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Spin-imbalanced pairing and Fermi surface deformation in flat bands
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(Received 1 February 2018; revised manuscript received 11 May 2018; published 5 June 2018)

We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and
kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state, whose stability is confirmed by dynamical mean-field theory. The
nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The
presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates
formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of
the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in
a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes
deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and
provide a potential route for observing spin-imbalanced superfluidity and superconductivity.

DOI: 10.1103/PhysRevB.97.214503

I. INTRODUCTION

Interactions in fermion systems may cause Fermi surface
(FS) instabilities, for instance towards pairing [1] or symmetry-
breaking deformations of the FS, called the Pomeranchuk
instability (PI) [2]. These mechanisms lead to various phases of
matter such as both conventional and high-Tc superconductiv-
ity [3–5], topological phases thereof [6], the two superfluid
phases of different symmetry in 3He [7], or superfluidity
in lattice systems of ultracold fermions predicted by the
Hubbard model [8], including models with spin-orbit coupling
[9,10]. In the repulsive Hubbard model, the superfluidity
may coexist with the magnetic stripe order [11], or with PI
as in Refs. [12,13]. Spin-imbalanced superfluidity, on the
other hand, has been predicted to simultaneously display
pairing, superfluidity, and gapless excitations (FSs). These
exotic phases of matter spontaneously break symmetries of
the system, for instance rotational or translational, in addition
to the breaking of the U(1) gauge symmetry characteristic
of any Bardeen-Cooper-Schrieffer (BCS) type superfluid. In
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [14,15]
the Cooper pairs carry a finite momentum. Deformed FS
superfludity (DFS) [16,17] has been proposed as another
alternative that gives a lower energy than the conventional BCS
theory. Such predictions have remained elusive, supported only
by indirect experimental evidence [18,19]. Phase separation,
instead of exotic spin-imbalanced superfluids, has been ob-
served in ultracold quantum gases [20–24]; this is consistent
with predictions for continuum systems [25–27], although
theory suggests that lattice systems may stabilize the FFLO
state due to nesting [28–33]. In general, singularities in the
density of states (DOS) are known to enhance FS instabilities.
Here, we show that multiband lattice systems which possess
the ultimate DOS singularity, namely, a flat (constant) energy
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band, allow deformations of the particle momentum distribu-
tion without energy cost and thereby stabilize a new type of
spin-imbalanced superfluidity. We find that the origin of the
pairing is different from a simple minority particle FS shift
conventionally responsible for FFLO states.

II. MODEL

We study two examples of a Hubbard model with a flat
band (FB) in the single-particle energy spectrum: a Lieb lattice
and a kagome lattice Hubbard model. Both lattices have three
sublattices and feature two dispersive bands and a FB,

E±,Lb(k) = ±J
√

2
√

2 + cos kx + cos ky, EFB,Lb = 0 (1)

E±,Kg(k) = J [1 ±
√

3 + 2�(k)], EFB,Kg = 2J (2)

where �(k) = ∑3
i=1 cos(k · ai). The vectors a1 and a2 are

the primitive vectors of the kagome lattice, and a3 = a1 − a2.
The indices Lb and Kg refer to the Lieb and kagome lattices,
respectively. By J , which we also use as the unit of energy, we
denote the hopping strength between the neighboring lattice
sites. Hereafter, the lattice constant a is assumed a = 1.

The lattices and the band structures are shown in Fig. 1.
Importantly, such lattices have been experimentally realized
for ultracold gases [34–36], in designer lattices made by
atomistic control [37,38], in optical analogs [39,40], and also
implementations with superconducting circuits have been pro-
posed theoretically [41]. We choose to fix chemical potentials
and therefore consider the grand-canonical ensemble. The
real-space grand-canonical Hamiltonian reads as

H =
∑

σ

∑
iα,jβ

ψ
†
iασHiα,jβψjβσ −

∑
σ

μσNσ + Hint, (3)

where the lattice information is contained in the single-particle
HamiltonianHiα,jβ responsible for hopping between the lattice
sites, α and β are the sublattice (orbital) indices. In our
model, we consider only nearest-neighbor hopping for both
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FIG. 1. Two lattice geometries featuring a FB: (a) a Lieb lattice
and (b) a kagome lattice. The elementary cells are delimited with
dashed lines. Three sites that constitute an elementary cell are labeled
as A, B, and C. Below, single-particle band structures of these lattices:
(c) Lieb and (d) kagome with two dispersive bands and one FB. The
singularities and Dirac points are shown in Fig. 2 with lines.

lattices. The particle-number operator is defined as Nσ =∑
iα ψ

†
iασ ψiασ , and the onsite interaction enters as Hint =

U
∑

iα ψ
†
iα↑ψ

†
iα↓ψiα↓ψiα↑. We define the average chemical

potential as μ = (μ↑ + μ↓)/2 and the effective magnetic field
as h = (μ↑ − μ↓)/2.

