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Two generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the
rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank
distributions and rank dynamics and give evidence that the shortest and longest trajectories are more predictable and robust to
change, that is, more stable.

1. Introduction

Imagine that a certain product must be delivered, in the
most efficient way, to 𝑁 stores in a region. When stores
are fixed at given sites in space, finding the shortest path
that links them all is the target of the traveling salesman
problem (TSP) [1, 2], which here we refer to as static TSP.
But what happens if the product must be delivered to moving
targets such as peddlers? The TSP becomes time dependent.
Another variation of theTSP, related to the peddlers’ scenario,
occurs when one or more sites disappear and then reappear
at other locations. Imagine, for example, a monkey looking
for fruits that grow in a set of trees. What happens if one
of the trees ceases producing fruits? The monkey, then, has
to look for another tree. Time-dependent TSPs of this sort
have several real-world applications, such as vehicle routing
[3] and machine scheduling problems [4].

Many variations of the TSP have been analyzed in recent
decades [1, 2]. Previous research related to the TSP has
focusedmainly onproducing algorithms to find shortest paths
but, to our knowledge, the properties of longer trajectories

have not been discussed. In the present work we study the
statistical properties of all trajectories in two generalizations
of the TSP with time-dependent sites: the TSP with moving
sites (bTSP), where sites can be interpreted as “boats” that
move gradually in a region, and the TSP with reallocation of
sites (rTSP), where sites move discontinuously across space
(Figure 1(a)). In the peddlers’ example above, peddlers might
not move during one day (so trajectories do not change)
but on the next they may have a different position (possibly
modifying the shortest path, such that a new optimization
process is needed to find it). That would be equivalent to
assume that trajectory changes in time-dependentTSPs occur
at a much slower time scale than the traversal of the paths
by salesmen. If we rank trajectories by their length, we can
analyze how the properties of this ranking change in time
with measures commonly used in the study of hierarchy
dynamics in complex systems, such as the rank distribution
𝑓(𝑘) and the rank diversity 𝑑(𝑘) [5, 6].

Since the rank distribution was popularized in the 1930s
by Zipf [7], it has been used to characterize complex systems
of different nature [8].We have recently discussed the cases of
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Figure 1: Time-dependent traveling salesman problem with moving sites and with reallocation of sites. Rank distribution for the TSP. (a)
Diagram showing the two generalizations of the TSP considered here. By allowing nodes to shift in time, the static TSP (center) becomes
time dependent. In the TSP with moving sites (left), these are displaced in a small interval 𝛿𝑡. In the TSP with reallocation of sites (right),
they are displaced to random positions after one time step. In these TSP variations, nodes do not move during path traversals; that is, the
optimization problem of finding paths is solved for a static situation. Shortest paths are shown with lines between sites. (b) Rank distribution
according to the inverse path length 𝑓(𝑘), for 𝑁 = 6 to 𝑁 = 10 sites in particular but representative instances of the TSP. Not all points
are shown in the figure, so the best fit to a beta function (continuous line) can be clearly seen. We include a proportionality factor to such
function to account for the fact that 𝑓(𝑘) is not a probability density.

six Indo-European languages [5] and of six sports and games
[6], where we found that 𝑓(𝑘) does not follow Zipf ’s law and
varies slightly across cases. For all of these complex systems,
we also studied how ranks change in time by means of the
rank diversity 𝑑(𝑘). Explicitly, 𝑑(𝑘) is the number of different
elements that have rank 𝑘 within a given period of time 𝑇. In
the complex systems we have studied that, up until now, the
rank diversity can be well approximated by a sigmoid curve.

2. Results

2.1. Static and Time-Dependent TSPs. Consider the static TSP
with𝑁 sites. We shall label each site by A, B, C, and so on. A
trajectory is a closed path on these sites, so each trajectory
can be characterized by a nonunique string of site labels. For
example, the shortest trajectory in Figure 1(a) for the static
TSP (top) is “AEDCB.” Note that one could have started
the string at any site and even changed the direction, so the
same trajectory could have been labeled “CDEAB.” Starting
from his home city the salesman visits each site only once
and returns home; that is, he follows a trajectory. There are
(𝑁 − 1)!/2 different trajectories, and the usual problem is
to find the shortest one within this set. In this work we go
further and rank each trajectory according to its length, so
the shortest one has the highest rank (𝑘 = 1), and the longest
one has the lowest rank (𝑘 = 𝑘max = (𝑁−1)!/2). To study the
rank distribution of the system, 𝑓(𝑘) is taken as the inverse
of trajectory length.The rank distribution of TSP trajectories

is presented in Figure 1(b) for several random configurations
corresponding to different values of𝑁.The results differ from
Zipf ’s law, but for all cases they have a similar shape, which
resembles a beta distribution. Notice that any other choice
of 𝑓(𝑘), like minus the length, or any decreasing function of
the length, would change the shape of the curves presented in
Figure 1(b). However, the rest of the results presented in this
paper, except for Figure 7, would remain unchanged.

