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ABSTRACT

Context. Solar magnetic activity shows both smooth secular changes, such as the modern Grand Maximum, and quite abrupt drops
that are denoted as grand minima, such as the Maunder Minimum. Direct numerical simulations (DNS) of convection-driven dynamos
offer one way of examining the mechanisms behind these events.
Aims. In this work, we analyze a solution of a solar-like DNS that was evolved for roughly 80 magnetic cycles of 4.9 years and where
epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior.
Methods. The DNS employed is a semi-global (wedge-shaped) magnetoconvection model. For the data analysis tasks we use
Ensemble Empirical Mode Decomposition and phase dispersion methods, as they are well suited for analyzing cyclic (non-periodic)
signals.
Results. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant
mode is solar-like (equatorward migration at low latitudes and poleward at high latitudes). This mode is accompanied by a higher
frequency mode near the surface and at low latitudes, showing poleward migration, and a low-frequency mode at the bottom of the
convection zone. The low-frequency mode is almost purely antisymmetric with respect to the equator, while the dominant mode
has strongly fluctuating mixed parity. The overall behavior of the dynamo solution is extremely complex, exhibiting variable cycle
lengths, epochs of disturbed and even ceased surface activity, and strong short-term hemispherical asymmetries. Surprisingly, the most
prominent suppressed surface activity epoch is actually a global magnetic energy maximum; during this epoch the bottom toroidal
magnetic field obtains a maximum, demonstrating that the interpretation of grand minima-type events is non-trivial. The hemispheri-
cal asymmetries are seen only in the magnetic field, while the velocity field exhibits considerably weaker asymmetry.
Conclusions. We interpret the overall irregular behavior as being due to the interplay of the different dynamo modes showing differ-
ent equatorial symmetries, especially the smoother part of the irregular variations being related to the variations of the mode strengths,
evolving with different and variable cycle lengths. The abrupt low-activity epoch in the dominant dynamo mode near the surface is
related to a strong maximum of the bottom toroidal field strength, which causes abrupt disturbances especially in the differential
rotation profile via the suppression of the Reynolds stresses.
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1. Introduction

Solar activity manifests itself through the well-known 11-year
sunspot cycle, where sunspots are formed progressively closer
to the equator. This is best seen in the time-latitude domain re-
sulting in the so-called butterfly diagram. The cycle is not strictly
periodic: both cycle length and amplitude are known to be vari-
able over time. While there are signs of a long-term cyclic mod-
ulation on a centennial time scale referred to as the Gleissberg
cycle, also frequent grand minima with very low activity in-
dicators are known in solar history. The Maunder Minimum

? Current address: High Altitude Observatory, National Center for
Atmospheric Research, 3080 Center Green Dr., Boulder, CO 80301,
USA.

(1645−1715) and the Dalton Minimum (1790−1830) are two
prime examples of such minima in existing historical sunspot
records. Several such events have also been deduced indirectly,
from cosmogenic radionucleid data over several millennia (e.g.,
Usoskin et al. 2007). Especially the actual duration and level
of activity of the Maunder Minimum (hereafter MM) continues
to raise questions. For example, Zolotova & Ponyavin (2015)
claimed to have found historical evidence showing that some
observers did not mark down all the sunspot observations on
purpose because of the influence of religious or philosophical
dogmas, resulting in the underestimation of spottedness during
the MM, which − according to their interpretation − was actu-
ally a rather typical cyclic activity during a regular minimum
of the centennial Gleissberg cycle. In the light of all the other

Article published by EDP Sciences A56, page 1 of 24

http://dx.doi.org/10.1051/0004-6361/201527002
http://www.aanda.org
http://www.edpsciences.org


A&A 589, A56 (2016)

available activity indicators (auroral sightings, cosmogenic ra-
dionuclide data, solar eclipse observations) analyzed by Usoskin
et al. (2015), this interpretation seems unlikely. Moreover, dur-
ing the MM, the latitude range where sunspots appeared (i.e.,
the width of the butterfly wings) was narrower (e.g., Ribes &
Nesme-Ribes 1993; Ivanov & Miletsky 2011; Usoskin et al.
2015) and strong hemispherical asymmetry was present (e.g.,
Ribes & Nesme-Ribes 1993; Sokoloff & Nesme-Ribes 1994).
Analysis of sunspot proper motion seems to indicate slower ro-
tation and stronger latitudinal surface differential rotation dur-
ing the MM than for more prominent activity states (Eddy et al.
1976; Ribes & Nesme-Ribes 1993).

The solar magnetic field is thought to arise as an interplay
of rotation, non-uniformities related to it, and the collective in-
ductive effects of small-scale convective turbulent motions that
amplify and sustain the magnetic field against intense turbulent
mixing (see, e.g., Ossendrijver 2003; Charbonneau 2014, and
references therein). The classical hydromagnetic dynamo picture
relies on significant turbulence effects throughout the convection
zone described by tensorial turbulent transport coefficients ac-
counting for, for example, the α effect, turbulent pumping, and
turbulent diffusion (e.g., Moffatt 1978; Krause & Rädler 1980).
Mean-field models of these so-called distributed dynamos usu-
ally employ subsets of turbulent transport coefficients that are
either analytically derived (e.g., Pipin & Seehafer 2009) or ex-
tracted from local convection simulations (Käpylä et al. 2006).
The other dynamo paradigm is the so-called flux-transport sce-
nario which relies on the existence of highly localized field gen-
eration regions. One such region is at the bottom of the con-
vection zone in the tachocline and the other is at the top. In
the top layer the twist of the buoyantly rising flux tubes due to
the Coriolis force generates a poloidal field from the underly-
ing toroidal field (the Babcock-Leighton mechanism). The two
regions are connected through turbulent diffusion and merid-
ional flow acting as a conveyor belt (e.g., Choudhuri et al. 1995;
Dikpati & Charbonneau 1999; Karak et al. 2014). Both of these
scenarios are capable of explaining the regular part of the so-
lar cycle, manifested by the equatorial symmetry properties and
the migration direction of surface magnetic fields, provided the
turbulence effects are suitably parameterized (e.g., Charbonneau
2010).

