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Abstract—Vehicular applications in smart cities, including as-
sisted and autonomous driving, require complex data processing
and low-latency communication. An effective approach to address
these demands is to leverage the edge computing paradigm,
wherein processing and storage resources are placed at access
points of the vehicular network, i.e., at roadside units (RSUs).
Deploying edge computing devices for vehicular applications in
urban scenarios presents two major challenges. First, it is difficult
to ensure continuous wireless connectivity between vehicles and
RSUs, especially in dense urban areas with many buildings.
Second, edge computing devices have limited processing resources
compared to the cloud, thereby requiring careful network plan-
ning to meet the computational and latency requirements of
vehicular applications. This article specifically addresses these
challenges. In particular, it targets efficient deployment of edge
computing devices in an urban scenario, subject to application-
specific quality of service constraints. To this end, this article
introduces a mixed integer linear programming formulation
to minimize the deployment cost of edge devices by jointly
satisfying a target level of network coverage and computational
demand. The proposed approach is able to accurately model
complex urban environments with many buildings and a large
number of vehicles. Furthermore, this article presents a simple
yet effective heuristic to deploy edge computing devices based
on the knowledge of road traffic in the target deployment area.
The devised methods are evaluated by extensive simulations with
data from the city of Dublin. The obtained results show that the
proposed solutions can effectively guarantee a target application-
specific quality of service in realistic conditions.

Index Terms—edge computing, deployment, roadside units

I. INTRODUCTION

There has been a tremendous growth in the number of smart,
connected cars over the past few years. Indeed, many vehicles
already available in the market are equipped with advanced
sensing technologies, including ultrasound, infrared, radar and
video sensors [1]. These sensors collect information from the
surroundings of the vehicle and enable assisted or even au-
tonomous driving. Moreover, connected vehicles can exchange
sensor information with each other and to fixed access points,
known as roadside units (RSUs), deployed along the road.
Applications that leverage sensor information from multiple
vehicles can be used to improve road safety [2], reduce road
traffic congestion [3] or emissions [4], and enhance driving
comfort [5].

Vehicular applications require complex processing of data
and substantial storage space [5, 6]. Thus, sensor data gener-
ated by vehicles are usually transferred to the cloud for further

processing. Indeed, the scalable and on-demand nature of the
cloud is ideally suited for processing these data. However,
cloud computing resources are usually centralized into large
data centers, typically located far away from the majority of
end-users. As a result, data exchanged between vehicles and
the cloud may experience high latency. Moreover, the increas-
ing amount of data demands high-bandwidth connections to
the cloud. To address these issues, the new approach of edge
computing has been proposed [7]. Accordingly, computing
and storage resources are made available at the edge of the
access network, usually one hop away from end-devices. In
the context of vehicular networks, computing resources can be
deployed at RSUs to realize an edge computing device. Thus,
vehicular applications can be hosted at the edge of the network
so as to process data with a low latency [5, 6, 8, 9]. For
instance, safety applications at the edge can combine informa-
tion from multiple vehicles and pedestrians to predict hazards.
These applications can then send advisory messages (such as
to change lanes or slow down) with very low latencies to
relevant vehicles [10]. Another example of an edge application
is a merging control algorithm for autonomous connected ve-
hicles [11]. This application relies on vehicles communicating
their mobility data every second to RSUs where new optimized
trajectories are evaluated and communicated to the vehicles.
Here again, the communication latency is very critical.

Deploying edge devices for vehicular applications in urban
scenarios presents two major challenges. First, it is difficult
to ensure that vehicles have continuous connectivity to the
RSUs due to their mobility. This is especially true in urban
areas, where direct line-of-sight connectivity is often impaired
due to the presence of buildings. Second, edge computing
devices have limited processing resources compared to the
cloud. Consequently, it is critical to ensure that they meet the
computational requirements of vehicular applications given a
certain amount of traffic in an urban area. A large share of
the existing works in vehicular networks have addressed cost-
effective placement of RSUs purely from the communication
perspective [12–15], i.e., without considering the computa-
tional demand of vehicular applications. Even though there
are a few solutions explicitly targeting edge computing in
vehicular networks [5, 8], they focus on resource allocation
and scheduling rather than on provisioning an infrastructure
suitable for vehicular applications. Indeed, the physical de-
ployment of computation to meet user demands while balanc-



Fig. 1: Reference scenario.

ing the associated costs has been identified as one of the open
issues for edge computing [16].