We now study the problem of stability of trajectories in
the TSP. Suppose the location of sites varies slowly over time,
so that the salesman can assume a static scenario for each
trajectory, but the shortest trajectory, and in fact the rank of
all trajectories, might change if the configuration of sites is
modified enough. A toy model that captures this situation is
the bTSP. Assume all𝑁 sites are allowed tomovewithin a 1×1
square as if they were boats. In the TSP with moving sites, the
𝑋 and 𝑌 components of the velocity of each site are random
with a uniformdistribution among±1.The boatsmovewith a
constant velocity until they reach a confiningwall, where they
bounce elastically [see Figure 1(a) and accompanying video in
https://www.youtube.com/watch?v=murdnwzRHu4].

Let us consider a different time-dependent perturbation
of theTSP, the rTSP.Here𝑁 sites are located in the unit square
with a uniform random probability, and all trajectories are
ranked as explained above. This is the “base” configuration.
Then one site is chosen at random and reallocated to a ran-
dom position in the unit square, after which trajectory ranks
are calculated again (Figure 1(a)). After several iterations,

https://www.youtube.com/watch?v=murdnwzRHu4
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Figure 2: Time dependence of trajectory ranks. Time dependence of trajectory ranks for the models depicted in Figure 1(a), where particular
instances of𝑁 = 6 are considered. Colors are an aid to see how initial trajectory ranks diffuse over the 𝑘 axis as time goes by. We show results
for the (a) bTSP, where trajectories spread slowly in time, and for the (b) TSP with reallocation of sites [rTSP], where there are drastic changes
from one time step to another, as well as a tendency for keeping initially shorter/longer trajectories short/long.

during which the same site is randomly reallocated, we can
explore this time-dependent process with the rank diversity.
Even though a continuous time dynamics does not exist as
in the bTSP, we can still ask how many different trajectories
occupy a given rank 𝑘, so the rank diversity is well defined.
2.2. Temporal Evolution of Trajectory Ranks. We first explore
how trajectory ranks change with time in both the bTSP
and rTSP (Figure 2). For the bTSP, trajectories initially at
the extremes (i.e., high or low 𝑘) tend to remain in place,
until at some point they detach and explore a wider range
of ranks (Figure 2(a)). That is, in the edges of the plot (high
and low 𝑘), rank as a function of 𝑘 tends to be a horizontal
straight line, whereas for middle 𝑘 the corresponding lines
vary more. For the rTSP a slightly different behavior is
observed (Figure 2(b)). Here we note that time is an auxiliary
variable with no relevant meaning, since we are simply
selecting randompositions to relocate randomly chosen sites.
As these positions are taken as a series of random and
uncorrelated values, reordering such a sequence in time
makes no statistical difference.Thus, it is reasonable to expect
that trajectory ranks for the rTSP vary more than for the
bTSP. Despite this fact, we also observe that the trajectories
near the extremes tend to keep the same values of 𝑘, while
intermediate trajectories do not exhibit such regularity, just
like in the bTSP.

In order to quantify the way in which trajectory ranks
change in time, we shall use the rank diversity. Moreover,
to develop some intuition on this measure and understand
how it depends on the parameters chosen to calculate it, we
present several numerical experiments for both models in
Figure 3. Note that to calculate the rank diversity we have
to choose an appropriate time span 𝑇 and a number 𝑚 of
time points at which observations aremade. Alternatively, the
time interval 𝛿𝑡 between observations can be chosen instead
of 𝑚, where 𝑇 = 𝑚𝛿𝑡. In many real-world systems the time
interval 𝛿𝑡 is determined by data availability; to calculate the
diversity of words in English throughout the centuries, for

example, onemay useGoogle’s n-gramdataset, which implies
a time interval 𝛿𝑡 of one year (or an integer multiple of that).
However, in the bTSP both the total time 𝑇 and the time
interval 𝛿𝑡 can be chosen at will.