To explain the grand minima-type events with mean-field
dynamo models, one usually invokes fluctuations in the main
dynamo drivers, i.e., differential rotation, meridional circula-
tion, and the small-scale turbulence effects. By including such
fluctuations, dynamo models are usually found to exhibit irreg-
ular behavior reminiscent of grand minima-type events (e.g.,
Ossendrijver et al. 1996; Moss et al. 2008; Choudhuri & Karak
2012). The direct observational knowledge of the change of
these quantities during a grand minimum-type event, however,
is very limited, and therefore the mean-field modeling approach
is problematic. Another possibility is to seek answers from di-
rect numerical simulations of turbulent convection either in local
(e.g., Käpylä et al. 2013a; Masada & Sano 2014) or global do-
mains (e.g., Ghizaru et al. 2010; Käpylä et al. 2012; Augustson
et al. 2015; Fan & Fang 2014; Mabuchi et al. 2015; Simitev et al.
2015). This is particularly promising in the latter case, where it
is possible to directly track the change of all relevant dynamo
drivers, provided that a desired type of dynamo solution is found.
Important exceptions are the turbulent quantities, namely the in-
ductive and diffusive parts of the mean turbulent electromotive
force that require special techniques to be properly separated.
One such method is the so-called test-field method (Schrinner
et al. 2005, 2007, 2012), the proper application of which to

solar-like global, spherical magnetoconvection solutions has re-
cently been performed (Warnecke et al. 2016).

Oscillatory dynamo solutions from global magnetoconvec-
tion models have been known for a long time (Gilman 1983;
Glatzmaier 1985). The first solar-like solutions, however, were
obtained only recently (Schrinner et al. 2011; Käpylä et al. 2012;
Augustson et al. 2015), and only a couple of them have been
run up to time scales of interest for detecting the irregular vari-
ations: the EULAG code Millennium simulation at solar rota-
tion (Passos & Charbonneau 2014; Norton et al. 2014, hereafter
EULAG-MHD) covers roughly 20 magnetic cycles of 80 years
cycle length, while the ASH code simulation (Augustson et al.
2015, hereafter ABMT), rotating at three times the solar rate,
covers roughly 24 cycles with a cycle length of 6.2 years. The
former does not exhibit significant irregular behavior and only
very weak latitudinal migration of the magnetic field, while the
latter produces a clearer equatorward migrating branch at lower
latitudes and a poleward migrating branch at higher latitudes, es-
pecially pronounced in the radial field. In addition, ABMT report
a particular grand minimum-type event, where magnetic activity
is suppressed in the equatorial surface region and polarity rever-
sals are not seen in the polar surface regions for roughly five half
cycles. The interpretation of the origin of an oscillatory mag-
netic field and equatorward migration varies considerably: from
a turbulent dynamo picture producing an αΩ oscillatory solu-
tion exhibiting a latitudinal dynamo wave (Käpylä et al. 2012;
Warnecke et al. 2014) to the magnetic field feeding back to dif-
ferential rotation via the Lorentz-force, the field migration being
related to the variations in the differential rotation and possibly
to a non-linear dynamo wave (Augustson et al. 2015). However,
the latter interpretation might suffer from an inaccurate calcula-
tion of the α effect; see Warnecke et al. (2016).

In this paper we analyze a semi-global (wedge-shaped)
magnetoconvection simulation similar to those reported earlier
(Käpylä et al. 2012; Warnecke et al. 2014) with slightly varied
parameters, but integrated over a much longer time span. The
obtained simulation shows solar-like migration patterns of the
toroidal magnetic field, and exhibits a dominant cyclic dynamo
mode with an average cycle length of roughly 5 years. The sim-
ulation covers roughly 80 such cycles. In addition to this basic
mode, two other significant modes are detected and character-
ized with suitable time series analysis tools designed for non-
periodic signals: Ensemble Empirical Mode Decomposition (Wu
& Huang 2009) and phase dispersion statistics (Pelt 1983). In the
following, we refer to these methods as EEMD and D2 statis-
tics, respectively. One of the main goals of this paper is to in-
vestigate the significance of these multiple dynamo modes to the
global dynamics of the system. The solution also exhibits sev-
eral epochs of abrupt irregular behavior (disappearance of the
surface activity, sudden switches of parity, sudden changes in
cycle length and migration direction of the toroidal field), and
a physical explanation for these events is sought by computing
proxies for the different dynamo drivers, namely differential ro-
tation, meridional circulation and the α effect, during different
activity states.

2. Model

Our magnetohydrodynamic (MHD) model has been described in
many earlier studies, in particular in Käpylä et al. (2013b), and
the details will not be repeated here. We perform computations
in a spherical wedge using spherical polar coordinates (r, θ, φ)
corresponding to radius, colatitude, and longitude, respectively.
The computational domain spans from r0 = 0.7 R� to r1 = R� in
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the radial direction, where R� = 7 × 108 m is the solar radius;
from θ0 = π/12 to θ1 = 11π/12 in colatitude (±75◦ latitude);
and 90◦ in longitude, i.e., a quarter of a full sphere. Our setup
is semi-global in the sense that we exclude the polar regions.
Including the poles would require prohibitively short timesteps.
Within this domain, we solve the standard compressible magne-
tohydrodynamic equations for logarithmic density ln ρ, specific
entropy s, velocity u, and magnetic vector potential A, which
gives the magnetic field as B = ∇ × A. To close the system of
equations, we assume that the fluid obeys the ideal gas law with
p = (γ − 1)ρe, where γ = cP/cV = 5/3 is the ratio of specific
heats at constant pressure and volume, respectively, and e = cVT
is the specific internal energy, where T is temperature. The fluid
is subject to gravitational acceleration, g = −GM�r/r3, where
G = 6.67 × 10−11 m3 kg−1 s−2 is the gravitational constant and
M� = 2.0 × 1030 kg is the mass of the Sun, and to rotation, the
rotation vector being Ω0 = (cos θ,− sin θ, 0)Ω0. We neglect self-
gravity of the gas in the convection zone.

