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We propose an efficient procedure for significance determination in high-dimensional dependence learning
based on surrogate data testing, termed inverse finite-size scaling (IFSS). The IFSS method is based on our
discovery of a universal scaling property of random matrices which enables inference about signal behavior
from much smaller scale surrogate data than the dimensionality of the original data. As a motivating example, we
demonstrate the procedure for ultra-high-dimensional Potts models with order of 1010 parameters. IFSS reduces the
computational effort of the data-testing procedure by several orders of magnitude, making it very efficient for prac-
tical purposes. This approach thus holds considerable potential for generalization to other types of complex models.
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I. INTRODUCTION

Learning about dependencies among stochastic entities
from very high-dimensional data is a central task in data
science [1]. Despite extensive research efforts in this field
over the last decade, selection of statistically significant signals
characterized by rare events remains a considerable challenge.

Statistical testing against null hypotheses, which are defined
by assuming no dependency among the entities, is the standard
approach for selecting the statistically significant signals.
Signals for which the probability that a summary statistic
would be the same as or of greater magnitude than the actually
observed value under a null hypothesis (p value) is lower than
a threshold value are regarded as significant. Unfortunately,
analytical expressions for such a significance threshold are
intractable for most complex models. Therefore, the role of
computational methods that assess the threshold from observed
data is becoming more and more important in the current era
of big data.

Surrogate data testing [2,3] is a representative example of
such methods. In this method, the original data are repeatedly
randomly shuffled or regenerated under a null hypothesis,
and the model is refitted to each generated data instance.
The signals from the original data model that do not deviate
substantially from typical surrogate data signals (here termed
the background distribution) can be considered noise and
discarded from further analysis. After its introduction two
decades ago, surrogate data testing has become a widely
established inference procedure for complex models. It is
conceptually similar to the approximate Bayesian computation
(ABC) and likelihood-free inference techniques that have
become popular in genetics, econometrics, and astronomy
[4–10]. Despite its conceptual simplicity, such a procedure
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may remain impractical if the considered model is expensive
to learn, as is often the case with complex models [11,12].

As a motivating example, we consider high-dimensional
inverse Ising and Potts modeling in which model parameters,
i.e., fields and couplings of Ising or Potts models, are de-
termined to fit with given data. This model class has been
intensively studied in the field of direct-coupling analysis
(DCA), primarily in the context of protein sequence analysis
[13–18], and more recently also for whole-genome analysis of
bacterial populations [19,20]. An established practice in DCA
applications to protein data is to retain a smaller number of
top predictions by comparison of estimated couplings against
biological ground truth deduced from crystal structure exper-
iments. However, from the inference perspective, it would be
attractive and necessary to have a formal statistical rule for
determining which learned model parameters can be classified
as noise and which as signal when the ground truth is not
available.

Here we propose an efficient procedure to solve the high-
dimensional significance analysis problem for DCA, termed
the inverse finite-size scaling (IFSS) of a surrogate data test.
Our method is based on the discovery that the distribution of
parameter estimates under a null hypothesis after normaliza-
tion by the standard deviation can be characterized by a single
function determined only by a limited number of system pa-
rameters: the data dimensionality ratio (aspect ratio) α ≡ n/L,
where n and L represent the number of samples and features in
data, respectively, and the data bias distribution P ( f ), which is
a collection of summary statistics of features calculated from
data (Sec. IV). When the finite-size scaling (FSS) property
holds, both the number of features L and samples n present in a
data set can be reduced, while keeping their ratio α fixed, such
that the resulting distribution of scaled parameter estimates
remains the same. Such a property is particularly desirable
because it can be applied to surrogate data generation and
subsequent parameter learning. The dimensionality reduction
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as a consequence of the FSS property implies that significant
signals can be extracted from the learned model much easier,
as the computational and memory requirements may decrease
up to several orders of magnitude, which is demonstrated here
using high-dimensional real data.

II. PROBLEM SETTING

Our goal is to identify meaningful pairwise dependencies
from L sites by analyzing n samples for those sites. Suppose
we have a n × L dimension data matrix X = {xμi} (μ =
1,2, . . . ,n and i = 1,2, . . . ,L). Elements in the data matrix
can take discrete values from Q states or categories. Assume
that the entity relation is described by a Potts model (or an
Ising model when xμi = ±1)

P (x) = 1

Z(x; J,h)
exp

⎡
⎣ L∑

i

Q∑
a

δ(xi,a)hi(a)

+
∑

1�i<j�L

Q∑
a,b=1

δ(xi,a)δ(xj ,b)Jij (a,b)

⎤
⎦, (1)

where Z(x; J,h) is the partition function. In the model,
Jij (a,b) represents the direct dependencies between states a,b

at sites i,j . Fitting the model to data X, regularized inference
provides estimates of the model parameters capturing direct
dependencies.