The objective of this article is to develop an optimization
problem and a methodology that can be used by infrastruc-
ture providers to deploy edge computing devices in a smart
city. To this end, this article presents a mixed integer linear
programming formulation that minimizes the deployment cost
of edge computing devices by jointly satisfying a target
level of network coverage and computational demand. Our
model includes an accurate characterization of complex urban
scenarios, including the effect of the built-up environment
on communication between vehicles and edge devices. Ad-
ditionally, this article proposes a simple yet effective heuristic
to deploy edge computing devices based on the knowledge
of road traffic in the target deployment area. The proposed
solutions are evaluated through extensive simulations with data
from the city of Dublin. The obtained results show that our
solutions can effectively guarantee a target application-specific
quality of service in realistic scenarios.

The rest of the article is organized as follows. Section II in-
troduces the reference scenario and our proposed optimization
problem. Section III describes the setup and the methodology
used in our performance evaluation. Section IV discusses the
obtained results. Section V reviews the related work. Finally,
Section VI provides some concluding remarks.

II. EFFICIENT PLACEMENT OF EDGE COMPUTING DEVICES

Before proceeding further, let us introduce the reference
scenario illustrated in Figure 1. We consider a smart city
with vehicles (e.g., cars) moving in an urban area. Such
vehicles run applications that collect data from the surrounding
environment and report them to intermediate computing nodes
for further processing and analysis. In doing so, they are
assisted by a long-range wireless communication infrastructure
consisting of roadside units (RSUs), i.e., access points specif-
ically deployed to enable vehicular communications. Vehicles
communicate directly1 with RSUs.

Each RSU is equipped with a server; the combination of an
RSU and a co-located server – simply referred to as RSUs in

1While direct message exchanges between individual vehicles could also
be employed, this work focuses on vehicle-to-infrastructure communications.

Sym. Description
C Set of grid cells
P Set of power transmit levels
i Candidate grid cell for RSU placement
k Power level of an RSU antenna
Ai,j,k Adjacency matrix for cells i and j covered with power level k
m Number of CPU cycles available at RSU (supply)
γ Percentage of network coverage to be met
α Percentage of computational demand to be met
di Demand at grid cell i as number of CPU cycles
li Length of roads present in grid cell i
ai,j Cost multiplier based on the distance between cell i and cell j
bk Cost multiplier based on the power level
c Fixed cost for an RSU
xi,k Binary variable for RSU placed at cell i with power level k
zi,j Binary variable for cell i covered by the RSU placed in cell j
yi Binary variable for cell i selected to place at least one RSU
hi Binary variable for cell i being covered

TABLE I: Summary of notation in the optimization problem.

the rest of the article, for the sake of conciseness – constitutes
an edge computing device. These edge computing devices are
connected to the Internet, where additional storage and pro-
cessing resources are available through the cloud computing
paradigm. Figure 1 shows the considered reference architec-
ture. The target scenario consists of a smart city that needs
to be instrumented with an infrastructure consisting of edge
computing devices to support vehicular applications. Within
this context, we aim at minimizing deployment costs while
jointly satisfying an application-specific quality of service in
terms of network coverage and processing constraints.

This section first describes the system model for the
considered scenario. It then presents a mixed integer linear
programming model to minimize the deployment costs of the
edge computing infrastructure, subject to application-specific
constraints.

A. System Model

The target deployment area is modeled as a set C of
grid cells, not necessarily consisting of the same size. Each
cell i ∈ C has a candidate location for placing an RSU.

