and QLR decrease.
In details, the service latency decreases by around 10%.
Regarding the QLR, it decreases by up to 28% when the
density of mobile fog node is high.

In summary, compared with Rand and Naive, DTA based
strategies shorten the average service latency by up to 41%
and QLR by up to 60%. Moreover, the availability of mobile
fog nodes has positive impact on the service performance.

VII. RELATED WORK

Fog computing shares with mobile edge computing [29] the
same principle of moving computing resources to the edge.
Different architectures of vehicular fog computing have been
proposed in the literature. For instance, Satyanarayanan et al.
[9] preferred to turn every vehicle into a fog node and to select
a coordinator for each zone. Xiao et al. [8] proposed to turn
commercial fleets into fog nodes to serve neighboring vehicles
and passengers, while Hou et al. [30] suggested utilizing the
extra computing power on slow moving or parked vehicles. In
addition, Ni et al. [31] examined the architecture of fog-based
vehicular crowdsensing with consideration of security, privacy,
and fairness.

Relevant to our work, several previous works studied task
allocation in fog/edge computing. Sardellitti et al. [32] jointly
optimized radio and computational resources for multicell in
edge computing. Liu et al. [33] considered the multi-task
allocation problem for the edge environment with resource-
intensive and latency-sensitive mobile applications. Dinh et
al. [27] proposed an offloading framework to jointly minimize
the tasks’ execution latency and devices’ energy consumption
with consideration of CPU frequency. Li et al. [10] minimized
service response time and energy consumption by jointly
optimizing the QoR of all edge nodes and the offloading
strategy. Deng et al. [34] investigated the tradeoff between
power consumption and transmission delay in the fog-cloud
computing system. However, these works cannot be directly
applied to vehicular fog computing, as they did not consider



the mobility of vehicles. Feng et al. [28] proposed a framework
for job caching in vehicular fog computing based on ant colony
optimization algorithm. However, it focused on caching and
did not consider other scenarios such as local processing. To
the best of our knowledge, Folo is the first one that provides
joint optimization of service latency and quality in vehicular
fog computing, taking into account the mobility of fog nodes.

VIII. CONCLUSION

In this paper, we propose Folo, a dynamic task allocation
solution for vehicular fog computing. It aims at minimizing
average service latency while reducing the overall quality loss.
We formulate the process of task allocation as a joint optimiza-
tion problem, taking into account the constraints on service
latency, quality loss, and fog node capacity. As it is a NP-hard
problem, we simplify the problem through linearization, and
solve it using MILP. We evaluate our solution with simulation.
The simulation is configured based on real-world application
profiles and mobility dataset. Compared with previous works,
our solution reduces service latency by up to 41% and QLR
by up to 60%.

REFERENCES

[1] “Toward fully connected vehicles: Edge computing for advanced
automotive communications 5g Automotive Association.”

[2] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus,
“CarSpeak: A Content-centric Network for Autonomous Driving,”
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp.
259–270, Aug. 2012.

[3] C. Tran, K. Bark, and V. Ng-Thow-Hing, “A Left-turn Driving Aid
Using Projected Oncoming Vehicle Paths with Augmented Reality,” in
Proceedings of the 5th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, ser. AutomotiveUI
’13. New York, NY, USA: ACM, 2013, pp. 300–307.

[4] P. Gomes, C. Olaverri-Monreal, and M. Ferreira, “Making Vehicles
Transparent Through V2v Video Streaming,” IEEE Transactions on
Intelligent Transportation Systems, vol. 13, no. 2, pp. 930–938, Jun.
2012.

[5] H. Qiu, F. Ahmad, R. Govindan, M. Gruteser, F. Bai, and G. Kar,
“Augmented Vehicular Reality: Enabling Extended Vision for Future
Vehicles,” in Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’17. New York,
NY, USA: ACM, 2017, pp. 67–72.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16.

[7] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, Dec. 2016.

[8] Y. Xiao and C. Zhu, “Vehicular fog computing: Vision and challenges,”
in 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), Mar. 2017, pp. 6–9.

[9] M. Satyanarayanan, “Edge computing for situational awareness,” in
2017 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), Jun. 2017, pp. 1–6.

[10] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “MobiQoR: Pushing
the Envelope of Mobile Edge Computing Via Quality-of-Result Opti-
mization,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), Jun. 2017, pp. 1261–1270.

[11] J. B. Kenney, “Dedicated Short-Range Communications (DSRC) Stan-
dards in the United States,” Proceedings of the IEEE, vol. 99, no. 7, pp.
1162–1182, Jul. 2011.