As explained in detail in Käpylä et al. (2013b), since we
cannot get anywhere near the high Rayleigh numbers of real
stars, we must use higher diffusivities. In the present model
this implies a roughly 106 times higher luminosity in the model
in comparison to the Sun. This allows us to reach the Kelvin-
Helmholtz time scale in our simulations, implying that our runs
are thermally relaxed. As the convective energy flux scales as
Fconv ∼ ρu3, the convective velocity u is roughly 100 times
greater in the simulations than in the Sun. To obtain the same
rotational influence on the flow as in the Sun, we must therefore
increase Ω by the same factor. In general, the scaling of velocity
and rotation rate can be written as

usim = L1/3
ratiou� and Ωsim = L1/3

ratioΩ�, (1)

where Lratio = L0/L�, with L0 and L� ≈ 3.84 × 1026 W be-
ing the luminosities of the model and the Sun, respectively. In
the current model, as in Warnecke et al. (2014), we then renor-
malize our simulation to the rotation rate Ω0 ≡ 5Ω�, where
Ω� ≈ 2.7×10−6 s−1 is the mean solar rotation rate, corresponding
to Ω�/2π = 430 nHz.

In what follows we express our results in solar units so that
for the velocity, for example, we quote usim/L

1/3
ratio. The scal-

ing used here is based on dimensional arguments. It is sup-
ported by mixing length theory (Vitense 1953) and simulations
(Brandenburg et al. 2005; Miesch et al. 2012), and should be
applicable as long as the energy transport is not yet affected by
rotation (see, e.g., Yadav et al. 2013). Furthermore, we assume
that the density at the base of the convection zone (r = 0.7R�)
has the solar value ρ = 200 kg m−3.

The simulations are performed with the P C1,
which uses a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

2.1. Initial and boundary conditions

The initial hydrostatic state is described by a polytrope with in-
dex nad = 1.5, i.e., an isentropic stratification. Our model does
not include a stable overshoot region in the bottom of the con-
vection zone. The density stratification is roughly 30 in the be-
ginning, while it decreases to about 20 in the course of the sim-
ulation. In the final state, the number of density scale heights
covered by the model is roughly 3. To speed up the thermal
relaxation, the initial condition is chosen not to be in thermo-
static equilibrium, but closer to the final convecting state. We
1 http://github.com/pencil-code

choose the heat conduction profile K(r) such that it decreases
toward the surface as r−15. This means that a very small por-
tion of the energy is carried by radiative diffusion near the sur-
face (Brandenburg et al. 2005; Käpylä et al. 2014). We intro-
duce weak small-scale Gaussian distributed noise as velocity and
magnetic field perturbations in the initial state.

Our simulations are defined through the energy flux imposed
at the bottom boundary, Fb = −(K∂T/∂r)|r=r0 ; the values of
the rotation rate Ω0; the kinematic viscosity ν; the magnetic
diffusivity η; and the subgrid scale diffusivity for the entropy
in the middle of the convection zone, χm

SGS = χSGS(rm =
0.85 R�). The radial profile of χSGS is similar to that shown
in Fig. 1 of Käpylä et al. (2011) with the surface value being
χSGS(r1) = 6χm

SGS, corresponding to 6.2 × 108 m2 s−1 in physical
units. The control parameters of the simulation are quantified
by the thermal and magnetic Prandtl numbers, PrSGS = ν/χm

SGS
and PrM = ν/η, respectively, and the Rayleigh number Ra =
GM�(∆r)4/cPνχ

m
SGSR2

�(−dshs/dr)rm , where the subscript “hs” in-
dicates a hydrostatic non-convecting state and ∆r = r1 − r0 =
0.3 R� is the depth of the convection zone.

The radial and latitudinal boundaries are assumed to be im-
penetrable and stress free for the flow; see Eqs. (8), (9) of Käpylä
et al. (2013b). The magnetic field is assumed radial on the outer
boundary at r1, while the latitudinal and inner radial bound-
aries are perfectly conducting; see Eqs. (10)−(12) of Käpylä
et al. (2013b). Density and specific entropy have vanishing first
derivatives on the latitudinal boundaries. On the outer radial
boundary we apply a black body condition σT 4 = −K∇rT −
χSGSρT∇r s, where σ is a modified Stefan−Boltzmann constant,
which is chosen such that the flux at the surface carries the to-
tal luminosity through the boundary in the initial non-convecting
state.

2.2. Diagnostic quantities

The most important non-dimensional diagnostic quantities of
our model are the fluid and magnetic Reynolds numbers, Re =

urms/νkf and ReM = urms/ηkf , where urms =

√
(3/2)〈u2

r + u2
θ〉rθφt

is an estimate of the full three-dimensional rms velocity based
on the values in the meridional plane, and the subscripts indi-
cate averaging over r, θ, φ, and a time interval where the run is
thermally relaxed, and kf = 2π/(r1 − r0) ≈ 21R−1

� is an estimate
of the wavenumber of the largest eddies. The azimuthal velocity
component is not included in the computation because it is dom-
inated by the differential rotation, which would then not charac-
terize the level of turbulence, which is what we are interested in.
We also use the meridional distribution of turbulent velocities
u′rms(r, θ) =

√
〈u′ 2〉φt, where the fluctuating velocity is defined

via u′ = u − u, where the overbar denotes an azimuthal aver-
age (see Sect. 3 for a more specific definition of the averages).
Furthermore, the rotational influence on the flow is measured by
the Coriolis number Co = 2Ω0/urmskf .