Each RSU can be deployed with a specific transmit power
level, with the set P indicating the actual values allowed.
An adjacency matrix Ai,j,k describes if the RSU located
in cell i covers the roads in cell j with power level k.
The computation tasks are characterized in terms of CPU
cycles2, an approach that is widely used in the literature on
mobile cloud computing [19–23]. All RSUs are assumed to
be homogeneous in terms of processing power, i.e., their co-
located servers all have the same hardware characteristics.
Consequently, we define m as the available CPU cycles at an
RSU and di as the demand for CPU cycles in cell i. Finally,
application-specific quality of service is described in terms of
both required coverage and processing power. Accordingly, γ
represents the network coverage percentage of the deployment

2The CPU cycles required by a certain application can be estimated, for
instance, by using the approaches described in [17, 18].



Fig. 2: Overview of the methodology used to evaluate the performance of RSU-OPT.

area, and α represents the percentage of total computational
demand that is satisfied in the network.

B. Optimization Problem

Given the notation in Table I, our goal is to minimize
the cost of deploying RSUs while ensuring a target network
coverage and a given level of available computational re-
sources. Accordingly, we formulate a mixed integer linear
programming model that captures the distinctive features of
the scenario under consideration. The problem of efficient
deployment of RSUs is called RSU-OPT and is defined as:

min

|C|∑
i=1

cyi +

|C|∑
i=1

|C|∑
j=1

ai,jzi,j +

|P|∑
k=1

|C|∑
i=1

bkxi,k (1)

s.t.
|P|∑
k=1

Aj,i,kxj,k ≥ zi,j ∀i, j (2)

|C|∑
j=1

zi,j ≥ hi ∀i (3)

|C|∑
i=1

hili ≥ γ
|C|∑
i=1

li (4)

|P|∑
k=1

xi,k = yi ∀i (5)

|C|∑
i=1

hidi ≥ α
|C|∑
i=1

di (6)

|C|∑
i=1

zi,jdi ≤ myj ∀j (7)

yi, xi,k, zi,j , hi ∈ {0, 1} (8)

We now explain each expression in RSU-OPT, starting from
the objective function in Equation (1). The first term therein
denotes the fixed cost of all deployed RSUs. The second term
signifies a cost ai,j that increases with the distance between
an RSU and the cell it covers. As an RSU can cover one or
more cells, the cost ai,j ensures that an RSU placed in cell i
is preferred to cover adjacent cells j rather than more distant
cells. Finally, the last term accounts for the cost of each RSU’s

assigned power level k (clearly, lower power levels have a
lower cost bk).

Next, we describe the constraints. On the one hand, Equa-
tions (2)–(5) refer to network coverage, while Equations (6)–
(7) characterize the computational demand. Specifically, Equa-
tions (2) and (3) set hi to 1 if cell i is covered by an RSU.
Equation (4) ensures that the coverage requirement γ is met.
As cells may have different sizes, the coverage is weighted
by the length of roads li in the cell. Equation (5) sets yi to 1
if an RSU is deployed in cell i. Equation (6) ensures that at
least α percentage of the demand for CPU cycles is satisfied.
Moreover, Equation (7) ensures that the available CPU cycles
at an RSU are not exceeded. Finally, Equation (8) signifies
that the decision variables are binary integer variables.

III. EXPERIMENTAL SETUP AND METHODOLOGY

This section first introduces some preliminary processing
that is needed to provide the input data for our evaluation.
Then, it describes the evaluation setup and methodology.
Figure 2 overviews the methodology used to solve RSU-OPT
and evaluate its performance.

A. Preliminaries

We consider the city of Dublin in Ireland as the target area
for deploying RSUs. A map of Dublin city center, including
information about roads and buildings, is obtained from Open-
StreetMap3. The map encompasses an area of 3.2 by 3.1 square
kilometers. We use the tools provided by Simulation of Urban
Mobility (SUMO) [24], a road traffic simulator, to extract the
road network as line segments and buildings as polygons.
Residential and service roads are removed from the map as
they are not intended for general traffic. We then use Python
and its geospatial libraries to divide the map into a grid of
cells with a maximum size of 200 m× 200 m. Only the cells
that contain roads are considered as potential candidates for
placing an RSU. There are 249 such cells in the considered
map and the candidate location for an RSU is chosen in
each cell based on the characteristics of roads and buildings.
Moreover, some cells are divided into smaller ones to ensure
that an RSU can cover all roads within a cell with one of the
possible transmission power levels and despite the presence
of buildings in the line of communication. Figure 3 shows the

3http://www.openstreetmap.org



(a) (b)

Fig. 3: (a) Map of the considered deployment area in Dublin, Ireland. (b) Grid cells for the area highlighted in (a).