Unfortunately, in practical situations, the number of sam-
ples n is much smaller than the total number of estimated
parameters Jij (a,b) and hi(a), which grows as O(Q2L2). This
implies that most estimates are representing only statistical
noise and we need to screen a small portion of statistically
meaningful couplings among them. The aim of this paper
is to develop a computationally efficient procedure for such
screening purposes utilizing the FSS property that holds for
surrogate data.

III. ILLUSTRATION WITH SYNTHETIC DATA

We demonstrate first that the surrogate data testing approach
is valid for inverse Ising or Potts modeling problems by a
moderate dimensional synthetic example with L = 1000,n =
500, where the ground truth is known. We developed a
sparse restricted Boltzmann machine (sRBM) simulator, a
variant of the restricted Boltzmann machine technique (see the
Appendix), which allows efficient generation of example data.
The underlying coupling matrix is extremely sparse with only

a small number of nonzero elements Jij ≡
√∑

a,b Jij (a,b)2.

We used the pseudolikelihood maximization (plmDCA) [17]
algorithm for learning J in the Potts model, which is described
in Sec. IV A.

Figure 1(a) shows a result for the sRBM-generated data
together with the randomly generated surrogate data. Since we
are primarily interested in the large deviations of the coupling
distribution, a rank plot is used to visualize the signal behavior.
By ranking the parameter values in descending order and
plotting in log scale, the tail behavior of the distribution is
clearly visible. In Fig. 1(a) the red curve represents the average
ranking behavior of 10 independent surrogate data tests. Here
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FIG. 1. plmDCA inference for synthetic binary data simulated by
sRBM. On the horizontal axis, r is the rank in descending order and Nt

refers to the total number of couplings. The function of log represents
the natural logarithm. The vertical axis represents the coupling value
divided by the standard deviation of all couplings. The simulated
system size is L = 1000, α = 0.5, and the surrogate data tests have
been repeated T = 10 times. Synthetic data generation is done using
bias distributions uniformly distributed over (0,1). Nonzero coupling
strength is Jij = 2 for all coupled pairs of variables {(i,j )}. (a) Full
size surrogate data tests provide a significance threshold on rank plot.
(b) Finite-size scaling property of the surrogate data for synthetic data.

the surrogate data sets are generated by randomly shuffling
columns of the synthetic sRBM data; therefore the size are
the same as the given data. The true nonzero couplings all
deviate from the background distribution and remain above
the maximum value of the surrogate data curve. Figure 1(b)
shows a curve collapsing phenomenon for the surrogate data
generated from the synthetic sRBM data. The procedure for
creating surrogate data of different sizes is explained in Sec. V
and Fig. 2. When the system size is varied while keeping
the bias distribution (explained in Sec. IV) and aspect ratio
n/L fixed, all the estimated coupling curves follow the same
background distribution. The central tendencies especially
are almost identical, while the tails exhibit more random
variation.

FIG. 2. Concept of bias distribution and generating downsized
surrogate data from given data. Bias distribution is a collection of
empirical sample (column) distributions ( f vectors) of given big data.
In the downsized surrogate data, bias distribution is kept by taking a
small set of random samples of vector f from P ( f ), which gives
a collection of column bias vectors denoted as P ( f sg). Therefore,
P ( f sg) represents the same distribution with P ( f ). Keeping aspect
ratio α the same with given data, one generates small surrogate data
from P ( f sg), where the column position and the correspondence with
f i are random.
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IV. FINITE-SIZE SCALING PROPERTY
OF SURROGATE DATA

Suppose that samples of site i of the data set, which are
represented as entries of column i in X, result in the state or
category q ∈ {1,2, . . . ,Q} count kqi and that the ith column of
X is denoted as xi . This feature is statistically characterized by
the frequency vector f i composed of Q elements fqi = kqi/n,
where q = 1,2, . . . ,Q, and the collection { f 1, f 2, . . . , f L}
are the summary statistics of the features, which we denote
as P ( f ) (Fig. 2) and term the bias distribution. In order to
create a surrogate data under the null hypothesis one randomly
shuffles or regenerates a surrogate sample for xi of the same
dimensionality n, while keeping f i fixed, repeating this for all
columns of X. We denote the obtained surrogate data matrix
of the same dimensionality n × L as Xs.