Our simulations are characterized by Re = ReM ≈ 30,
PrSGS = PrM = 1, Co ≈ 9.5, and Ra ≈ 1.0 × 107. The corre-
sponding numbers computed for the total velocity field, i.e., in-
cluding the azimuthal velocity due to differential rotation, read
Retot = ReMtot ≈ 55 and Cotot ≈ 5.1. The most important input
parameters and diagnostic quantities are also listed in Table 1.

This run has therefore a smaller PrSGS than the runs with
equatorward migrating magnetic fields of Käpylä et al. (2012)
and Warnecke et al. (2014, 2015), but twice the values of
PrSGS and PrM than the run with poleward migrating field of
Warnecke et al. (2014) by leaving the other parameters the
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Table 1. Input and diagnostic parameters together with the kinetic and magnetic energies realized in the simulation in units of 105 J m−3.

PrSGS PrM Re ReM Co ReMtot Cotot Ekin EDR
kin EMC

kin [10−3] Efluct
kin Emag Etor

mag Epol
mag Efluct

mag

1 1 29 29 9.5 55 5.1 4.29 2.45 3.10 1.83 0.96 0.21 0.10 0.66

Notes. The kinetic energies are defined as the energy of the total flow Ekin = 1
2ρu2, differential rotation EDR

kin = 1
2ρu2

φ, meridional circulation

EMC
kin = 1

2ρ(u2
r + u2

θ), and the fluctuating velocity Efluct
kin = 1

2ρu′ 2. The magnetic energies are defined as the energy of the total field Emag = B2/2µ0,

azimuthally averaged toroidal Etor
mag = B

2
φ/2µ0, azimuthally averaged poloidal Epol

mag = (B
2
r +B

2
θ)/2µ0, and the fluctuating component Efluct

mag = B′2/2µ0.
All quantities from the eighth row onwards are averaged over the full volume and over the saturated time span.

same. The simulation of Augustson et al. (2015) has 2−4 times
smaller Prandtl numbers, but otherwise comparable parameters.
The EULAG-Millennium simulation setup is similar to that de-
scribed in Ghizaru et al. (2010) and Racine et al. (2011), but
with some explicit diffusion added for stability reasons. The es-
timated values of their Re and ReM are in the range 30−60, and
the magnetic Prandtl number is of the order of unity.

3. Data analysis

Because MHD processes are non-linear and the resulting data
non-stationary, it is necessary to choose analysis tools that ac-
curately describe its cyclic components locally and adaptively.
For example, the solar cycle is known to be of varying length
and amplitude. While Fourier analysis is the most common data
analysis technique used to extract periodicities from harmonic
signals, it requires constant amplitudes and phases and is not
well suited to the problem (Barnhart 2011). In this work we have
chosen to utilize the EEMD and D2 statistics, both of which are
suited to the analysis of non-stationary signals. They are pre-
sented in Appendices A and B, respectively.

We define mean quantities as azimuthal averages (over the
φ-coordinate) and denote them by overbars. Fluctuations about
the mean are denoted by a prime, e.g., B′ = B−B. We also often
average the data in time over the period of the simulations where
thermal energy and differential rotation have reached statistically
saturated states. To study the hemispherical asymmetries, we an-
alyze azimuthally averaged quantities separately for the northern
and southern hemispheres. We also often employ the toroidal vs.
poloidal decomposition for the azimuthally averaged, and there-
fore axisymmetric, magnetic field, i.e.,

B = Btor + Bpol, (2)

with Btor = Bφêφ, where êφ is the unit vector in the azimuthal
direction, and where the radial and latitudinal components form
the poloidal component Bpol ∼ (Br, Bθ, 0). A similar decomposi-
tion is used for the velocity field, u = uφêφ + umer, where umer =
(ur, uθ, 0). The three main depths at which we plot/analyze the
time series are near the surface, Rs = 0.98 R�; at the middle,
Rm = 0.85 R�; and close to the bottom, Rb = 0.72 R�, of the
convection zone.

4. Results

We ran our simulation for nearly 430 years in physical time
units. The solution we obtain is oscillatory, but it shows very
complex behavior. The definition of a mean cycle period is not
unique, but − based on the near-surface toroidal magnetic field
oscillation − the mean cycle length is, in physical units, 4.9 years
and therefore, on average, our simulation covers 80 cycles. In

comparison to the Sun, the obtained cycle length is roughly
a factor of 4 shorter. If, however, this was expressed in solar
units, the length of our simulation would roughly correspond to
an evolution of two millennia. From a similar simulation with
equatorward migrating fields (Warnecke et al. 2015), we find
that the cycle length increases with slower rotation, showing
that with more realistic parameters it is possible to obtain cy-
cle lengths comparable to the solar value. Evolving a simula-
tion with a longer cycle over the time span presented here, how-
ever, is computationally prohibitively expensive. In comparison
to EULAG-MHD, the number of cycles covered here is roughly
two times larger, and four times larger in comparison to ABMT.
Furthermore, more pronounced solar-like latitudinal migration
and irregular behavior are observed in our simulation than in
EULAG-MHD. In the ABMT model, a clear solar-like equator-
ward migration is seen with one MM-type event. Some funda-
mental differences also relate to the data analysis, especially con-
cerning the EULAG-MHD: in Passos & Charbonneau (2014) the
analogue to the sunspot cycle is defined using the toroidal mag-
netic field strength at the bottom of the convection zone at high
latitudes, and a poloidal field proxy is built using the radial field
in the near-surface polar regions, while our analysis covers the
whole convection zone. Moreover, we restrain from making a
detailed comparison to the observed statistical properties of the
solar cycle; we feel that such attempts are pointless owing to the
vast difference between simulated and real parameter regimes.
Instead, we concentrate on the general effects that may cause the
irregularities that are seen to occur in our simulation.