Parameter Value
RSU transmission power 21 or 24 dBm
RSU antenna height 3 m
Receiver sensitivity -100 dBm
Propagation model Free-space with obstacle shadowing [25]
Message size 160 bytes
Message frequency 1 Hz

TABLE II: Simulation parameters.

map of the considered deployment area and the grid cells over
a subsection of the area. As shown in the figure, the cells may
not all have the same size.

In addition to the target deployment area, RSU-OPT re-
quires the adjacency matrix Ai,j,k describing cell coverage.
The adjacency matrix is derived by using the obstacle shad-
owing model proposed by [25], which accounts for commu-
nication impairments due to the presence of buildings. This
model is ideally suited for the heavily built-up nature of the
deployment area. Accordingly, a Python script is created to
set Ai,j,k to 1 if cell j can be covered by an RSU in cell i
when transmitting with power level k. We consider a cell
as covered if vehicles receive a signal above the receiver
sensitivity in at least 80% of the roads in that cell. As a
consequence, our approach accurately takes into account the
shadowing effect of buildings using up-to-date information
from OpenStreetMap. The specific values of transmission
power and receiver sensitivity are described in Section III-B.

The optimization problem also requires the average de-
mand di for CPU cycles in each cell. To this end, we first
use SUMO tools to extract the average number of vehicles in
each cell i from a traffic trace. The traffic trace is generated
with the randomTrips tool, part of SUMO, due to the
lack of relevant and publicly available datasets for Dublin.
Realistic traces are generated by assigning higher weights
to busier roads (with more lanes, roads in the city center)
and by generating sufficiently long routes for each vehicle
in the trace. The average number of vehicles in each cell

is mapped to the CPU demand by specifying the number of
CPU cycles required to process each message received from
vehicles. Specifically, the computation requirement is set to
18,000 CPU cycles per input bit, similar to the value employed
in [21].

B. Experimental Setup

We evaluate the efficiency of our proposed RSU placement
scheme by simulation. In particular, we employ the Vehicles in
Network Simulation (Veins) [26] framework, which integrates
SUMO with the OMNeT++ network simulator. Veins enables
the use of traffic traces from SUMO as input, supports the mes-
saging protocol standards for vehicular networks, and includes
the shadowing effects of buildings for realistic simulations.
Furthermore, Veins simulates message losses due to collisions
between overlapping transmissions and due to low signal
strength.

Communication between vehicles and RSUs occurs over the
IEEE 802.11p standard for vehicular communications [25].
The possible transmission power levels are set to 21 dBm
and 24 dBm, which are within the limit of recommended
parameters for typical RSUs [27]. In the simulations, vehicles
send one message every second (similar to the application
described by [11]) with a payload of 160 bytes. The RSU sends
a response back to the vehicle for each incoming message.
Table II summarizes the key parameters and their associated
values as employed in the simulations. Furthermore, each RSU
provides 600 megacycles per second to sequentially execute
the tasks of a single application, according to [21, 22]. We
assume that each RSU server is equipped with a 1.2 GHz
processor, similar to currently available processors specifically
developed for edge applications [28, 29]. Thus, the availability
of computing resources for our considered application is
limited to 50 % of the available CPU cycles at the RSU.
Such a modeling approach captures the effect of deploying
multiple applications as containers (a unit of virtualization) on
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Fig. 4: Placement of (a) 105 RSUs with RSU-OPT (γ and α set to 100%), (b) 84 RSUs with traffic volume, and (c) 91 RSUs
uniformly distributed every 500 m.

the server, each of which is limited to a certain percentage4

of the server’s CPU cycles.