[12] W. Hu, Z. Feng, Z. Chen, J. Harkes, P. Pillai, and M. Satyanarayanan,
“Live Synthesis of Vehicle-Sourced Data Over 4g LTE,” in ACM Inter-
national Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), 2017.

[13] G. Pastor, I. Mora-Jiménez, A. J. Caamano, and R. Jäntti, “Medium ac-
cess probability in uniform networks with general propagation models,”
in Wireless Communication Systems (ISWCS 2013), Proceedings of the
Tenth International Symposium on. VDE, 2013, pp. 1–5.

[14] Y. Xiao, M. Noreikis, and A. Yla-Jaaski, “QoS-oriented capacity plan-
ning for edge computing,” in 2017 IEEE International Conference on
Communications (ICC), May 2017, pp. 1–6.

[15] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Mathematical
Programming, vol. 66, no. 1-3, pp. 181–199, Aug. 1994.

[16] L. Lpez, M. Pars, S. Carot, B. Garca, M. Gallego, F. Gortzar, R. Bentez,
J. A. Santos, D. Fernndez, R. T. Vlad, I. Gracia, and F. J. Lpez,
“Kurento: The WebRTC Modular Media Server,” in Proceedings of the
2016 ACM on Multimedia Conference, ser. MM ’16. New York, NY,
USA: ACM, 2016, pp. 1187–1191.

[17] P. Forret, “Video filesize calculator | toolstudio.”
[18] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”

arXiv:1612.08242 [cs], Dec. 2016, arXiv: 1612.08242.
[19] Z. Xu, X. Li, X. Zhao, M. H. Zhang, and Z. Wang, “DSRC versus

4g-LTE for Connected Vehicle Applications: A Study on Field Experi-
ments of Vehicular Communication Performance,” Journal of Advanced
Transportation, 2017, dOI: 10.1155/2017/2750452.

[20] G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro, “LTE
for vehicular networking: a survey,” IEEE Communications Magazine,
vol. 51, no. 5, pp. 148–157, May 2013.

[21] F. Hagenauer, F. Dressler, and C. Sommer, “Poster: A simulator for
heterogeneous vehicular networks,” in 2014 IEEE Vehicular Networking
Conference (VNC), Dec. 2014, pp. 185–186.

[22] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE
Transactions on Mobile Computing, vol. 10, no. 1, pp. 3–15, Jan. 2011.

[23] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent Devel-
opment and Applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, Dec. 2012.

[24] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and
solving mathematical programs in Python,” Mathematical Programming
Computation, vol. 3, no. 3, p. 219, Sep. 2011.

[25] “iData Laboratory.”
[26] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)

Scenario: 24 hours of mobility for vehicular networking research,” in
2015 IEEE Vehicular Networking Conference (VNC), Dec. 2015, pp.
1–8.

[27] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in
Mobile Edge Computing: Task Allocation and Computational Frequency
Scaling,” IEEE Transactions on Communications, vol. 65, no. 8, pp.
3571–3584, Aug. 2017.

[28] J. Feng, Z. Liu, C. Wu, and Y. Ji, “AVE: Autonomous Vehicular Edge
Computing Framework with ACO-Based Scheduling,” IEEE Transac-
tions on Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2017.

[29] P. Corcoran and S. K. Datta, “Mobile-Edge Computing and the Internet
of Things for Consumers: Extending cloud computing and services to
the edge of the network,” IEEE Consumer Electronics Magazine, vol. 5,
no. 4, pp. 73–74, Oct. 2016.

[30] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
June 2016.

[31] J. Ni, A. Zhang, X. Lin, and X. S. Shen, “Security, Privacy, and
Fairness in Fog-Based Vehicular Crowdsensing,” IEEE Communications
Magazine, vol. 55, no. 6, pp. 146–152, 2017.

[32] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint Optimization
of Radio and Computational Resources for Multicell Mobile-Edge
Computing,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 1, no. 2, pp. 89–103, Jun. 2015, arXiv: 1412.8416.

[33] Y. Liu, M. J. Lee, and Y. Zheng, “Adaptive Multi-Resource Allocation
for Cloudlet-Based Mobile Cloud Computing System,” IEEE Transac-
tions on Mobile Computing, vol. 15, no. 10, pp. 2398–2410, Oct. 2016.

[34] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload
Allocation in Fog-Cloud Computing Toward Balanced Delay and Power
Consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, Dec. 2016.