4.1. Overall evolution of the magnetic field

In Fig. 1 we show longitudinal averages of the toroidal mag-
netic field as a function of time and latitude (butterfly diagram)
for three depths in the convection zone (Rs, Rm, and Rb), and
in Fig. 2 the corresponding plot for the radial field. The dy-
namo solution is, in general, very similar to those reported by
Käpylä et al. (2012) and Warnecke et al. (2014, 2015) with cyclic
behavior consisting of an equatorward-migrating dynamo wave
at low latitudes and a polar branch at high latitudes near the
surface. The dominating component near the surface is the ra-
dial one with roughly twice the strength of the azimuthal com-
ponent, while the azimuthal field becomes dominant at greater
depths, being roughly twice (four) times stronger than the ra-
dial field in the middle (at the bottom) of the convection zone,
see also Fig. 5e in Warnecke et al. (2014) for a plot of a sim-
ilar run. The lack of strong toroidal magnetic field in the top
layer is also related to radial field boundary condition at the
surface as investigated in detail in Warnecke et al. (2015). The
marked difference to our earlier results is the irregularity and
hemispheric asymmetry seen in the field evolution. During some
epochs, the surface activity ceases and/or becomes disturbed
(i.e., the cycle length changes significantly), which can happen
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Fig. 1. Time evolution of the mean toroidal magnetic field Bφ in the convection zone for three depths (from top to bottom, Rs = 0.98 R�, Rm =
0.85 R�, and Rb = 0.72 R�). The extrema are [−11.0, 10.3] kG at Rs, [−23.3, 20.7] kG at Rm, and [−29.9, 31.7] kG at Rb.

asynchronously in different hemispheres. The radial field evolu-
tion is more regular than that of the toroidal field, even though
the ceased surface activity is perhaps even better seen in the ra-
dial field evolution, see Figs. 1 and 2. During the most severe
event (20−40 years in the south; 35−45 years in the north), both
the radial and toroidal fields near the surface practically vanish
at mid-latitudes. Simultaneously, regions of strong toroidal mag-
netic field are seen in the near-equator regions (at Rs) and also in
the bottom layers (at Rb). Even visually, the toroidal field at Rb
exhibits another toroidal dynamo mode with considerably longer
period than the basic cycle of 4.9 yr seen throughout the simu-
lation. In addition to these dynamo modes, there appears to be
a high-frequency (short-period) poleward dynamo mode in the
upper part of the convection zone, confined to the near-equator
region, similar to the one reported in Käpylä et al. (2012) and
Warnecke et al. (2014, 2015). This dynamo mode might be re-
lated to a locally operating α2 dynamo in the top layers (Käpylä
et al. 2013b; Warnecke et al. 2014, 2016). The quantitative char-
acterization of these modes is presented in Sect. 4.3.

The volume- and time-averaged energies of different flow
and magnetic field components are listed in Table 1. In Fig. 3a,
we show the volume-averaged rms values of the total and mean
magnetic field together with its mean toroidal and poloidal com-
ponents as functions of time. The dominant component is the
fluctuating part containing roughly twice as much energy as the
mean field. In a wedge covering only one quarter of the sphere
in longitude, the large-scale magnetic field is almost purely ax-
isymmetric and contains only a negligible contribution from

non-axisymmetric modes. Of the mean fields, the dominant com-
ponent is the toroidal one, containing roughly twice the energy
of the poloidal component. This is consistent with the conclu-
sion of Warnecke et al. (2014) that the dynamo is of αΩ type.
The poloidal field evolution shows clear cyclicity with mod-
est long-term amplitude variations, whereas the long-term vari-
ations of the toroidal field are much stronger. The irregularities
are stronger in the early phases of the simulation; the lowered
and disturbed surface activity in the butterfly diagrams of Figs. 1
and 2 are clearly seen as a global maximum of the volume-
integrated magnetic field energy, especially in the toroidal field
(see Fig. 3). The early phases (about 3/4 of the simulation length)
show markedly irregular behavior, while the later phases (the
last 1/4) shows more regular behavior with slightly decreased
overall magnetic activity level.

In panels (b) and (c) of Fig. 3, we plot the rms values of
toroidal (b) and poloidal (c) components for both hemispheres
(north − blue; south − red). The solid black lines in these panels
show the ratio of northern to southern energy (expected to at-
tain the value of unity if the hemispheres are totally symmetric).
Although averaged over the full time series, the asymmetry mea-
sure is close to unity for both the toroidal (2.7% dominance of
the northern hemisphere) and poloidal components (1.7% for the
north), the variance around the mean is significant (around 0.1)
for both field components, although the volume-integrated quan-
tities indicate no clear correlation between the asymmetry and
extrema in the total energy. We will investigate the north-south
asymmetry in more detail in Sect. 4.6.
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Fig. 2. Evolution of the mean radial magnetic field Br in the convection zone for three depths (from top to bottom, Rs, Rm, and Rb). The color
ranges have been clipped at half of the maxima/minima, i.e., [−11.7, 10.4] kG at Rs, [−6.1, 5.7] kG at Rm, and [−3.3, 3.8] kG at Rb, to emphasize
the weaker structures at low latitudes.

In Fig. 3d we plot the toroidal magnetic field strength near
the surface (at Rs, red line) and the bottom (at Rb, blue line). The
toroidal fields located at the bottom of the convection zone are
roughly three times stronger than those at the surface. The sur-
face field shows some variability, but significantly less than those
associated with the bottom toroidal magnetic field. While the
surface toroidal field strength shows no systematic trend when
the early and late parts of the simulation are compared, the bot-
tom field is clearly decaying in strength. Therefore, the overall
decrease and change in the magnitude of the irregularities in the
total mean field evolution can be attributed to the changes seen
in the bottom toroidal field.