The BCS (mean-field) approximation of the Hamiltonian
(3) introduces a pairing field �iα = U 〈ψiα↓ψiα↑〉, where the
average denotes a ground-state expectation value at zero tem-
perature and a grand-canonical average at finite temperatures
kBT = 1/β. We allow for an imbalance in chemical potentials,
μ↑ �= μ↓, so the particles in a Cooper pair may have a
nonzero center-of-mass momentum q. This is reflected by the
Fulde-Ferrell (FF) ansatz for the pairing field, �jα = �αeiq·j.
Since we assume our system to be translationally invariant, we
change the basis to the quasimomentum basis by performing
a Fourier transform. After this transformation, the mean-field
Hamiltonian with the FF ansatz becomes

HFF =
∑

k

[
�

†
kHBdG�k − 3μ↓ − 1

U
Tr �†�

]
, (4)

where we introduced a Nambu spinor �k =
(ck,A↑,ck,B↑,ck,C↑,c

†
q−k,A↓,c

†
q−k,B↓,c

†
q−k,C↓)T and the

Bogoliubov–de Gennes (BdG) Hamiltonian

HBdG =
(Hk − μ↑ �

�† −H−k+q + μ↓

)
. (5)

The pairing fields are collected into a diagonal matrix (�)αβ =
�αδαβ .

The single-particle Hamiltonian can be diagonalized as
G†

kσHkσGkσ = εkσ . In this single-particle band basis, the field
operators take the form(

dk↑
d†

q−k↓

)
=

(
G†

k↑ 0

0 G†
q−k↓

)
�k, (6)
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FIG. 2. Mean-field phase diagram for (a) a Lieb lattice and
(b) kagome lattice at U = −4J and kBT = 0.1J . Here, μ = (μ↑ +
μ↓)/2 and h = (μ↑ − μ↓)/2. Dashed lines indicate Van Hove singu-
larities, blue solid lines the FBs, and dotted lines the Dirac points.
They are determined as μ↑,↓ = Es, i.e., where the chemical potential
reaches the energy Es corresponding to a relevant point in the DOS.

where the components of the collective vector (dk↑,d†
q−k↓)T

correspond to different bands. A further unitary transformation
to quasiparticle basis, (γk,q↑,γ

†
k,q↓)T , diagonalizes the full BdG

Hamiltonian HBdG. The diagonalized Hamiltonian reads as

HFF =
∑

k

(γ †
k,q↑Ek,q↑γk,q↑ + γ

†
k,q↓Ek,q↓γk,q↓) + E, (7)

where Ek,q σ are diagonal matrices of the quasiparticle en-
ergies, and the energy offset E = ∑

k(−3μ↓ + Tr �†�/U −
Tr Ek,q↓). In order to find thermodynamically stable phases
at finite temperature, we look for global minima of the
thermodynamic potential � = − ln Tr exp(−βHFF)/β, which
can be calculated as

� = − 1

β

∑
k,σ

Tr ln[1 + exp(−β Ek,qσ )] + E . (8)

We minimize it with respect to all components of � and q
independently.

III. PHASE DIAGRAMS

We present mean-field phase diagrams in Fig. 2 for both
considered lattices, at interaction U = −4J and temperature
kBT = 0.1J . Due to particle-hole symmetry, the phase dia-
gram for the Lieb lattice is symmetric with respect to the axis
μ = 0. This symmetry is absent in the kagome lattice. We
assume μ↑ � μ↓. In both cases, the BCS phase is favored
for sufficiently low chemical potential imbalance h. As h is
increased, the phase switches either to a normal phase, or to
nonuniform superfluidity with nonzero q. We distinguish two
such phases: the FF and η phases. In the FF region, q is in the
Brillouin zone (BZ) and grows until it reaches the boundary of
the BZ. There, it saturates at its maximum value at the M point,
q = (π,π ) in the Lieb lattice and q = (0,π/