We discovered that given an algorithm A, the standardized
(scaled by standard deviation) distribution of learned interac-
tion parameters from surrogate data depends only on a limited
number of summaries of the data, namely, the aspect ratio
and the bias distribution. This relation can be described as
a function

P (J̃sg) = g(J̃sg|α,P ( f )), (2)

where J̃sg = Jsg/� and � is the standard deviation of the
estimated coupling values for surrogate data. We term relation
(2) as the finite-size scaling (FSS) property, where in low-
dimensional surrogate data mimics the properties of P (J̃sg) of
high-dimensional surrogate data Xs given that specific scaling
criteria are met.

Employing the FSS property, we propose a procedure to
create downsized surrogate data as

X → P ( f ) → P ( f sg) → Xsg, (3)

where P ( f ) = { f 1, f 2, . . . , f L} and P ( f sg) =
{ f s1

, f s2
, . . . , f sLsg

} as shown in Fig. 2. Lsg is a feature
number of the shrunken surrogate data which satisfies
Lsg � L. Elements in set {s1,s2, . . . ,sLsg} are randomly
chosen numbers from feature indices {1,2, . . . ,L} of given
data X. We compute an empirical bias distribution P ( f )
from the data matrix X, where f s are Q × 1 dimensional
vectors and Q is the number of states in categorical data.
By keeping the aspect ratio α = n/L of data matrix X, one
can define a convenient surrogate test data size Lsg which is
much smaller than the original data size and then randomly
sample Lsg relative frequency vectors { f s1

, f s2
, . . . , f sLsg

}
from P ( f ), which provides the bias distribution P ( f sg)
for the reduced-scale surrogate data. One can generate
downsized surrogate data Xsg according to P ( f sg) with size
Lsg and nsg = αLsg, where the column position and the
correspondence with index i of f i from the given data are
random.

A. Analyzing FSS behavior empirically

In order to show that the FSS property holds in general
and does not depend on the type of learning algorithm used in
DCA, we tested two distinct types of algorithms: regularized
least squares (RLS) [21] and pseudolikelihood maximization
(plmDCA) [17]. RLS is an �2-regularized inference method

for DCA based on variational “naive mean-field” inference
[1] where J = −C−1 and C is the covariance matrix. For
categorical data, the elements of C are defined as

Cij (a,b) = Fij (a,b) − Fi(a)Fj (b), (4)

where

Fi(a) = 1

neff

⎡
⎣ n∑

μ=1

ω(μ)δ(xμi,a)

⎤
⎦, (5)

Fij (a,b) = 1

neff

⎡
⎣ n∑

μ=1

ω(μ)δ(xμi,a)δ(xμj ,b)

⎤
⎦ (6)

are the frequencies calculated from data. In (5) and (6), ω(μ)
denotes the weight for sample μ (row μ in X) and neff is
the effective sample number and neff = ∑n

μ ω(μ). There are
several ways to calculate the weights for real data; however,
for surrogate data, since the dependence between samples are
destroyed, one could see the samples in surrogate data as
independent from each other. Therefore, all samples have equal
weights,

∀μ, ω(μ) = 1 and neff = n, (7)

for surrogate data. RLS provides the estimated coupling matrix
by the simple matrix equation

JRLS = −C(η1 + C2)−1, (8)

where 1 is the identity matrix and η is a positive regularization
parameter.

On the other hand, another method, plmDCA, learns J in
the Potts model so as to maximize the pseudo- (conditional)
likelihood P (xi |x\i ; J,h) for each element xi given all the
other elements x\i in conjunction with the regularization by the
�2 norms of the couplings J and the external fields h = [hi(a)]
[17]. More precisely, the pseudolikelihood on site i for sample
μ is defined as

P (xi = xμi |x\i = xμ,\i ; J,h)

=
exp

[
hi(xμi) +∑

j �=i Jij (xμj ,xμi)
]

∑Q
a exp

[
hi(a) +∑

j �=i Jij (a,xμi)
] , (9)

and the regularized negative pseudo-log-likelihood function on
site i is given by

l(hi ,J i) = − 1

neff

n∑
μ

ω(μ)

⎛
⎝hi(xμi) +

∑
j �=i

Jij (xμj ,xμi)

