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Determining the parameters of a random telegraph signal by digital low pass
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(Received 6 April 2018; accepted 26 May 2018; published online 11 June 2018)

We propose a method to determine the switching rates of a random telegraph signal. We apply

digital low pass filtering with varying bandwidths to the raw signal, evaluate the cumulants of the

resulting distributions, and compare them with the analytical prediction. This technique is useful in

the case of a slow detector with response time comparable to the time interval between the

switching events. We demonstrate the efficiency of this method by analyzing random telegraph

signals generated by individual charge tunneling events in metallic single-electron transistors.

Published by AIP Publishing. https://doi.org/10.1063/1.5033560

Telegraph noise, or random switching of the electric

current between two levels, is often observed in electronic

devices.1 In the context of nanotechnology, it is particularly

important for semiconducting2,3 and single-electron transis-

tors (SETs),4–6 as well as for solid-state quantum bits

(qubits).7–9 Switching rates between the two current levels

and their dependence on temperature, gate voltage, or other

parameters provide valuable information about the physical

nature of the two-level systems generating the noise. The

standard way of finding these rates is based on threshold

detection algorithms, in which the detector current values

below or above certain threshold are assigned to the first or

the second state of the two-level system.

Accurate determination of the switching rates may be

hampered by white and 1/f-noises present in the output signal

of the detector and by the long response time of the latter.

Several methods of correcting the errors caused by these

effects have been developed in the past. For example, the

white noise is efficiently suppressed by digital low pass

filtering. Unfortunately, during this procedure, switching

events separated by short time intervals are lost as well.10 In

order to take that into account, Naaman and Aumentado10

have introduced two additional states of the system corre-

sponding to the errors occurring when the detector does not

immediately switch after the jump in the telegraph signal

and introduced the decay rate of these states as an additional

parameter. Yuzhelevski et al.11 have proposed an iterative

procedure of the analysis of noisy data, in which the thresh-

olds for the jumps between the two levels are adjusted based

on the values of the switching rates found in the previous

iteration. Martin-Martinez et al.12 have introduced the

weighted time lag method relying on the analysis of correla-

tions between the neighboring points in the digitized noisy

signal. K€ung et al.13 have proposed a cross-correlation tech-

nique with two detectors, and Prance et al. have used the

wavelet edge detection technique.14 All these techniques

have been tested in practice and proved to be efficient.15–17

Additional complications arise if several two level systems

contribute to the noise and the current switches between mul-

tiple levels. Awano et al. have developed an algorithm,

based on the theory of Markov chains18 and Monte Carlo

simulations, capable of determining the parameters of all

two level systems.19 A similar approach has been used by

Puglisi and Pavan, who have analyzed noise in random

access memories.20 Giusi et al. have proposed an algorithm

of separation of the two and multilevel telegraph noise from

background 1/f-noise.21

In this letter, we analyse a random telegraph signal

which switches between two levels. We propose an

approach, which has advantages if the detector is slow and a

threshold algorithm would produce too many errors to be

corrected by the techniques mentioned above. For that pur-

pose, we use an analytical expression for the statistical distri-

bution of the output current of the detector recording random

telegraph noise and having an arbitrary bandwidth. This dis-

tribution has been derived by Fitzhugh22 and used, for exam-

ple, in the analysis of switching rates between the charging

states of superconducting double dots by Lambert et al.23

We propose to reduce the effective bandwidth of the detector

below its maximum value, set by hardware, by digital low

pass filtering of the output signal. Varying the bandwidth in

this way and comparing the cumulants of the resulting distri-

butions with corresponding analytical expressions, one can

determine the switching rates. Our method should work even

in the limit of a very slow detector, when the two current

levels, between which the switching is happening, cannot be

reliably determined.