Let us analyze the situations depicted in Figure 3. First,
we study the bTSP with a fixed total time evolution 𝑇 and
varying 𝑚, thus effectively changing the value of 𝛿𝑡 = 𝑇/𝑚
(Figure 3(a)). As𝑚 increases, the time between observations
decreases, and the boats move less, so the positions of the
boats barely change in a single time interval 𝛿𝑡, and rank
diversity diminishes. In fact, the diversity cannot be larger
than the maximum number of trajectories divided by the
number of time slots, 𝑘max/𝑚. If, on the other hand,𝑚 is small
enough, 𝑘max/𝑚 is larger than 1 and 𝑑(𝑘) tends to saturate
around 1. This can be summarized in the formula

𝑑max = min {1, (𝑁 − 1)!2𝑚 } . (1)

In the second scenario, we fix the number of observations
and vary the total time 𝑇. As a limiting case, when 𝑇 is
much larger than the time a boat needs to travel from one
wall to another, the correlation between site configurations
is lost, so for most ranks diversity is close to its maximum;
only close to the shortest and longest trajectories we observe
smaller diversities (Figure 3(b)). Since both 𝑁 and 𝑚 are
fixed, in this case 𝑑max is the same for all 𝑇 values. We also
analyze the case of a fixed value of 𝛿𝑡. The value of 𝑚 now
changes, as in Figure 3(a), but simultaneously 𝑇 varies, as in
Figure 3(b), due to the relation 𝛿𝑡 = 𝑇/𝑚. As 𝑚 increases,
the effect on diversity seems similar to the one in which
𝑇 is constant (Figure 3(c)). Finally, we perform a similar
analysis for the rTSP (Figure 3(d)). As 𝑚 increases, the time
between observations is not shortened. Each new position
of the selected site is uncorrelated with the previous one,
regardless of the value of 𝑚. We thus expect and observe a
similar effect as the one of Figure 3(c). In this case, the bound
for different values of𝑚 does not change, since (𝑁−1)!/2𝑚 >
1 for all cases shown.
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Figure 3:Parameter dependence of rank diversity.We analyze how changing parameter values affects the rank diversity for two time-dependent
versions of the TSP. For panels (a)–(d) we consider𝑁 = 8. Starting with the bTSP and 𝑛 = 𝑁, we (a) vary the number of observations𝑚while
keeping the total time 𝑇 = 2, (b) fix the number of time steps𝑚 = 104 while varying the total time, and (c) fix the value of 𝛿𝑡 = 5× 10−4 while
changing the number of time steps (and thus the total time). For the rTSP, we also (d) show how changing the number of time steps alters
the diversity. Curves are averages over 100 realizations. Panels (e) and (f), respectively, show the rank diversity for the bTSP when 𝑛 sites are
allowed to move and for the rTSP when 𝑛 sites are reallocated at each time step, with both𝑁 = 7 and𝑚 = 1000. For the bTSP the total time
is 𝑇 = 10, which leads to 𝛿𝑡 = 0.1. We choose this value of 𝑇 so that the ranges of the diversity in (e) and (f) resemble each other. Results in
(f) are averages over 1000 realizations. Horizontal lines correspond to 𝑑max, the maximum value of the diversity given in (1). In (b), (d), (e),
and (f) all curves have the same bound, whereas in (a) and (c) color is used to indicate the bounds of each curve.
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Figure 4: Stability of ranks under reallocation of sites. (a) Particular instance of the rTSP with𝑁 = 7 and 𝑛 = 1. Black points represent fixed
sites, whereas the white one represents the site to be reallocated. The shortest trajectory is indicated as a dashed cyan line. When the white
point is reallocated in the orange area𝐴, the shortest trajectory remains unchanged, while if a node is reallocated in any part of the blue area,
the shortest trajectory changes. (b) Same realization of the rTSP, but for the trajectory with an intermediate rank (𝑘 = 180). The orange area
is much smaller in this case. (c) Same realization of the rTSP, but for the longest trajectory (𝑘 = 360), where the orange area is again big. In
panels (d), (e), and (f) we show the probability distributions of𝐴 for𝑁 = 7 and the three previous values of 𝑘, as well as its mean value, ⟨𝐴⟩𝜌𝑘 .

Two useful generalizations of the bTSP and the rTSP
are now considered, since this will allow us to relate the
behavior of both models. Assume that only some sites move
in the bTSP. That is, instead of all site moving in the plane, 𝑛
move and 𝑁 − 𝑛 are static. The cases analyzed before thus
correspond to 𝑛 = 𝑁. In a similar way, consider an rTSP
where instead of reallocating a single site, 𝑛 sites are moved
(the same sites through each iteration). The case 𝑛 = 𝑁 thus
corresponds to a total reallocation of the system, while up to
now we have only discussed the value 𝑛 = 1. Diversity for
these generalizations seems to behave in a similar way as for
the case 𝑛 = 1, as seen in Figures 3(e) and 3(f). In fact, for
the bTSP one may even consider a single moving site and
the previous conclusions still hold. We have obtained similar
results for other variations of the bTSP, such as periodic
boundary conditions and different ways of choosing the
initial conditions and velocities.