− log

⎧⎨
⎩

Q∑
a

exp

⎡
⎣hi(a) +

∑
j �=i

Jij (a,xμi)

⎤
⎦
⎫⎬
⎭
⎞
⎠

+ λh||hi ||22 + λJ

∑
j �=i

||J ji ||22, (10)

where J i denotes {J ji}j �=i and ||hi ||22 = ∑Q
a hi(a)2,

||J ij ||22 = ∑Q
a,b Jij (a,b)2. The plmDCA algorithm minimizes

the total contribution
∑L

i=1 l(hi ,J i), which naively yields
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FIG. 3. Histogram of bias distribution of q = 1 dimension (data
take first type of value). f1i = 1

n

∑n

μ=1 δ(xμi = 1) is the frequency of
xμi taking value 1 in column i. These are histograms of {f1i}i=1,2,...,L

when n = 100, L = 10 000: (a) f1i = 0.6 for all columns;
(b) {f1i}i=1,2,...,L are generated from uniform distribution in interval
(0,1); (c) {f1i}i=1,2,...,L are generated by beta distribution B(·; a,b)
where parameters are set as a = 6,b = 4; (d) {f1i}i=1,2,...,L are
generated by beta distribution B(·; 9,0.5).

asymmetric couplings Jij (a,b) �= Jji(a,b). For resolving this
drawback, J is symmetrized after the maximization.

We generated synthetic data from four representative types
of bias distributions P ( f ) and demonstrated the FSS pro-
perty of the corresponding surrogate data. Figure 3 shows
histograms of the four types of bias distributions for binary
data. Figure 4 presents the log scale normalized histogram of
standardized couplings learned by RLS for data generated us-
ing the bias distributions in Fig. 3. After scaled by the standard
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FIG. 4. Probability density plot in log scale of RLS learned
couplings for binary data generated by four types of bias distributions
shown in Fig. 3. Data {xμi} take the value of {+1,−1}. The feature
number used in this series is L = 1000,2000, . . . ,10 000, and the
data aspect ratio is α = 0.1. The regularization parameter used in the
RLS algorithm is η = 0.1. All distributions are scaled by the standard
deviation of each instance.

deviation of each coupling sets, all empirical distributions of
the couplings collapse to a single curve. Similar results were
also obtained by the plmDCA algorithm as shown in Fig. 5. For
categorical data that learned using the plmDCA algorithm, the
FSS property also holds for both {Jij (a,b)} (first row in Fig. 5)
and coupling scores {Jij } (second row in Fig. 5).

B. Analytically solvable case

Although the FSS property of surrogate data has been
confirmed only empirically so far, it can be intuitively under-
stood using random matrix theory. For the Gaussian special
case, the model problem of RLS inference can be completely
understood as follows [22]. Assume that the elements in
the data matrix X ∈ Rn×L are real and Gaussian distributed
N (0,σ 2). The covariance matrix C = 1

n
X�X is then a Wishart

matrix. The spectrum of C converges by the Marcenko-Pastur
law almost surely to a limit when n and L tend simultaneously
to infinity, and since JRLS is related to C by (8) the spectrum
of JRLS is almost surely a nonlinear transformation of the
Marcenko-Pastur distribution. Furthermore, the distribution of
the individual elements of JRLS can be obtained from a singular
value decomposition of matrix X,

X = USV �, (11)

and regarding the left and right eigenbases as samples from the
uniform distributions of orthogonal matrices. The covariance
matrix can then be expressed as

C = 1

n
V S2V �

= V 
V �

=
(

L∑
k=1

uikλkujk

)
, (12)

where λk is the kth eigenvalue of covariance matrix C and uik

is the kth element of the ith eigenbase of matrix C. From (8)
the inferred interaction matrix obtained by RLS is

(
J RLS

ij

) =
(

L∑
k=1

λk

η + λ2
k

uikujk

)
. (13)

In this situation uik are samples from the uniform distributions
of orthogonal matrices, and when the dimension of the matrix
C goes to infinity uik can be handled as random numbers that
satisfy

uik = 0,uikujl = 1

L
δij δkl . (14)

Condition (14) implies that each diagonal component con-
verges to an O(1) constant as