√
3) in the kagome

lattice. This means the order parameter oscillates with a period
equal to twice the lattice period. This phase, otherwise similar
to FFLO but with q having such a maximal value, is referred
to as the η phase in the literature [42,43]. In the Lieb lattice,
a third imbalanced superfluid phase with q = 0, the so-called
Sarma phase [44–47], is found at large imbalance h. The focus
of this paper is on the FF and η phases, and the Sarma phase
will be discussed in detail in [48].
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In both lattices, we find that the DOS singularities are
manifested in the phase diagram. Nonuniform superfluidity
occurs near crossing points of singularity lines, where the
density of states near the FSs of both components is large. In the
Lieb lattice, FB singularities are always involved at interaction
U = −4J . In the kagome lattice, however, a smaller FF region
is found away from the FB, where the minority component
reaches the Van Hove (VH) singularity on the first dispersive
band, and the majority component reaches that on the second
dispersive band.

Importantly, one can see from Fig. 2 that the FF and η phases
are stable mostly close to the flat-band DOS singularity. Near
the flat band the FS of one component is small, or even nonex-
istent, and one would expect pairing to be suppressed. Indeed,
in conventional BCS theory pairing is enhanced by the size of
the FS. The formation of nonuniform superfluidity in our case
is not explained solely by matching of the FSs as in previous
literature [31], indicating there are other mechanisms at play.

IV. DYNAMICAL MEAN-FIELD THEORY

To verify the existence of the FF phase beyond the simple
mean-field approximation, we performed DMFT calculations
in a partially real-space formulation for both lattices. Dynam-
ical mean-field theory (DMFT) maps a lattice problem to an
effective single impurity problem taking into account the lattice
effects in a self-consistent manner. A central quantity is the
self-energy �ij (iωn), where i and j index the lattice sites
and ωn = π (2n + 1)T , where T is the temperature, are the
fermionic Matsubara frequencies. Within single-site DMFT
the self-energy is assumed to be local to each site i and
uniform over the whole lattice, so that �ij (iωn) ∼ δij�(iωn).
For inhomogeneous states such as the Fulde-Ferrell-Larkin-
Ovchinnikov phase (FFLO), however, the uniformity assump-
tion breaks, as the order parameter can be different for different
lattice sites. To study such states, we thus use a partially
real-space cluster extension of DMFT [49,50], in which the
self-energy is still local but varies spatially for different sites
in the cluster, i.e., �ij (iωn) = �i(iωn)δij .

More rigorously, the DMFT method in Nambu-Gorkov
formalism for a given cluster can be described as follows. The
local Green’s function of the lattice system limited to a single
cluster can be calculated as

G(iωn) = 1

Nk

∑
k

(G0(k,iωn)−1 − �(iωn))−1, (9)

where the bold quantities are matrices whose dimension
equals the number of sites within the cluster and Nk is the
number of k points. Each component consists of a (2 × 2)
matrix with normal Green’s functions as diagonal components,
while the off-diagonal components are anomalous Green’s
functions. Thus, the 2 × 2 block G(iωn)ij is the Green’s
function between sites i and j of the cluster. The noninteracting
Green’s function G0(k,iωn)−1

ij = (iωn + h)δijσ0 + μδijσz −
T(k)ij σz, where T(k) is the superlattice Fourier transform of
the hopping matrix. The site-diagonal self-energy at the ith site
is given by the following (2 × 2) matrix:

�i(iωn) =
(

�i(iωn) Si(iωn)
Si(iωn) −�∗

i (iωn)

)
,

where �(iωn) [S(iωn)] is the normal (anomalous) part of the
self-energy. For each site i in the cluster, there is an effective

FIG. 3. (a) The 18-site cluster used for DMFT calculations for the
Lieb lattice. (b) The s-wave order parameter �(rx,ry) (arrow length
and direction) and spin polarizationns (rx,ry) = n↑(rx,ry) − n↓(rx,ry)
(dots with color scale) for different positions (rx,ry) at h ∼ 1.40,

μ ∼ 0.0, U = −6J , and kBT = 0.05J in the FFLO state evaluated
using DMFT for the Lieb lattice. (c) Total energy per unit cell (upper
panel) and order parameters (lower panel) computed using DMFT, as
a function of the amplitude of q at lattice filling fractions n↑ ≈ 2.06
and n↓ ≈ 1.62 with U = −4J and at zero temperature. In the lower
panel, different symbols represent the order parameters in the three
sites of the unit cell. In the FF state, two of the order parameters are
equal due to the symmetry of the kagome lattice, while the third is
smaller than the others due to the finite momentum q, which breaks
the symmetry of the lattice.