4.2. Overall evolution of the velocity field

In Fig. 4 we show the rms values of the azimuthal, fluctuat-
ing (a), and meridional (c) velocities. The system energetics is
dominated by differential rotation, the energy of which com-
prises roughly 57 percent of the total kinetic energy, which is
roughly 2.6 times stronger than the total magnetic energy. The
energy contained in the meridional flow is negligibly small;
in terms of the rms velocities, the meridional flow is roughly
15 times weaker than the azimuthal value. The energy of the
fluctuations is roughly 1.3 times weaker than the energy of the
axisymmetric part. Evidently, the azimuthal velocity is strongly
affected by the dynamically significant magnetic field. A strong
global magnetic field quenches the azimuthal velocity, while

during weaker magnetic field epochs, the average azimuthal ve-
locity is higher, as also indicated by the color-coding applied in
Figs. 4a and b for high, low, and nominal states defined based
on the global magnetic energy level (D1; see Sect. 4.4 for a
detailed definition). The average meridional flow is an order of
magnitude weaker, but shows signs of weak systematic variation
when a running average with the mean magnetic cycle length
is applied. In Fig. 4d we show a zoom-in over a time epoch
(50−65 years) where no significant extrema are seen either in
the total magnetic field strength or the azimuthal velocity. This
figure reveals that both the azimuthal and meridional velocities
show a variation over the magnetic cycle, stronger in the for-
mer, weaker (yet noticeable) in the latter. The azimuthal velocity
and magnetic field are phase shifted in such a way that the az-
imuthal velocity grows when the magnetic field is weak, and de-
cays when it is strong, in broad agreement with Warnecke et al.
(2012) and Karak et al. (2015). The meridional velocity shows a
similar trend, even though it is much more difficult to detect as
the fluctuations dominate the weak signal. Therefore, in terms of
the magnetic cycle, the angular velocity variations, often called
torsional oscillations, occur with twice the frequency of the mag-
netic cycle itself (see Fig. 7 and Sect. 4.3 for a more thorough
analysis). Our results are in fair agreement with those obtained
for the EULAG-MHD and ABMT models during the regular pe-
riods of evolution.

In contrast to the magnetic field, the mean velocity field
components show only very little hemispherical asymmetry; the
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Fig. 3. a) Total (Brms
tot , purple dashed), total mean (B

rms
tot , black solid),

toroidal (B
rms
tor , blue), and poloidal (B

rms
pol , red) rms values as functions

of time as averages over the whole volume. b) B
rms
tor in the north (blue)

and south (red). The black solid line shows the ratio of the northern
to southern energy as a function of time, and the orange line the mean
of the ratio computed over the whole time span. c) The same for the
poloidal field. d) The bottom (at Rb, blue line) and surface (at Rs, red
line) toroidal magnetic field strengths as functions of time. The thin or-
ange horizontal lines indicate the mean of the quantities over the whole
simulation time. In a) and d) thick orange lines show the smoothed
curve of the total mean magnetic field a) and the bottom/surface toroidal
magnetic field strength d); the yellow horizontal lines show 1.1 and 0.9
times the mean levels, respectively.

evolution of the quantities are virtually identical for both, and are
therefore not separated for north and south in Fig. 4. It is evident
that the strong, frequently occurring, short-term asymmetries are
a property of the magnetic field alone and any asymmetry in

Fig. 4. a) Rms value of the mean azimuthal velocity as a function of
time together with the average over the whole time series plotted with a
black horizontal line. The dashed black line shows the volume-averaged
rms value of the fluctuating velocity field, urms. The times considered
“high” are indicated in red, “low” in blue, and “nominal” activity states
according to the strength of the total magnetic field in orange (D1, see
Sect. 4.4). b) As in a), but for the rms value of the total magnetic field
as a function of time. The black horizontal line indicates the mean over
the whole time series. c) Rms value of the meridional velocity as a func-
tion of time (black solid line) with the mean over the whole time series
(orange horizontal line) and a 4.9-year moving average (thick red solid
line). d) Zoom-in to 50−65 years of evolution of the mean azimuthal
velocity (black solid), mean meridional velocity (blue line, multiplied
by a factor of 10 to fit the figure), and the total mean magnetic field
strength (red line, scaled to fit the figure).

the flow is probably caused by the asymmetry in the magnetic
field. In the top panel of Fig. 7 we plot the time-latitude dia-
gram of the angular velocity variations at Rs. From this plot it
can be seen that in addition to the rather weak, regular oscilla-
tion with twice the magnetic cycle frequency, which is evident
at all depths, there is a rather strong long-term variation of the
angular velocity near the equator in the top layers. The origin of
this variation is analyzed in detail in Sect. 4.5.1.

4.3. Multiple dynamo modes and their significance

The results presented in this section were obtained by applying
EEMD analysis (see Appendix A) on the azimuthally averaged
quantities using an ensemble size of 100 and Gaussian white
noise with standard deviation equal to that of the time series be-
ing analyzed. The time series were chosen by sampling the sim-
ulation domain with 12 points in the radial direction and with
18 points in the latitudinal direction. Our analysis is focused on
the components of mean magnetic field, mean velocity field, and
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kinetic helicity; we aim to extract the most significant modes
for the given time series globally and at three depths (Rb, Rm,
and Rs). We also use the D2 statistic (see Appendix B) on some
selected data sets to validate the EEMD results, but also to in-
vestigate the coherence of the cycles over time.

On average we detected a total number of 13 modes. As ex-
pected, it turned out that most of the energy was contained in a
limited number of modes. In the following we use a mode num-
bering scheme such that the modes are ordered by their average
frequency from higher to lower values (the highest frequency has
an index of 1). To express the energy contained in each mode
quantitatively we use the notion defined as

Ei =

!
(A2

i )ds!
(
∑
i

A2
i )ds

, (3)

where A is the physical quantity analyzed, i is the mode index,
A2

i is the mean square amplitude of the mode, and summation is
performed over all modes and integration either over latitude at
selected radii or over the full meridional plane.