C. Methodology

We solve RSU-OPT with IBM ILOG CPLEX (version
12.6.3) through its Python API. The solver provides solutions
within 2 seconds (for all instances with different values for
α and γ) on a laptop with an Intel Core i5-5300U CPU and
16 GB of RAM. The solution consists of the total number
of deployed RSUs, their optimal locations (i.e., in terms of
the corresponding cells), and their transmission power levels.
Unless otherwise specified, the target percentage of network
coverage and CPU demand (i.e., the QoS-related parameters
γ and α, respectively) are set to 100%. This results in 105
RSUs placed in the considered area, out of which 3 operate
at a higher transmission power.

For comparison purposes, we consider a baseline approach,
wherein RSUs are placed at a fixed distance from each
other, and a heuristic, wherein RSUs are placed depending
on average traffic volume in a given area. These approaches
are detailed next; Figure 4 shows the resulting placement of
RSUs5 in the target deployment area.
• Uniform. RSUs are placed at an approximately fixed dis-

tance apart at road intersections, which are preferred loca-
tions for deployment purposes in vehicular networks [14].
According to the characteristics of the source deployment
area, 500 m and 1 km are used as reference distances
in the evaluation. For a fair comparison, we keep the
number and power levels of RSUs similar to that of the
optimized solution. In particular, 91 RSUs are deployed
(3 at higher power level) for a reference distance of 500 m
and 42 RSUs (all at higher power level) for a reference
distance of 1 km.

• Traffic volume. In this heuristic, RSUs are placed based
on the volume of traffic in the target deployment area.
For a fair comparison, the same grid cell overlay used in

4https://docs.docker.com/engine/admin/resource constraints/#cpu
5For illustration purposes, we report the deployments that result in a similar

number of RSUs being deployed.

Parameter Value
Maximum speed 14 m/s
Maximum acceleration 2.6 m/s2

Maximum deceleration 4.5 m/s2

Speed deviation 0.1
Driver imperfection 0.5

TABLE III: Vehicle mobility parameters.

the optimization problem is considered. First the average
traffic volume in each cell is obtained using aggregated
statistics from SUMO. RSUs are then placed in the
cells as follows. If the traffic volume in a cell exceeds
a threshold of 100 vehicles/hour, an RSU is placed in
the cell. The threshold is chosen in such a way that
the number of RSUs from this scheme is close to that
of RSU-OPT. In cells with a traffic volume lower than
the threshold, RSUs are deployed further apart by only
considering those cells which are not located adjacent
to other cells already containing RSUs. This deployment
consists of 84 RSUs, all at the lower power level of
21 dBm.

We consider the following metrics (the lower the better) to
evaluate the performance of the considered approaches: (i) the
message loss, in terms of the number of sent messages that
were not successfully received by the recipient, expressed as
a percentage; (ii) the exceeded CPU capacity, in terms of the
percentage of messages that all RSUs in the network were not
able to process due to the unavailability of CPU resources;
(iii) the deployment cost, in terms of the total number of RSUs
placed in the target area.

We use 10 different traffic traces, each lasting for 500 s
of mobility, as input for the simulations. The traces are
sufficiently long so as to observe vehicular traffic on almost the
entire road network (less than 10% of the roads are unused).
The vehicle mobility parameters (listed in Table III) are chosen
to be realistic in urban scenarios. We divide the input in two
sets of five traces each: one corresponding to moderate traffic,
with an average of 620 vehicles; another corresponding to
heavy traffic, with an average of 1,003 vehicles. Specifically,



RSU-OPT Traffic
Volume

Uniform
(500m)

Uniform
(1km)

0

5

10

15

20

25

30

35

M
es

sa
ge

lo
ss

(%
)

moderate traffic
heavy traffic

(a)

RSU-OPT Traffic
Volume

Uniform
(500m)

Uniform
(1km)

0

5

10

15

20

25

M
es

sa
ge

lo
ss

(%
)

moderate traffic
heavy traffic

(b)

RSU-OPT Traffic
Volume

Uniform
(500m)

Uniform
(1km)

0

2

4

6

8

10

M
es

sa
ge

lo
ss

(%
)

moderate traffic
heavy traffic

(c)