single impurity Anderson model, which is defined by the
dynamical Weiss mean field

Gi(iωn)−1 = (G(iωn)ii)−1 + �i(iωn). (10)

Given the Weiss function Gi for all i, we calculate the self-
energy of each of the impurity problems using a continuous-
time quantum Monte Carlo (CTINT) algorithm [51] for the
Lieb lattice, and an exact diagonalization (ED) solver for the
kagome lattice. These new self-energies are then used again in
Eq. (9) and the process is iterated until a converged solution is
found.

For the Lieb lattice, the calculations were performed for a
cluster of 18 sites, shown in Fig. 3. At half-filling, it is expected
that the three-site unit cell (see Fig. 1) is sufficient to investigate
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FIG. 4. (a) The FF pairing mechanism in a multiband system with a FB. The FS of the minority component shifts towards the FS of the
majority component by the momentum q. Both intraband and interband pairings (regions which are shown here in color) contribute to the overall
effect. The calculated band-resolved density profiles nknσ in (b) the Lieb lattice for μ = 1.4J and h = 0.9J and in (c) the kagome lattice for
μ = 0.6J and h = 1.1J demonstrate the discussed scenario. Orange lines indicate the noninteracting Fermi surfaces. High-symmetry points
are marked, and dashed lines in (c) indicate the boundary of the Brillouin zone.

the interaction-induced order parameters, while larger clusters
should be considered to capture FFLO order appearing in the
spin-imbalanced case. Further, we define the s-wave order
parameter from the anomalous Green’s function F as

�(rx,ry) = UF (rx,ry)(τ → 0−), (11)

where (rx,ry) are the positions of the sites in the unit
cell and τ is the imaginary time. Similarly, we denote
nσ (rx,ry) = G(rx,ry,σ )(τ → 0−), where G is the normal
Green’s function and σ is the spin degree of freedom, and
define the spin polarization as

ns(rx,ry) = n↑(rx,ry) − n↓(rx,ry). (12)

The two-dimensional profile distribution of the s-wave
order parameter, �(rx,ry), and spin polarization,
ns(rx,ry) = n↑(rx,ry) − n↓(rx,ry), in the Lieb lattice are
shown in Fig. 3. In the figure, the 18-site cluster is stacked in
the y direction. The modulations of the order parameter and
spin polarization are a clear indication of an FFLO state.

In the kagome lattice, calculations were performed on
the three-site unit cell shown in Fig. 1 in the main text.
The Fulde-Ferrell (FF) ansatz �jα = �αeiq·j is included
by performing the transformation ψjα↑ → ψjα↑e−iq·rj , where
rj is the position of the j th lattice site. The depen-
dence on the momentum q of the Cooper pairs is then
included in the hopping matrices, and the noninteracting
Green’s function becomes G0(k,iωn)−1

ij = (iωn + h)δijσ0 +
μδi,j σ0 − diag(T(k − q)ij , − T(k)ij ), where T(k) is again the
Fourier transform of the hopping matrix. Like in the Lieb
lattice, the self-energy is assumed local, but can be different
for the three sites in the unit cell.

The computation for the kagome lattice is performed at dif-
ferent amplitudes of q, with the direction fixed perpendicular
to one of the lattice vectors, corresponding to the most favor-
able direction found in mean-field calculations. The chemical
potentials are tuned to achieve the same filling fractions for
all different q, and the most favorable amplitude is determined
by comparing the total energies. The results for lattice filling

fractions n↑ ≈ 2.06 and n↓ ≈ 1.62 with interaction U = −4J

are shown in Fig. 3. The computation converged to a state
with finite order parameters around q ≈ 1.0, indicating an
FF state. The FF state at q ≈ 0.73 gave the lowest total
energy. At these filling fractions, the majority component has
reached the flat band, so these results confirm the mean-field
observation that the FF state can exist near the flat-band
singularity.