However, calculating only the energy content does not al-
low us to detect weak, but more regular (harmonic), modes. For
that purpose, for each mode we calculate the spectral entropy
H =

∫
p(ν) log p(ν)dν, where p(ν) is the power spectral density

at frequency ν. The average value of the given quantity per each
mode compared to the expected value in the case of white noise
serves as a regularity measure of the mode (i.e., how much more
Gaussian or non-uniform the spectrum is compared to the spec-
trum of the white noise). An alternative, but more straightfor-
wardly calculated measure is the ratio of energies in each mode
to the expected values of white noise. A large value of this ratio
for a given mode is another indication of the presence of a more
regular signal. This idea is captured by the formula

Mreg
i =

Ei/EWN
i∑

i
Ei/EWN

i

, (4)

where Ei is a mode energy fraction defined in Eq. (3) and EWN
i is

the expected energy fraction of white noise for the given mode.
As is explained later, the results for both regularity measures are
in good agreement with each other and so in the following we
only show quantitative values calculated based on the second
definition.

The results of the EEMD analysis are gathered in Table 2,
where the mode period represents a descriptive period calculated
based on the zero-crossings of the most dominant instance of
the mode of given order (i.e., the intrinsic mode function, here-
after IMF, with the highest average mean energy over the full
meridional plane). In the table we also show fractions Ei of the
energy contained in the ith mode calculated over the full merid-
ional plane and over the latitude at radii Rb, Rm, and Rs. The
latitude values are approximately equal to the reconstruction er-
ror of the initial signal given that the ith mode would be omitted
from the sum. For clarity, only the values above 10% are shown
and lower values have been marked with “−”. We can see that
in the case of the magnetic field components most of the energy
is contained in mode 7 (hereafter M7), which can be associated
with the dominant cyclicity of the 4.9-year cycle length deduced
from D2 statistic using surface toroidal field. Only for Bφ in the
bottom layer is the energy more spread between modes with a
longer period. In Fig. 5 the two upper rows show the spatial dis-
tribution of the mean amplitudes of the most significant modes

Table 2. Summary of the mode quantities.

No. Period
Energy fraction Mreg

i Eq. sym.
Tot. Rb Rm Rs

Bφ

1 0.11 − − − 0.13 0 0.01
7 4.8 0.46 0.27 0.55 0.39 0.41 −0.12
8 7.0 0.11 0.16 − − 0.15 −0.13
9 14 − 0.11 − − 0.09 −0.18
10 27 − 0.12 − − 0.18 −0.38
11 53 − 0.11 − − 0.35 −0.36

Br

1 0.11 − 0.17 − − 0 0
7 5.0 0.62 0.29 0.60 0.70 0.75 −0.10
11 52 − − − − 0.28 −0.36

Bθ

1 0.11 − − − 0.25 0 −0.01
7 5.0 0.68 0.44 0.75 0.32 0.74 −0.10
8 7.4 − 0.11 − − 0.14 −0.15
11 62 − − − − 0.37 −0.58

uφ

6 2.2 0.19 0.25 0.21 0.17 0.03 0.78
7 3.7 0.14 0.11 0.13 0.15 0.04 0.75
8 7.2 0.14 − 0.13 0.14 0.09 0.73
9 14 0.11 − − 0.12 0.15 0.70
10 26 − − − 0.11 0.28 0.74
11 48 − − − − 0.36 0.64

ur

1 0.10 0.61 0.60 0.60 0.62 0.06 0.01
2 0.19 0.15 0.15 0.15 0.15 0.03 0.02
11 41 − − − − 0.23 0.23

uθ

1 0.10 0.59 0.60 0.58 0.57 0.03 −0.05
2 0.19 0.14 0.14 0.13 0.14 0.01 0
11 43 − − − − 0.29 0.21

Hkin

1 0.10 0.57 0.54 0.56 0.57 0.02 −0.27
2 0.19 0.13 0.16 0.13 0.14 0.01 −0.22
11 41 − − − − 0.38 −0.48

Notes. The most prominent modes of mean magnetic and mean velocity
fields found from EEMD. Columns from left to right: mode number, av-
erage mode period in years, fraction of energy contained in mode (over
the full meridional plane, over the latitude range at Rb, Rm, and Rs), reg-
ularity level, equatorial symmetry of the modes. To emphasize stronger
modes we have omitted all energy fraction values lower than a prese-
lected level of 10% (indicated by “−”).
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Fig. 5. Distribution of mean amplitudes of the most significant modes of mean magnetic and mean velocity fields found from EEMD. The figures
are labeled with the physical variable followed by mode index (e.g. Bθ 7 indicates mode 7 of the mean latitudinal magnetic field). Colors reflect the
mean amplitude (blue − high, yellow − low) of the mode at the given location; we note that the scales of separate figures are different. Contours
on the plot represent the lines of constant amplitude with values given in the legend.

found in the magnetic field; it is clear that for the toroidal com-
ponent of the magnetic field, M7 is mainly confined to the region
where the equatorward migration of the field is observed (com-
pare Fig. 5, second panel from left in the upper row, and Fig. 12,
top panel). For the poloidal field, however, the M7 amplitude is
the highest at higher latitudes: for the radial field near the sur-
face close to the latitudinal boundaries, and for the latitudinal
field near the bottom and high latitudes. The modes with shorter
cycles (mode 1, hereafter M1, contains most of the energy) have
the highest amplitudes near the equatorial region and near the
latitudinal boundaries, both regions being concentrated near the

surface. The long modes (the most notable is mode 11, hereafter
M11, which also has an increased regularity measure) reside at
the very bottom of the convection zone, confined mainly to low-
latitude regions.