Fig. 5: Performance of the different schemes considered: message loss in (a) the uplink only (i.e., from vehicles to RSUs) and
(b) both directions (i.e., uplink and downlink); (c) exceeded CPU capacity.

moderate traffic traces are obtained by drawing vehicle arrivals
from a binomial distribution6 with 2 simultaneous arrivals
and a period of 0.3. The heavy traffic traces are obtained by
drawing arrivals from a binomial distribution with 5 simulta-
neous arrivals and a period of 0.5. We carry out simulations
according to the independent replication method. The results
report the average values obtained from five runs as well as
the corresponding standard deviations, shown as whiskers in
the plots. The simulations include a warm-up period of 50 s to
allow sufficient number of vehicles to enter the road network.

IV. EXPERIMENTAL RESULTS

This section first presents a comparison of RSU-OPT with
the other approaches discussed earlier. Then, it presents the
impact of target QoS parameters on performance. Finally, the
section concludes with a summary and discussion.

A. Impact of Traffic

We start by studying the performance of RSU-OPT in
comparison with the other approaches for placement under two
different traffic conditions: moderate and heavy (as described
in Section III-C). The related results are shown in Figure 5.

In particular, Figure 5a shows the message loss in the uplink,
i.e., the one affecting messages sent by vehicles to RSUs.
We can clearly see that RSU-OPT performs the best under
both traffic conditions. The traffic volume approach achieves
a slightly worse delivery ratio, while the uniform placement
of RSUs every 500 m incurs in a high percentage of message
loss, i.e., 10% with moderate traffic and close to 14% with
heavier traffic. Moreover, the uniform placement of RSUs
every kilometer results in one message dropped out of every
four sent by vehicles, even with moderate traffic.

For all the considered schemes, the message loss increases
under heavy traffic as more messages are exchanged in the
network and the probability of interference from neighboring
vehicles increases as well. Under these conditions, RSU-OPT
still achieves a satisfactory delivery ratio and outperforms the

6http://sumo.dlr.de/wiki/Tools/Trip

other schemes. It is important to highlight that the uniform de-
ployment of RSUs every 500 m results in a higher message loss
than the traffic volume scheme despite placing more RSUs.
This demonstrates the need for smarter heuristics for placing
RSUs, e.g., by taking into account the traffic volume in the
considered area. On the other hand, the traffic volume scheme
performs similar to RSU-OPT, despite the lower number of
RSUs deployed. This is because RSUs are more densely placed
in “busy” areas with the traffic volume scheme. Note that the
same message can still reach the network even though it may
be lost at a specific RSU (e.g., due to interference from nearby
vehicles and simultaneous transmissions by multiple RSUs), as
it might be successfully received by an RSU in a cell nearby.

Next, Figure 5b presents the message loss in both uplink
and downlink. The trend is similar to that in Figure 5a.
In particular, RSU-OPT achieves a slightly lower percentage
of message loss than the traffic volume scheme. With an
average of 400,000 packets and 250,000 messages generated
in the high and moderate traffic scenarios, respectively, even
a small difference in percentage of message loss is indeed
non-negligible.

Finally, Figure 5c shows the exceeded CPU capacity, i.e.,
the percentage of incoming messages dropped at RSUs due to
the unavailability of computing resources. The performance of
RSU-OPT is the best among the considered approaches, also
with the least spread across multiple iterations. Note that the
traffic volume approach performs worse than RSU-OPT, even
though it places more RSUs in areas with high traffic volume.
This is because RSU-OPT jointly considers the requirements
of coverage and processing in the entire deployment area.

B. Impact of Target Level of QoS

We now examine the impact of different requirements of
network coverage (γ) and computational demand (α) in the
optimization problem.