J RLS
ii =

〈
λ

η + λ2

〉
, (15)

where the brackets 〈·〉 denote the expectation with respect to
eigenvalue distribution ρ(λ) of the covariance matrix C. The
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FIG. 5. Finite-size scaling property demonstration by plmDCA algorithm for synthetic data with four types of bias distributions as in Fig. 3.
Column of figures from left to right corresponds to results from bias distribution of f = 0.6, U (f ; 0,1), B(f ; 6,4), and B(f ; 9,0.5), respectively.
Data for two categories were generated, and aspect ratio is set as α = 0.1. Regularization parameters in plmDCA are set as λJ = 0.1,λh = 0.1.
The first row shows probability density plots of {Jij (a,b)} (i � j,a,b correspond to two states in data, which are all normalized by the standard
deviation of each instance). The second row stands for the cumulative coupling value distribution where coupling values are evaluated as

Jij =
√∑Q

a,b Jij (a,b)2. They are also scaled by the standard deviation of each instance. The third row displays rank plots of the standardized
coupling value distribution in the second row, which emphasizes the tail behavior of the distributions. The horizontal axis denotes log(r/Nt )
where r is the ranking in descend order and Nt is the total number of couplings. The last row shows the relation between standard deviations
of coupling values, which are used for standardization in the first three rows, and the system size L. The plots are in log-log scale, a clear
linear trend appears for all bias types, and the gradients of the lines are all close to 0.5, which confirms the generality of the theoretical result
in Eq. (18).

off-diagonal elements similarly follow a zero mean Gaussian
distribution

J RLS
ij ∼ N (0,�2) (16)

with variance

�2 � 1

L − 1

[〈(
λ

η + λ2

)2
〉

−
〈

λ

η + λ2

〉2
]
. (17)

For standard Gaussian data, J RLS
ii = 0.0111. The simulation

shown in Fig. 6 confirmed these results for Gaussian data.
The simplicity of RLS makes it tractable to define some
of its properties analytically. In this special case, for any
α, P (J̃sg) collapses to a single function of N (0,1). In contrast
to RLS, the relationship between the estimated couplings Jij

obtained by the pseudolikelihood maximization algorithm is
complicated and lacks an analytical expression. However, the
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FIG. 6. (a) Probability density plot in log scale of inferred off-
diagonal interactions JRLS obtained by the RLS algorithm forN (0,1)
i.i.d. Gaussian data, η = 0.1. The number of loci in this series was
L = 1000,2000, . . . ,10 000, α = 0.1. All distributions are scaled by
the standard deviation of each instance. (b) � − L relation in log-log
scale. � is the standard deviation of RLS inferred off-diagonal
interactions. One-dimensional polynomial fitting of the simulated
data points gives the gradient −0.4982, which is consistent with
the predicted relation given by (17). Diagonal terms are 0.11 for all
simulations matching the value predicted by (15).

Gaussian conclusion also holds for unbiased categorical data
where elements in f are fixed constants for each category, as
confirmed by RLS and plmDCA algorithms using simulated
data as shown in Figs. 4 and 5.

Furthermore, the scaling property between � and L

� ∝ L−1/2 (18)

is not only limited to Gaussian data, but holds for surrogate data
for any given data in general. Figure 7 shows RLS algorithm
simulated results for binary data generated from the four types
of bias distribution in Fig. 3 (same data as in Fig. 4), which
confirms the scaling relation (18). The same behavior also
confirmed by the plmDCA algorithm in Fig. 5 (the last row).
The functional relationship between � and L can be estimated
by fitting the line y = ax + b to the their logarithms, which
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103 104L
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B(f ; 9, 0.5)

FIG. 7. Log-log � − L relation by RLS algorithm for binary data
generated from the four types of bias distribution in Fig. 3 (same data
as in Fig. 4), which confirms the scaling relation (18). Fitted gradient
on the log-log scale is (a) −0.4983, (b) −0.4991, (c) −0.4966, (d)
−0.4990.

gives

� = ebLa. (19)

The fitted gradient a values for these lines are all very close
to 0.5, which is consistent with the scaling property predicted
by theory (18). The standard deviation of large-scale surrogate
data can consequently be predicted by obtaining parameters a

and b from a few simulations using small surrogate data and
then solving (19).

V. INVERSE FINITE-SIZE SCALING PROCEDURE

In conventional surrogate data testing one would randomly
shuffle columns and/or rows of the original data matrix X, or
use its empirical marginal distributions to generate random data
under a null hypothesis. Instead of learning a model from such
high-dimensional surrogate data, we consider a procedure to
extract the statistically relevant characteristics of the surrogate
data distribution using reduced dimensionality as described in
(3) and Fig. 2. Computing any inferences or statistical tests on
the downsized surrogate data Xsg is much more efficient since
Lsg � L. Invoking the finite-size scaling property of surrogate
data requires only that bias distribution P ( f ) and aspect ratio
α are preserved.