In order to test the theory, we have studied random tele-

graph noise in a system of two capacitively coupled single-

electron transistors (SETs).25 One of them is highly resistive

and serves as a source of telegraph noise caused by random

switches between the two charge states of the SET island

(turquoise in Fig. 1). We denote these states as 0 (no extra

electron on the island) and 1 (one extra electron on the

island). The second transistor with lower resistance is used

as a detector (blue in Fig. 1). We voltage bias the detector

(Vb;det) above the Coulomb blockade threshold, to have mea-

surable current flowing through it, and tune the gate voltage

(Vg;det) to the most sensitive point. The detector current (I)
monitors the charging states of the noise source SET and

switches between the two values I0 and I1 corresponding to

the states 0 and 1. We denote the rate of the transition 0! 1

by c" and the rate of the opposite transition, 1! 0, by c#.
On top of purely telegraph signal, ItelðtÞ, the measurement
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setup adds the noise nðtÞ. Thus, the output current of the

detector SET is

IdðtÞ ¼ ItelðtÞ þ nðtÞ: (1)

We have fabricated two samples with similar design (Fig. 1).

For sample A, we have recorded 50 s long time traces of the

detector current at zero source SET bias with the sampling

rate of 50 kHz (time step s0 ¼ 20 ls) by digitizing the output

of the current preamplifier with an analog-to-digital con-

verter. Part of such a trace is shown in Fig. 2(a). Sample A

produces a clear telegraph signal which can be analyzed by

standard methods. We use it as a reference to test the predic-

tions of our model. The detector of the second sample (sam-

ple B) has been embedded in a radio-frequency resonant

circuit and instead of the current, we monitor the transmis-

sion js21j2 through the circuit at 588 MHz. This sample has

also shown a good telegraph signal with zero bias applied to

the source SET [Fig. 4(a)]. We have deliberately applied

higher bias to it in order to increase the transition rates and

to complicate the detection of switching events [Figs. 4(c)

and 4(e)]. For this sample, we have recorded 10 s long traces

of the transmission coefficient js21j2 with a time step of

s0 ¼ 0:1 ms. Under these conditions, a typical histogram has

only one peak [Figs. 4(d) and 4(f)], and the threshold algo-

rithm for determining the rates cannot be applied. We will

demonstrate that our approach works also in this case.

We will now briefly describe our theoretical model. We

assume that the output current of the detector SET (1) goes

through a low pass filter with the bandwidth s�1
f , which

transforms it as follows:

IðtÞ ¼ 1

sf

ðt

�1
dt0 e�ðt�t0Þ=sf Itelðt0Þ þ nðt0Þ

� �
: (2)

We have chosen this type of filtering because it emulates an

RC low pass filter, which is common in experiments, and

because it allows an exact solution of the problem. Our goal

is to find the distribution of the filtered current I(t). As a first

step, we solve the problem without noise and put nðtÞ ¼ 0.

We introduce two current distributions: one corresponding to

state 0 of the source SET, which we denote as P0ðt; IÞ, and

the second one, P1ðt; IÞ, corresponding to state 1. The evolu-

tion of these two distributions in time is described by theory

of stochastic jump processes (see, for example, Ref. 24 for

details). The corresponding evolution equations read

@tP0 þ s�1
f @I ðI0 � IÞP0½ � ¼ �c"P0 þ c#P1;

@tP1 þ s�1
f @I ðI1 � IÞP1½ � ¼ c"P0 � c#P1:

(3)

The stationary solution of these equations can be found ana-

lytically.22 It reads

P0ðIÞ ¼
I1 � I

I1 � I0

PðIÞ; P1ðIÞ ¼
I � I0

I1 � I0

PðIÞ; (4)

where PðIÞ ¼ P0ðIÞ þ P1ðIÞ reads22

PðIÞ ¼ CðcRsf Þ
Cðc"sf ÞCðc#sf Þ

ðI � I0Þc"sf�1ðI1 � IÞc#sf�1

ðI1 � I0ÞcRsf�1
: (5)