Figure 6a shows the number of RSUs required under these
different conditions. In particular, RSU-OPT places 105 RSUs
to achieve 100% network coverage and meet 100% computa-
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Fig. 6: Impact of the target network coverage (γ) and computational demand (α) on performance: (a) number of RSUs placed
by RSU-OPT, (b) message loss in the uplink (from vehicles to RSUs), and (c) exceeded CPU capacity.

tional demand. The number of RSUs rapidly decreases as γ
and α are reduced. For instance, only 85 RSUs are required
to provide network coverage for 95% of the roads and to meet
95% of the computational demand. This indicates the presence
of certain areas in the city (i.e., grid cells in RSU-OPT) that
cannot be covered by neighboring RSUs, for instance, due to
the presence of buildings and lack of line-of-sight connectivity.
Reducing γ further to 90% results in only 73 or 74 RSUs
depending on the value of α. Furthermore, decreasing either
α or γ while keeping the other at 100% does not significantly
affect the number of RSUs. For instance, setting α to 100%
results in 104 RSUs independent from the value of γ. It is
important to note the actual placement (in terms of grid cells)
of RSUs varies even though their number may be the same
for different values of γ and α.

Next, we evaluate how the network performs with RSU-
OPT under selected values of target network coverage γ and
computational demand α. As network coverage is the most
stringent constraint, γ is set to either 90% or 95% while α
is varied between 95% and 100%. In this scenario, the trends
remain the same under both moderate and heavy traffic and
thus, only the results for moderate traffic are presented here.

Figures 6b and 6c show the message loss with the different
placements obtained with RSU-OPT. The figures also indi-
cate (as horizontal lines) the message loss for the different
approaches: RSU-OPT (with α and γ set to 100%), traffic
volume and uniform placement every 500 m. The uniform
placement every kilometer is no longer considered as the
observed message loss percentage is very high.

Reducing both α and γ to 95% results in 85 RSUs being
deployed. In this case, the network performance is similar to
the traffic volume scheme, which places 84 RSUs. Reducing
γ to 90% and varying α between 90% to 100% produces
deployments with only 73 or 74 RSUs. The corresponding
performance of RSU-OPT is significantly better than the
uniform deployment every 500 m, which requires 91 RSUs.
In Figure 6c we observe that increasing α from 90% to 100%

reduces the exceeded CPU capacity. Although the number of
RSUs are the same for α set to 95% or 97%, their actual
locations vary, thus decreasing the exceeded CPU capacity.

Finally, the exceeded CPU capacity decreases for messages
sent from vehicles to RSUs when α increases from 90%
to 100%. Indeed, RSU-OPT balances the requirements of
both network coverage and computational demand to find
optimal locations of RSUs. The reduction in the exceeded CPU
capacity from vehicles to RSUs occurs because placing RSUs
in areas with higher computational demand (implying higher
traffic volume) results in better network coverage too. With
α set to 100%, the performance improves in terms of both
overall percentage and reduced spread in the results.

C. Summary and Discussion

Our experiments show that the optimization problem RSU-
OPT outperforms other approaches, with the traffic volume
heuristic coming a close second. Although the traffic volume
scheme performs very well, the number of deployed RSUs
depends on selecting a specific threshold. Moreover, such a
heuristic cannot obtain the number of RSUs required to cover
a given percentage of roads or meet a certain computational
demand. Besides, the performance of the heuristic is similar
to that of RSU-OPT with α and γ set to 95%.

We observe that certain RSUs drop more messages under
heavy traffic, due to the unavailability of CPU resources. There
are two ways to address this issue. First, the input to the
optimization problem can be changed from the currently used
average demand. For instance, a different metric could be the
maximum demand for CPU cycles in each cell. However, the
solution to this problem would over-provision the network by
increasing the computation resources at RSUs. This is not
really necessary, especially when the current placement and
capacity at each RSU is able to meet the requirements under
moderate traffic. Besides, the chosen configuration is in the
range of the processors available (up to 1.6 GHz) for intelligent
edge devices. Also, edge computing platforms are expected to



have limited computing power as they are typically constrained
by radio resources [22]. Thus, we consider a second approach,
where the number of RSUs is increased in the areas with heavy
traffic. This can be achieved by using feedback from the Veins
simulations to identify the specific cells where an RSU is not
able to meet the computational resource demand and an extra
RSU is deployed in those cells. This approach was tested by
deploying an extra RSU to the placement obtained by RSU-
OPT, which requires 105 RSUs. Specifically, an extra RSU
was placed in one of the grid cells with high demand for
computation. We ran the simulations with 106 RSUs under
heavy traffic and observe that the percentage of messages lost
reduced from 1.33% to 0.76%.