The scaling property allows us to infer the background
distribution of model parameter estimates for large L using
a Monte Carlo approach for a smaller L. A drawback of
this approach is that the distribution of the extremely large
predictions occurring with a probability smaller than 2/[L(L −
1)] cannot be accurately evaluated. However, we have observed
that the tail of the normalized coupling distribution typically
decreases as a convex curve [Fig. 1(b), Fig. 5 (the third row),
Fig. 10(a), and Fig. 11(a)], which indicates that the straight
line extrapolated from the tail in the rank plot acts as an upper
bound for the extremely rare predictions. This is directly useful
for screening relevant couplings from the background.

We translate the function in (2), which describes the proba-
bility distribution of standardized coupling values for surrogate
data to a function describing curve behavior on the rank plot
of the same distribution,

J̃sg = Ḡsg(f (r; L)), (20)

wheref (r; L) = log(r/Nt ) represents the value on thex axis of
the rank plot and r = 1,2, . . . ,Nt is the ranking in descending
order. Since the total number of couplings is Nt = L(L −
1)/2, f (r; L) is a function dependent on system size L. A
single test of surrogate data results in a curve Gsg(·) on the rank
plot and is subject to random fluctuations. Therefore, taking
an average of the curves of many independent surrogate data
sets gives a more stable curve Ḡsg(·) on the rank plot, which
represents the distribution (2). After averaging a sufficient
number of independent finite-size surrogate data tests with
system size Lsg(�L), we obtain a curve Ḡsg(f (r; Lsg)) on the
rank plot. Note that Ḡsg(f (r; Lsg)) is with system size Lsg,
which is a shorter curve compared to Ḡsg(f (r; L)); however,
it overlaps with Ḡsg(f (r; L)) because of the FSS property.
When Ḡsg(f (r; Lsg)) shows a convex tail, a line l(f (r; L))
can be fitted on the tail, which produces an actual upper bound
estimate for Ḡsg(f (r; L)). To decide a significance threshold,
we focus on the largest value (corresponding to r = 1) of J̃sg
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Algorithm: Inverse Finite-Size Scaling(X(n × L), J̃; Lsg, T )

1) Extract statistical feature from data :
α,P(f) ← X

2) Finite-size scaled surrogate data test :
Sample P(fsg) (set number Lsg) : P(fsg) ← P(f)
Generate Xsg(nsg×Lsg) : Xsg ← α,P(fsg)
Learn Jsg by algorithm A : Jsg ← Xsg

Standardization : J̃sg ← Jsg/Δsg

3) Repeat step 2) T times
4) Prepare rank plot :

Averaging : [J̃sg] ← {J̃sg}
Plot together

Ḡsg(f(r; Lsg)) : [J̃sg] VS log(r/Ntsg)

G(f(r; L)) : J̃ VS log(r/Nt)
5) Draw significance threshold :

Tail fitting : l(f(r; L)) ← Ḡsg(f(tail; Lsg))

Threshold for J̃ is l(f(1; L)).

FIG. 8. Inverse finite-size scaling (IFSS) procedure for deciding a significance threshold for dependence learning. X is the original data
matrix, and the model parameters J̃ are learned by algorithm A. System size of surrogate data Lsg is a user-definable hyperparameter. For
high-dimensional X(n × L), Lsg � L is expected to lead to a stable behavior. The number of independent surrogate tests T can be decided
using Monte Carlo principles; however, in our experiments values T = 10–100 have shown reasonable behavior when Gsg(f (r; Lsg)) is stable.

from the full size surrogate data, which gives

Ḡsg(f (1; L)) < l(f (1; L)). (21)

Therefore, we choose l(f (1; L)) as a relaxed threshold. This
process is termed as inverse finite-size scaling (IFSS) proce-
dure for identifying significant estimates, as summarized in
Fig. 8.