Let us analyze geometrically a particular, but random,
instance of the rTSP with the goal of gaining some insight.
The configuration space of such problem has dimension
2𝑛, as each of the 𝑛 sites has a two-dimensional space to
move. For a given initial configuration, in the case 𝑛 = 1

we can plot the locus of positions to which a given point
may travel, so the trajectory associated with a given rank
remains unchanged. In Figures 4(a)–4(c) we take 𝑁 = 7 as
an example, so the shortest, middle, and longest trajectories
correspond to 𝑘 = 1, 𝑘 = 180, and 𝑘 = 360, respectively. The
example is representative in the sense that, for the extremal
trajectories, the aforementioned locus has a big area and
the middle one has a very small area, but particular values
change broadly from realization to realization. We can also
obtain a histogram of the probability density 𝜌𝑘 of the areas
corresponding to random realizations (Figures 4(d)–4(f)).
From these histograms we see that 𝜌1 ≈ 𝜌𝑘max

, but 𝜌1 is clearly
different from 𝜌𝑘max/2

.
It is also useful to study the expected value of the stability

area for different ranks, ⟨𝐴⟩𝜌𝑘 , as a function of the number of
sites (Figure 5). There is a different scaling for the extremal
and intermediate rankings, so we expect that the difference
in areas seen for the case 𝑁 = 7 is exponentially larger
for bigger systems. Although the standard deviation of the
distribution 𝜌𝑘 is relatively large, the average value ⟨𝐴⟩𝜌𝑘
can be determined with high accuracy (the statistical error
for points in Figure 5 are comparable to the size of the
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sizes.

points). We can also see an even-odd effect for the longest
trajectory associated with the change in topology of a star-
like configuration for an even or odd number of sites. This
hints at a geometric understanding of time-dependent TSPs
which, however, is outside the scope of the present study.

2.3. Connecting the bTSP and rTSP. Consider the rTSP with
𝑛 = 1. For a particular rank 𝑘, each position in the unit
square yields a trajectory.We can thus “paint” the unit square
with colors corresponding to trajectories. We show examples
with 𝑁 = 5 for the shortest trajectory in Figure 6(a) and for
𝑘 = 2 and 6 in Figures 6(b) and 6(c), respectively. Diversity
is the number of different colors in the picture divided by
the number of observations. Notice that there is a qualitative
difference between the cases 𝑘 = 1 and 𝑘 = 6. This indicates
already that 𝑑(1) < 𝑑(6) if a large ensemble is taken (so that
errors due to finite sampling are small enough).

For the bTSP with 𝑛 = 1, the moving boat will cover
the whole unit square uniformly for most choices of the
velocities. The condition for having a uniform covering is
that the vertical and horizontal speeds are incommensurable,
which always holds for this model. However, notice that the
system will not go through all possible configurations of the
TSP, as𝑁 − 1 boats are fixed. Still, when the aforementioned
condition occurs, time averages yield the same value as space
averages; that is, the system is ergodic [9] in an appropriately
chosen manifold. For such long times the whole unit square
will be visited; that is, the moving site will visit all colored
areas. Therefore, the bTSP has the same rank diversity as the
rTSP when the sampling 𝑚 is the same (otherwise they are
related by a constant factor). For example, if an instance of the
bTSP is chosen as in Figure 6, with one white point indicating
the position of the moving site, for 𝑘 = 1, 𝑑(𝑘) will saturate
to 6/𝑚, equal to 𝑑(1) for the rTSP if the random sampling
includes points in all 6 different areas. For 𝑘 = 2, 𝑑(𝑘) = 10/𝑚
and for the intermediate ranking 𝑑(6) = 12/𝑚 = 𝑑max.

For a larger number of moving sites, 𝑛 > 1, a similar
reasoning holds. However, the configuration space is now
2𝑛-dimensional; thus visualization is more challenging. The
condition for ergodicity still holds when all pairs of velocities
are incommensurable. However, when the number of boats
that move is increased, the diversity changes as in Figure 3(e)
(where three different values of 𝑛 are shown).When 𝑛 = 𝑁−1
or 𝑁, the diversity is formally maximum and we obtain no
relevant information. In fact, when the time over which we
calculate the diversity in the bTSP increases, 𝑑(𝑘) tends to 1
(Figure 3(b)).