Here, CðxÞ is the gamma function and cR ¼ c" þ c#. PðIÞ is

the distribution of the filtered current (2), which we are look-

ing for. It has the form of a beta distribution, well known in

statistics. The distribution of Eq. (5) differs from the one

derived for a filter with a sharp cutoff, IðtÞ ¼ 1
sf

Ð t
t�sf

dt0

Itelðt0Þ, in Ref. 25, and it does not have a universal form pre-

dicted in Ref. 26. However, in the limit cRsf � 1, all these

distributions approach the Gaussian form with the same

parameters. In the presence of noise, expression (5) should

be convolved with the distribution of the filtered noise

WnðIÞ ¼ hdðI � 1
sf

Ð t
�1 dt0 e�ðt�t0Þ=sf nðt0ÞÞi; where h…i

implies averaging over nðtÞ and takes the form

FIG. 1. Experimental setup. (a) Pseudo-colored scanning electron micro-

graph of the detector SET (blue, top) and another SET used as the noise

source. (b) Top: schematic sketch of the measurement setup. Bottom:

Zoomed view of the lower SET, which has two superconducting leads (S,

green) and normal-metallic island (N, turquoise), separated by an insulating

barrier (I). Both devices are fabricated by electron beam lithography and

three-angle shadow evaporation.25 The gate voltages Vg;det and Vg are used

to control the tunneling rates in the detector and source SET, respectively.

The source bias voltage V was set to 0 for sample A and was varied to

change the tunneling rates in sample B.

FIG. 2. Sample A: Time dependence of the current in sample A before (a)

and after the filtering [(c) and (e)], and corresponding distributions [(b), (d),

and (f)]. In (b), (d), and (f), black curves are experimental data, and red

curves are the fits with Eqs. (5) and (6). Fit parameters are indicated in the

text and caption of Fig. 3.

243101-2 Singh et al. Appl. Phys. Lett. 112, 243101 (2018)



PðIÞ ¼
ðI1

I0

dI0WnðI � I0Þ PðI0Þ: (6)

The average current evaluated with the distribution (6)

does not depend on time sf

hIi ¼ ðc#I0 þ c"I1Þ=cR: (7)

The second cumulant C2 ¼ hðI � hIiÞ2i has the form

C2ðsf Þ ¼
c"c#ðI1 � I0Þ2

c2
Rð1þ cRsf Þ

þ r2
nðsf Þ; (8)

where r2
nðsf Þ is the variance of the filtered noise. This param-

eter is expressed via the noise spectral power, SðxÞ ¼
Ð

dteixt

hnðtÞnð0Þi, and reads

r2
nðsf Þ ¼

ð1
xmin

dx
p

SðxÞ
1þ x2s2

f

: (9)

Typically, nðtÞ is the sum of white and 1/f-noises, so that

SðxÞ ¼ 2gþ A=jxj. In this case, one finds

r2
nðsf Þ ¼ ðr2

0 � r2
1Þðs0=sf Þ þ r2

1; (10)

where r2
0 ¼ r2

1 þ g=s0 is the variance of the unfiltered cur-

rent digitized with the time step s0, and r2
1 ¼ ðA=2pÞ ln ½1

þðxminsf Þ�2� is the contribution of 1/f-noise. The latter is

almost independent of sf until it exceeds x�1
min. r2

1 may also

include the contribution of noise at 50 Hz due to pick-up

from power lines.

The third and the fourth cumulants of the current,

C3 ¼ hðI � hIiÞ3i and C4 ¼ hðI � hIiÞ4i � 3C2
2, respectively,

are not sensitive to the Gaussian white noise. Normalized to

their values at sf ¼ 0, they read

C3ðsf Þ
C3ð0Þ

¼ 2

ð1þ cRsf Þð2þ cRsf Þ
þ C3;1
C3ð0Þ

; (11)

C4ðsf Þ
C4ð0Þ

¼
ðc" � c#Þ2ð1þ cRsf Þ � c"c#ð2þ cRsf Þ
c"c#ð1þ cRsf Þ2ð2þ cRsf Þð3þ cRsf Þ

þ C4;1
C4ð0Þ

:

(12)

The third cumulant of the unfiltered current reads C3ð0Þ
¼ C3;1 þ c"c#ðc# � c"ÞðI1 � I0Þ3=c3

R. The expression for

C4ð0Þ is rather long, and we skip it for simplicity. The

long time limiting values C3;1 and C4;1 account for the

effect of non-Gaussian 1/f-noise and weakly depend on sf.