VI. APPLICATION TO HIGH-DIMENSIONAL
GENOMIC DATA

We confirmed that IFSS also holds for two high-
dimensional real genome data sets which contain large num-
bers of Pneumococcus genomes sampled from the Maela
refugee camp in Thailand and the Massachusetts pediatric
population in the USA [20]. Data dimensionalities are n =
3042,L = 94028 for Maela data and n = 670,L = 78733
for Massachusetts data, where α = 0.0324 and α = 0.0085,
respectively. Each feature (allele) is categorized according to
being major, mid-, minor, or gap in the data column (locus),
and the full data set is then statistically characterized by the
resulting empirical bias distribution. The major allele dimen-
sion of the bias distribution is shown in Fig. 9. One can see the
data contain many column samples which are dominated by
one type of an allele. These data have been recently analyzed
in Ref. [20] using the SuperDCA algorithm, which implements
a computationally efficient pseudolikelihood maximization
algorithm for fitting ultra-high-dimensional Potts models with
an order of L = 105 features. Standardized SuperDCA learned
interaction parameters from different sizes of surrogate data
generated from Maela data all collapse to the same distribution
[Fig. 10(a)]. The red curve, which represents the average
of 100 independent tests, is as expected more stable than
each test curve individually. When the surrogate data size
changes, the region representing the lower values, which has
a high probability density, stays stable while the upper tails

representing the rare events fluctuate around the red average
data curve. Figure 11(a) shows that analogous results are
obtained for the Massachusetts data.

Figure 10(c) demonstrates how the IFSS procedure ef-
ficiently determines a statistical significance threshold for
high-dimensional genome data sampled in the Maela refugee
camp. The main aim of DCA in this application context is to
detect epistatic interactions or co-selection between mutations
present in bacteria sampled densely from their host population.
The small-scale surrogate data curve fits well with the low-
ranked region of the coupling curve for the original data.
Stronger signals diverge from the background distribution
similarly to the pattern seen in the synthetic data tests. Using the
IFSS procedure, we are able to filter out 4 420 387 378 coupling
parameters from the total of 4 420 585 378 estimates, leaving
only a small set of statistically significant interacting pairs of
positions to be evaluated for potential biological significance.
Figure 11(c) shows that the IFSS procedure also works well
for the Massachusetts data.

Note that the surrogate data size we chose here is ex-
ceedingly small (Lsg = 500,nsg = 16) compared to the orig-
inal data (L = 94 028,n = 304 216 for Maela data), and
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FIG. 9. Empirical bias distribution of Maela and Massachusetts
data in the major allele dimension. In the x axis, f means the major
allele frequency of one chosen column (locus) in data.
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FIG. 10. (a) FSS property test on Maela data. (b) � − L relation
of surrogate data. The log-log plot shows a clear linear dependence.
Each mark represents a mean of 50 tests, where the horizontal short
lines are error bars. Maela surrogate data are generated with system
size varying across Lsg = 1000,2000, . . . ,10 000. The fitted gradient
of the line is −0.5053. Regularization parameters λJ ,λh are set as
0.01. (c) IFSS procedure on Maela data. Solid red line: average of 100
simulations of small surrogate data with size nsg = 16,Lsg = 500.
Dashed pink line: fitted bound on the tail of the solid red line. By
extending the dashed pink line to the same horizontal position with
the top ranked coupling for real data, the value of the vertical axis at
that point defines the significance threshold shown as the gray line.

consequently the SuperDCA runtime for the 100 simulation
runs was negligible (a couple of minutes) in comparison to the
time required to perform parameter inference on the full data
(several days on a 20-core server). Thus, the IFSS procedure
is very useful for practical applications as it enables rapid
significance testing even when the original data are extremely
high-dimensional and parameter inference is computationally
demanding.

Furthermore, since the relaxed threshold l(f (1; L)) can be
obtained independently from learning the high-dimensional
data, one can also obtain a significance threshold estimate
for the coupling values of real data from only their standard
deviation. Figure 10(b) shows a log-log plot of the coupling
standard deviation and data length of the Maela surrogate data,
exhibiting a clear linear trend. By fitting a line y = ax + b

to the (log(�), log(L)) data, one can estimate a functional
relationship between � and L as in (19). This relation enables
a prediction of the standard deviation of estimates for a large
size surrogate data with the same dimensionality of the original
data separately from the process of learning the original high-
dimensional data. For Maela data, by fitting a line on the points
displayed in Fig. 10(b), we obtain a = −0.5053,b = −0.3960,
which gives a prediction � ≈ 0.0021 for surrogate data of
equal size as the Maela data (L = 94 028). For Massachusetts
data, the fitted line on Fig. 11(b) has a = −0.4993,b =
−0.9175, yielding �≈ 0.0014 for surrogate data of equal size
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FIG. 11. (a) FSS property of Massachusetts surrogate data.
(b) � − L relation of Massachusetts surrogate data. Massachusetts
surrogate data results are shown for sizes ranging over Lsg =
4000,4500, . . . ,8500. Each mark represents a mean of 50 tests, where
the horizontal short lines are error bars. The fitted gradient of the line
is −0.4993. (c) IFSS procedure on Massachusetts data. Solid red line:
average of 100 simulations with small-scale surrogate data with size
nsg = 17,Lsg = 2000. For the meaning of markers and other lines see
caption of Fig. 10.