The bTSP and rTSP are comparable since both explore
a fraction of the 2𝑁-dimensional configuration space. The
bTSP explores a line of finite length in such a space, or a 2𝑁-
dimensional hypercube embedded in the configuration space
if the whole ensemble of velocities is considered. The rTSP,
on the other hand, explores a 2𝑛-dimensional hyperplane
embedded in the same configuration space. Overall, both
models behave in a similar fashion.

Each realization of the TSP can be seen as a point in
a 2𝑁-dimensional configuration space, where every pair of
axis defines the coordinates of each particle.The optimization
problem is then different for each point in the configuration
space. We have analyzed the stability of the solutions of the
TSP under changes of the location of the point defining the
configuration. We have further shown that the stability prop-
erties are similar for the two time-dependent generalizations
of the TSP considered here. We have also stated under what
conditions the behavior of both models is identical. We thus
expect that these results are applicable to other perturbations
of the TSP.

3. Discussion

We have studied the statistical properties of rank distri-
butions and rank dynamics of a novel variation of the
traveling salesman problem where nodes shift their position
in time. This allows us to explore the stability of trajectory
ranking, which is related to the predictability of perturbation
effects. Figure 5 shows the average probability of a trajectory
maintaining its rank of 1000 instances of the bTSP (with
one site moving) as the number 𝑁 of sites increases. We
see that this probability, which reflects the stability of ranks
to perturbations, decreases with 𝑁. However, the decrease
is much lower for the shortest and longest paths than for
the middle trajectories. This reflects the fact that the rank
diversity is also lowest for the extreme paths. Moreover, the
stability decreases much faster for the middle trajectories.
Thus, we find that the shortest and longest trajectories are
more predictable and robust.

Further light on the problem can be shed by studying
the probability density of a random path of a random set of
points. This is equivalent to studying the probability density
of the trajectory length and is closely related to the derivative
of 1/𝑓 as a function of 𝑘 (see Figure 1(b)). In Figure 7 we see a
low density of trajectories for the shortest and longest lengths
and an approximately, but clearly not exact, symmetrical
shape. Under the assumption that perturbations alter all
trajectories in a statistically equivalent way by changing
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Figure 6: Stability areas for different trajectories. (a) rTSP with𝑁 = 5, 𝑛 = 1, and three possible reallocations of the white point. The shortest
trajectory, 𝑘 = 1, is indicated as a solid, dashed, and dotted line, corresponding to the three reallocations. Regions of varying color correspond
to different trajectories for 𝑘 = 1 (see Figures 4(a), 4(b), and 4(c)). In panels (b) and (c) we show a plot with the same fixed sites as in (a), but
for 𝑘 = 2 and 𝑘 = 6, respectively.
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Figure 7: Trajectory density for the TSP. Probability density for
trajectory length [1/𝑓(𝑘)]. We consider 𝑁 = 10 and an ensemble
average over 100 different realizations of the static problem (thick
black curve). Several individual realizations are plotted as thick gray
curves.

their length by a fixed value, trajectories in the lower and
higher ranks would change their rank less than the ones in
intermediate ranks. With some effort, an analytical analysis
in this direction might shed some light on the problem, but
this is beyond the scope of the present work.

We also note that rank diversity curves are all symmetric,
as shown in Figure 3. However, in previous studies we have
shown that the rank diversity 𝑑(𝑘) has almost the same
form for languages, sports, and games. This is not symmetric
and can be adjusted by a sigmoid in lognormal scale. Still,
from other datasets we have also noticed symmetric rank
diversity curves. The difference between symmetric and
nonsymmetric rank diversity curves seems to be related to
the degree of “openness” of a system. In time-dependent
TSPs the system is “closed,” as all trajectories are considered
at all times. However, in sports, languages, and other real-
world phenomena, elements enter and exit the system. More
precisely, elements enter and exit the subset of the system

available in datasets. If one plots rank diversity curves of
“open” systems in linear scale, they are very similar to the
symmetric curves of closed systems [5, 6].

Changes in optimization problems pose challenges when
change is faster than optimization, as solutions might be
obsolete [10]. These nonstationary problems are a common
feature of complex systems [11]. Our analysis suggests that the
way in which state spaces of nonstationary problems change
is not uniform. This implies that once an optimal solution is
found we can expect it to be more stable than nonoptimal
solutions. A more detailed exploration of the changes of state
spaces in time will provide further insight, and we trust that
the methods presented here will contribute to this effort.
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