Importantly, the sf-dependent parts of the normalized cumu-

lants [first terms in r.h.s. of Eqs. (11) and (12)] do not contain

the current levels I0 and I1, which are impossible to deter-

mine for a slow detector with a single peak current distribu-

tion [see, e.g., Figs. 2(f) and 4(d)]. Equations (11) and (12)

provide the basis for finding the rates in this case.

Having developed the theoretical model, we test it with

the data recorded from the reference sample A. For this sam-

ple, the distribution of the unfiltered current is well described

by the sum of the two Gaussian peaks centered around the

currents I0 ¼ 0:71 pA and I1 ¼ 17:97 pA and having the

width r0 ¼ 3:32 pA [Fig. 2(b)].

Next, we numerically generate filtered current time

traces (2) for different values of sf. Technically, we first

perform discrete Fourier transformation of the unfiltered

current generating a sequence of Fourier components ~Ik

¼
P

j Ije
�2piði�1Þðk�1Þ=N=

ffiffiffiffi
N
p

, where N is the total number of

points Ij in the dataset. Afterwards, we multiply them by the

filtering function

Fk ¼
1� e�s0=sf

1� e�s0=sf e�2piðk�1Þ=N
; (13)

which is the discrete Fourier transform of the exponent

appearing in Eq. (2). Finally, we apply the inverse Fourier

transformation. Two filtered time traces generated in this

way are shown in Figs. 2(c) and 2(e) and one more for sam-

ple B in Fig. 4(e). We have generated a series of current dis-

tributions with different filtering times and fitted them with

Eqs. (5) and (6). We have achieved the best fit of the data

with the switching rates c" ¼ 180 Hz and c# ¼ 100 Hz and

assuming Gaussian form of the noise current distribution

WðIÞ ¼ exp ð�I2=2r2Þ=
ffiffiffiffiffiffi
2p
p

r, where r is defined by Eq.

(10) with r1 ¼ 1:04 pA. With these parameters, we have fit-

ted current histograms in the wide range of averaging times

0 < sf < 0:5 s. Examples of such fits are shown in Figs.

2(d), 2(f), and 3(b).

For comparison, we have also determined the switching

rates in a usual way. For that purpose, we have plotted the

distributions h0ðtÞ and h1ðtÞ of the lifetimes of the states 0

and 1, respectively. The lifetimes have been obtained from

the current trace filtered with sf ¼ 1 ms, for which we have

applied a standard threshold detection algorithm with the

threshold between the states 0 and 1 placed at ðI0 þ I1Þ=2. In

Fig. 3(a), we have compared the resulting distributions with

the formula derived in Ref. 10

h0;1 ¼
2c";#cdete

�kt=2sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4c";#cdet

q
t=2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4c";#cdet

q : (14)

Here, k ¼ cR þ cdet and cdet ¼ ðsf ln 2Þ�1 ¼ 1443 Hz is the

effective detector bandwidth. We have found very good

agreement between theory and experiment with the same

values of the switching rates as before, see Fig. 3(a).

FIG. 3. Calculation of rates. (a) Distributions of the life-times of the states 0

and 1 of sample A extracted from the current time trace filtered with sf ¼ 1

ms (symbols) based on conventional threshold detection. Solid lines show

Eq. (14) with the rates c" ¼ 180 Hz and c# ¼ 100 Hz. (b) Distributions of

the detector current at sf ¼ c�1
" ¼ 1=180 s and sf ¼ c�1

# ¼ 1=100 s. Fits are

based on Eqs. (15) and (6).
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The shape of the current distribution changes with the

filtering time sf in a way illustrated in Fig. 2. At short sf, the

white noise is suppressed and the two peaks in the distribu-

tion become sharper. With growing sf, the two peaks disap-

pear one after another exactly at times sf ¼ c�1
" and

sf ¼ c�1
# . At sf ¼ c�1

" , the current distribution (5) takes a

particularly simple form

Pðsf ¼ c�1
" ; IÞ ¼

c#ðI1 � IÞc#=c"�1

c"ðI1 � I0Þc#=c"
(15)

shown in Fig. 3(b). The distribution at sf ¼ c�1
# is given by

the same formula with the interchanged rates c" $ c#.
Next, we apply our model to sample B, replacing the

current by the transmission coefficient, I ! js21j2. The distri-

bution of the latter has a form of a single skewed peak, which

does not split into two peaks even after filtering. The shape

of the peak resembles the distribution of the heavily filtered

current of sample A, cf. Figs. 2(f) and 4(d). Obviously, stan-

dard threshold detection of the switching events is not possi-

ble in this case. In order to estimate the switching rates, we

evaluate the cumulants C3 and C4, plot them as functions of

the time sf (Fig. 5), and fit the result with Eqs. (11) and (12).