as the Massachusetts data (L = 78 733). The true standard
deviations of the original Maela and Massachusetts data are
�maela ≈ �mass ≈ 0.0004, respectively. It is worth noting that
the standard deviations of couplings learned for the original
data and the surrogate data with the same dimensionality will
not fully match in general, because correlations exist in the
original data. Although the surrogate predictions overestimate
the true values, they are nevertheless in the same ballpark and
are therefore useful approximations, especially given that they
can be relatively cheaply computed using a system size of
less than 1% of the original problem. Such offline estimates
allow one to discard couplings sufficiently smaller than the
estimates even online during the learning, which significantly
reduces the memory and storage complexity of the inference
algorithm. Similarly, by updating the summary statistics of the
estimated couplings in an online manner one could still retain
the information about the true standard deviation for later use,
such as for constructing a rank plot.

VII. DISCUSSION

Our results indicate that for high-dimensional dependence
learning using Ising or Potts models using a regularized
inference algorithm, the distribution of parameter estimates
under a null hypothesis can after normalization by the standard
deviation be characterized by a single function determined
only by a limited number of system parameters: the data
dimensionality ratio α = n/L, and the data feature bias { f i}
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distribution. The proposed inverse finite-size scaling procedure
has a high potential for practical applications by enabling
accurate prediction of large system behavior from simulations
of small system sizes. Our proposed procedure is general
and expected to be applicable to a wide range of depen-
dence learning problems. The ability to rescale the given
data properly to small sizes has the potential to spark further
research of ways to dealing with high-dimensional data. In
future work, it would be a valuable target for further research
to identify general conditions under which the convergence
behavior relating to the finite-size scaling is expected to
hold.
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APPENDIX: SPARSE RESTRICTED
BOLTZMANN MACHINE

A nonzero discrete-valued pairwise Markov random field
(MRF) over the variables x can be represented by the marginal
distribution of a restricted Boltzmann machine (RBM). We use
a sparse restricted Boltzmann machine (sRBM) as a synthetic
model, by which the data generation can be performed as
follows: (1) define the number of nonzero edges nE , (2) intro-
duce an nE dimensional vector z, each element of which
follows the standard Gaussian prior, and (3) prepare an nE × L

dimensional matrix W = (Wlv), where Wlv represents the
nonzero edge strength for edge lv in a bipartite graph in which
nodes of two types correspond to elements of z and x. Setting
W so that Wlv are nonzero just for two indices of v for each
l, one can introduce a small number of couplings for the
original MRF in a controlled manner as J = W�W .

More specifically, we set the joint distribution of binary
sample x ∈ {−1,+1}L and random vector z ∈ RnE as

P (x,z) = 1

Z
exp

(
−|z|2

2
+ z�W x + h · x

)
,

where Z is a normalizing constant. Marginalizing P (x,z) with
respect to z yields

P (x) =
∫

P (x,z)d z ∝ exp

(
1

2
x� J x + h · x

)
.

This indicates that RBM is reduced to a Boltzmann machine
of the original MRF after the marginalization.

Sampling from RBM is very efficient by using the Gibbs
sampler. Iterating

x ∼ P (x|z) =
L∏

i=1

1 + xi tanh
(
hi +∑nE

l=1 Wlizl

)
2

,

z ∼ P (z|x) = 1

Z
exp

(
−|z|2

2
+ z�W x

)

=
nE∏
l=1

1√
2π

exp

⎡
⎣−1

2

(
zl −

L∑
i=1

Wlixi

)2
⎤
⎦,

both of which can be easily parallelized, for a sufficient number
of times yields a set of samples from RBM. Sampled values
of x correspond to an observed data set from the Boltzmann
machine. The possibility of using this kind of a block-Gibbs
sampling algorithm is one of the main advantages of an RBM
over a fully connected Boltzmann machine.
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