V. RELATED WORK

Optimal placement of RSUs for network coverage has been
studied extensively in both urban and highway scenarios.
We only discuss the optimization problems targeting RSUs
deployments in urban areas as they are closer to our work.
Among them, Liang et al. [12] formulate a linear programming
model to minimize the cost of deploying RSUs. The model
allows multi-hop communication and reduces delay by setting
a maximum value for the number of hops. In contrast, we
consider only single-hop communication to enable the ex-
tremely low latency required for edge applications. Under this
scenario, vehicles always have to be under the coverage of an
RSU. Aslam et al. [13] describe the optimal placement of a
specified number of RSUs in an urban area, while minimizing
the time taken for a vehicle to enter the coverage range of
an RSU and report an accident. Unfortunately, the average
reporting time with this approach is beyond the values required
by latency-critical applications. Trullols et al. [14] consider the
placement of RSUs for information dissemination to vehicles.
The problem is modeled as a maximum coverage problem,
which is NP-hard. In particular, the objective of the problem
is to maximize the number of vehicles that are in contact
with the RSUs as well as the time spent by vehicles under
RSU coverage. On the other hand, our model attempts to
provide coverage at all times to a target percentage of the
deployment area. Balouchzahi et al. [15] propose a model
based on integer programming for efficient placement of
RSUs in urban and highway scenarios. They also consider the
placement of servers for vehicular applications, even though
the computational requirements of the tasks are not included in
their model. To the best of our knowledge, none of the works
on RSU placement incorporate computational requirements.
In contrast, our model explicitly considers the computational
requirements of vehicular applications and limited computa-
tional capability of edge devices.

Several articles propose vehicular applications and architec-
tures that rely on edge servers co-located with RSUs [5, 8, 9,
30, 31]. Yu et al. [5] describe the allocation of cloud resources
at edge servers deployed along with RSUs. The resources
available at RSUs are limited and the authors propose a
game-theoretic approach to allocate the required resources.
Salahuddin et al. [8] introduce an integer linear programming

model to manage computation resources at RSUs in such a
way to minimize re-configuration costs as well as delay. In
these two solutions, virtualized computational resources follow
the location of vehicles and, thus, need to be moved from an
RSU to another accordingly. In our solution, all RSUs run the
same application(s), consequently, there is no need to move
computational resources in the network (although intermediate
data can be transferred, if required). Zhang et al. [9] propose
a computational offloading framework for vehicular networks
that relies on servers with limited computational resources co-
located with RSUs. The authors study the optimal selection
of edge servers and transmission of data between the edge
devices. However, the considered articles do not describe the
efficient deployment of the edge devices but the efficient
movement of resources between them. Our work is comple-
mentary to the described articles as it focuses on the physical
deployment of edge computing devices to enable the proposed
offloading architectures. Our proposed deployment model also
enables the applications described by [11, 30, 31], which rely
on intelligent edge devices.

VI. CONCLUSION

This article addressed the efficient placement of edge com-
puting devices for vehicular applications in an urban scenario.
To this end, we have introduced an optimization problem
that is able to capture application-specific quality of service
parameters. The objective of the problem is to provide net-
work coverage in a vehicular network while also meeting the
computational demand in the considered area. Our solution
was evaluated through extensive simulations with the road
topology of Dublin and compared to other placement schemes.
The obtained results showed that the proposed solution is
effective, outperforms other placement schemes and satisfies
the needs for edge computing in realistic conditions. As a
future work, we plan on investigating the processing delay
at the edge computing servers by means of probabilistic
models. We can then examine the placement of RSUs based
on different thresholds of response delays. While we have
considered a static deployment of RSUs and edge computing
resources, our model can also be extended to include dynamic
adjustment of RSU parameters so as to meet the requirements
of changing traffic patterns. Finally, we are interested in
applying our optimization framework to scenarios involving
the use of wireless communication technologies other than
IEEE 802.11p.
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