The data from sample A (blue) can be reasonably well fitted

with the same parameters as before, which once again con-

firms the validity of our model. Fitting the third cumulant for

sample B (red), we have determined the total switching rate

in this sample, cR ¼ 962 kHz. Next, fitting the fourth cumu-

lant, we determine the two rates separately, c" ¼ 7 kHz and

c# ¼ 2 kHz. Strong low frequency noise and finite value of

the time step limit the accuracy of the result, especially for

the fourth cumulant. We have verified that these values of

the rates are consistent with the ones obtained by extrapola-

tion from the lower bias regime, where the standard

threshold-based methods are still applicable, see Fig. 6. To

account for the finite sampling rate in the simplest approxi-

mation, we have replaced sf ! seff
f ¼ s0=ðes0=sf � 1Þ in

Eqs. (11) and (12). This replacement is justified by a low-

frequency expansion of the function (13) and by fitting it to

the form 1=ð1� ixseff
f Þ, corresponding to exponential decay

in the time domain.

In conclusion, we have proposed a method of determin-

ing the switching rates of a random telegraph noise, which is

based on an analytical expression for the distribution of the

filtered signal, and which should work even if the detector is

slow. We have confirmed the validity of the model applying

it to the telegraph signal generated by a single-electron tran-

sistor, for which the switching rates can be determined by a

conventional threshold algorithm. Subsequently, we have

demonstrated the efficiency of the method applying it to the

device with a slow detector, for which the current threshold

between the two states cannot be defined. We believe that

FIG. 5. Using cumulants as rate calculator. Normalized third (a) and fourth

(b) cumulants of the distributions of the current for sample A (blue) and of

the transmission coefficient for sample B (red). Symbols are experimental

data, solid lines theory fits with Eqs. (11) and (12). For sample A, we used

the parameters reported in the text and C3;1 ¼ C4;1 ¼ 0. For sample B, we

have found C3;1 ¼ 0:06C3ð0Þ and C4;1 ¼ 0:24C4ð0Þ. For both samples, the

third cumulants are negative, C3ðsf Þ < 0, implying c" > c#.

FIG. 6. Switching rates as a function of source SET bias voltage for sample

B. Bias dependence of the tunneling rates c" (red circles) and c# (blue circles)

for sample B for a fixed value of the gate voltage, CgVg=e ¼ 0:42, applied to

the SET. The rates are extracted with traditional threshold-based methods,

with error bars originating from measurement limitations, like small drift in

gate voltage between different bias voltages and error in choice of effective

detector bandwidth while using the approach of Ref. 10 for rate calculation.

Open circles are the rates calculated with the method presented here.

FIG. 4. Sample B: Time traces of js21j2 at zero bias and dimensionless gate

voltage (here, Cg is the gate capacitance) CgVg=e ¼ 0:48, which is close to

the maximum of the conductance peak, with the rates c" ¼ 220 Hz, c#
¼ 180 Hz (a); and at V ¼ 200 lV, CgVg=e ¼ 0:42 [(c) and (e)]. No filtering

was applied to the traces (a) and (c), while the trace (e) has been filtered

with sf ¼ 1 ms. The corresponding distributions are shown in (b), (d), and

(f). In (d) and (f), theory fits are absent because the values of the transmis-

sion coefficient, between which the switching is happening, are not precisely

known at V ¼ 200 lV. Red curve in (b) is a fit with two Gaussian peaks.

243101-4 Singh et al. Appl. Phys. Lett. 112, 243101 (2018)



the formalism presented here can be extended to multi-level

telegraph noise.
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