V. PAIRING MECHANISM

In order to get an insight into the mechanism of pairing
in these multiband systems, we look at the band-resolved
densities nknσ = 〈d†

knσ dknσ 〉, where n is the band index, that
is, densities of each spin component decomposed in the band
basis of the single-particle Hamiltonian. As presented in the
schematic in Fig. 4(a), we find that the FS of the minority
component gets shifted by a vector q towards the Fermi surface
of the majority component where the pairing takes place: this is
the conventional mechanism behind the FFLO state [14,15,31].
In a square lattice, this leads to nesting which stabilizes the
FFLO state [28,31]. In our case, this is intraband pairing,
i.e., pairing between atoms from the same band, as will be
explained later. The calculated band-resolved densities are
shown in Fig. 4(b) for the Lieb lattice and in Fig. 4(c) for
the kagome lattice. The lower dispersive band (I-DB) remains
almost completely filled (and therefore we do not plot it),
while deformation of the density distributions takes place in
the upper dispersive band (II-DB) in the region where the FSs
match.

An interesting effect can be observed for atoms residing in
the FB. For one component they remain completely unaffected,
while for the other the distribution of atoms, which was initially
flat, gets deformed in such a way as to mimic the density
of the first component in the II-DB. In the case of a Lieb
lattice (kagome lattice), the FB remains completely filled
(completely empty) for the majority (minority) component,
while for the minority (majority) component the distribution
of atoms gets deformed. This suggests an interband pairing
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FIG. 5. Densities along high-symmetry symmetry lines in
(a) the Lieb and (b) the kagome lattice. Coinciding densities indicate
complete pairing, whereas a jump in density nk↑ − nk↓ = 1 arises due
to the presence of a normal gas characteristic for spin-imbalanced
superfluids. The region where this unpaired component resides is
shown as insets. Dark blue (white) corresponds to a value of one
(zero) of nk↑ − nk↓.

between the atoms in the FB and atoms in the II-DB. This
is an energetically favorable process, as the atoms in a FB
can rearrange at vanishing energy cost due to flat disper-
sion relation. Such density rearrangement without energy
cost is the key physical role of the FB in enhancing exotic
pairing.

The excess atoms of the majority component, that do not
take part in the pairing, form a normal gas. Its presence can be
seen in the total density traced along the high-symmetry lines,
as well as in the differences nk↑ − nk↓, as shown in Fig. 5 for
both lattices. The density profiles of the paired components are
matched up to a shift by a constant; for some momenta k there
is a jump in the densities of the two components. This is due to
the presence of a normal gas. Since, as is stated by Luttinger’s
theorem, the number of available states inside the Fermi sphere
does not change upon interactions, this constant shift is nk↑ −
nk↓ = 1 (see Ref. [31]). This mechanism can be seen also in
the band-resolved densities in Figs. 4(a) and 4(b). The presence
of the normal gas in the upper dispersive band gives rise to
an observable FS seen as sharp density jumps. Even though
the normal component does not participate in the pairing, its
Fermi surface is deformed by the pairing mechanism of the
other atoms.

As we approach the flat-band singularity within the η phase
in the phase diagram of the Lieb lattice, the deformation
of the Fermi surface becomes more and more pronounced.
This deformation is such that there be as large a matching
as possible between the two FSs. That is where most of the
intraband pairing takes place. In Fig. 6 we show four examples
of cumulative density for each spin component along the line
of h = 1.05 J . When one of the noninteracting FSs vanishes
at the Dirac point, the deformation is the most dramatic, and
the continuity of the FS is broken.

To gain further understanding of the nature of pair-
ing, we study pairing correlations between different bands
〈dkn↑d(q−k)m↓〉, where n and m are band indices. As can be seen
in Figs. 7(a) and 7(b), the lattices feature both intraband and
interband pairing. Intraband pairing occurs mostly between
particles on II-DB, and is most pronounced in the region
where the Fermi surfaces match. This is similar to what is
found in the square lattice, where particles on the same energy
band can pair due to the shift of one FS by q. The Fermi
surface of the normal component is reflected also in the pairing

FIG. 6. (a) Total densities of each spin component for four
different parameters. The shape of the deformed Fermi surface is
revealed by the distribution of the normal part, as it changes within
the η phase as we move away from the crossing of the flat band and the
Van Hove singularity, i.e., along the line of h = 1.05 J ; subsequent
panels are for (a) μ = J , (b) μ = 1.1 J , (c) μ = 1.3 J , (d) μ = 1.5 J .
Since the I-DB is completely filled, the color scale was truncated to
the range from 1 to 3.

correlations, and intraband pairing within II-DB is completely
absent in the region where the unpaired particles reside. The
other prominent pairing is between particles on the FB and
those on II-DB. Again, the FS of the normal component is
visible as sharp jumps between low and high correlations.
Contrary to intraband pairing, this interband pairing occurs
mostly where the unpaired gas lies, and the paired components
occupy different energy bands. Pairing is made possible in this
situation by the possibility of atoms on the FB to readjust their
density profile to mimic that of the other component on II-DB
at low-energy cost.

Correlations between other bands, albeit smaller, are also
present. In particular, also particles of the majority (minority)
component on the FB contribute to pairing in the Lieb (kagome)
lattice. Moreover, the various pairings give further indication
that the unpaired particles are distributed among different
bands.

To better understand the effect of the flat band, it is
instructive to compare the pairing mechanisms in the FF phase
near the FB singularity to those in the other FF region found
for the kagome lattice. As can be seen from the band-resolved
densities and correlations shown in Fig. 8, the FB is almost
empty for both components, and contributes little to the pairing.
The dominant pairing is interband between atoms on the
first and second dispersive bands. Interestingly, even though
the Fermi surfaces are perfectly matched at zero q, the FF
phase is favorable. This is due to the different distributions of
the components: the minority component occupies the center
of the BZ, whereas the majority component occupies the
corners. The momentum q allows for the Fermi seas of the
two components to overlap slightly, increasing the number of
states near the Fermi surface that can pair.

The comparison with pairing correlations near the FB
highlights the effect of a FB on the pairing mechanism.
Intraband pairing is almost absent in the FF region away
from the flat band, whereas both intraband and interband
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FIG. 7. Pairing 〈dkn↑d(q−k)m↓〉 between different bands in (a) the
Lieb lattice and (b) the kagome lattice at the parameters used in Fig. 4.
Most pairing takes place as intraband pairing in the II-DB and as
interband pairing between the FB and the II-DB.

pairings are found near the FB singularity. Moreover, the
possibility for atoms on the FB to rearrange allows for pairing
to occur in a large region of the BZ, instead of being limited
to the comparatively small region where Fermi surfaces are
matched.

The pairing correlations in the band basis for the η phase
at the flat band (near the point where the singularities cross)
show the same mechanism as described for the generic FF
phase: in the Lieb lattice intraband pairing is mostly con-

FIG. 8. (a) Band-resolved density profiles and (b) pairing
〈dkn↑d(q−k)m↓〉 in the kagome lattice at μ = −1.0, h = 0.9, U =
−4J , and T = 0. The pairing is mainly interband pairing between the
two dispersive bands, and correlations are most pronounced where the
Fermi surfaces of the two components are matched.

centrated within the II-DB and within the flat band, and the
interband pairing between the flat band and the II-DB. The
difference is that the deformed FS in the η phase is symmetric
with respect to the � point; this is due to the fourfold symmetry
of the original, noninteracting FSs.

VI. EXPERIMENTAL PROSPECTS

While other possibilities also exist [37–41], ultracold quan-
tum gases may offer the most immediate realization of our
predictions. Lieb and kagome geometries have already been
realized by optical lattices [34–36] and novel techniques
such as digital mirror devices and holograms [52–54] allow
further flexibility. Our mean-field calculations give critical
temperatures kBTc from around 0.2 J to 0.5 J [48]. In 2D,
the Berezinskii-Kosterlitz-Thouless (BKT) temperature for
superfluidity is typically smaller than the BCS one but can
be of the same order of magnitude [55–57]. Deformations and
nontrivial pairing correlations may appear in these flat-band
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systems already well above the critical temperature, which is
an interesting topic of future study.

VII. CONCLUSIONS

In summary, we studied the attractive Hubbard model
on the Lieb and kagome lattices, both featuring a FB. We
found a stable FFLO phase, present due to interband and
intraband pairings that involve the FB. This mechanism of
spin-imbalanced pairing relies on complete deformation of the
density of one pairing component, enabled by the FB, and
is therefore strikingly different from the conventional minor-
ity FS shift (and nesting in lattices). Flat-band singularities
are known to enhance magnetism [58–60] and superfluidity
[55–57,61–65]; here we have shown that, in the case of spin-
imbalanced pairing, not only does it enhance interactions, but
also it makes the pairing mechanism qualitatively different.
Since experimental preparation of artificial lattice quantum

systems is advancing rapidly [8,38,66], our predictions may
show the route to direct observation of spin-imbalanced pairing
and superfluidity.
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