In the case of uφ, the energy spectrum is flatter with roughly
equal distribution of energy between modes 6−10; see Table 2.
From the third row of Fig. 5 it is evident that the highest am-
plitudes of these modes all occur in the equatorial region, the
region extending to higher latitudes for modes 6−7, and get-
ting narrower for the ones with a longer cycle. For the other
velocity components − as well as for kinetic helicity defined as
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Fig. 6. Phase dispersion analysis results for the components of B. The calculations were done for Bφ at latitude ±22◦ and radius 0.94 R�, for Br at
latitude ±66◦ and radius 0.94 R�, and for Bθ at latitude ±49◦ and radius 0.82 R�. Left (right) refers to the northern (southern) hemisphere.

Hkin = ω′ · u′, where ω′ = ∇ × u′ − energy is primarily con-
tained only in modes 1 and 2. From the last row of Fig. 5 we can
see that these short cycles are most prominent near the surface
close to the latitudinal boundaries for the radial component of
the velocity, and near the equator at the surface for the latitudi-
nal velocity component. The modes in the kinetic helicity show
high amplitudes near the equatorial region extending deeper to
the convection zone, but also in a narrow band near the surface
over the whole latitudinal extent.

In the penultimate column of Table 2, we show a measure
of mode regularity as defined in Eq. (4). These values are calcu-
lated at those radii and latitudes where the energy of the given
mode has its maximum. Higher values of this number indicate
higher energy content in the given mode compared to the white
noise level. According to the values shown, in addition to M7 of
the magnetic field, we have one additional mode where the regu-
larity clearly has a high value. This is M11, which has, however,
a significant energy fraction only in the case of Bφ in the bottom
layer. It is also quite obvious that the leading modes of ur, uθ,
and Hkin represent primarily noise, because the value of regular-
ity in these cases is very low. It is noteworthy, however, that for
all these quantities the regularity measure of M11 is high, indi-
cating the presence of a long-term regular cycle. Here we also
note that the mean spectral entropy calculations lead to similar
results to those above: the spectrum of M7 of the magnetic field
is the most regular one, while modes 10 and 11 are less regular,

although significant deviations from the entropy of the white
noise spectrum are still detected. It can be concluded, therefore,
that the dynamo mode at the bottom of the convection zone has
an influence on the overall dynamics of the system although it is
insignificant in terms of the total energetics of the system.

The last column of Table 2 represents the equatorial symme-
try of the modes, calculated as a time averaged parity defined
by Eq. (13). The EEMD analysis confirms our earlier conclu-
sion that the mean azimuthal velocity field is mostly symmet-
ric between the hemispheres because the parity is high. For all
the magnetic field modes, however, values significantly deviat-
ing from perfect anti-symmetry (parity values of −1) or perfect
symmetry (parity values of +1) are found. The higher frequency
modes show parity values fluctuating around zero, while the
lower frequency modes show an increasing tendency for anti-
symmetric parity as the period of the cycle increases. The equa-
torial symmetry will be discussed in more detail in Sect. 4.6.

As an independent check for the EEMD results we choose
the D2 phase dispersion statistic (see Appendix B). Based on
the spatial distribution of the most significant modes, we cal-
culate the D2 spectra at selected depths for the components
of B. Ideally, we would expect to see a match between the av-
erage mode periods found from EEMD and cycle lengths found
from D2.

To focus on the most pronounced activity regions we chose
latitude ±22◦ in the layer at Rs for Bφ, latitude ±66◦ in the layer
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at Rs for Br, and latitude ±49◦ in the layer at Rm for Bθ to detect
the short cycles such as M7 (see Table 2). Owing to the limited
length of the data set, detecting the cycle is not feasible with
the D2 analysis. However, by using low-pass filtering on the raw
data, the existence of M11 can be easily confirmed. The results
of the D2 analysis are depicted in Fig. 6. Evidence of M7 with a
cycle length of around 5 years can be seen for all components. It
is interesting, however, that the cycle is modulated differently for
the northern and southern hemispheres. For the southern hemi-
sphere there is an indication of amplitude modulation with a long
period, while for the northern hemisphere the modulation seems
to be more complex. If we assume a simple amplitude modula-
tion for the southern hemisphere, and this is justified because we
see a relatively symmetric split of the spectrum when moving
from short coherence times to longer ones, then by measuring
the difference of these peaks from the spectrum taken at the high
end of the coherence time, we can estimate the period of this
modulation. Given the low precision that we can achieve using
this simple procedure we obtained the value for the modulating
period to be around 100 ± 10 yr.

We also analyzed the higher frequency region (0.1 to 2 yr)
with the D2 statistic, but did not detect any strong and/or sin-
gular minima in this range. Given that the regularity measures
obtained from EEMD also indicate very low values for these
modes, we have to conclude that this cyclic mode is coherent
only over very short time intervals; the variation of the length
of this cycle is comparable to the length of the cycle itself.
Therefore, the signal of this cycle can be spread between mul-
tiple EEMD modes, and the spectrum broadened over a large
frequency band.

4.4. Definition of the activity levels

As was evident from the results presented in Sect. 4.1, a
decreased surface magnetic activity does not directly imply
a global magnetic energy minimum, especially during those
epochs when the long-period dynamo mode at the bottom of
the convection zone is strong (roughly speaking the first 3/4 of
the simulation). Therefore, the definition of a low/high state is
not obvious. Here we use three different definitions, all based
on computing running averages with a window coinciding with
the main periodicity present at different depths and latitudes
(4.9 years):

D1. If the smoothed volume-averaged magnetic energy is higher
(lower) than 1.1 (0.9) times its average over the whole sim-
ulation, the state is termed high (low). All other epochs are
termed nominal states of activity; see Fig. 3.

D2. Otherwise identical, but the surface magnetic field energy
at Rs in comparison to its smoothed value is used as the
criterion.

D3. Otherwise identical, but the energy contained in the mag-
netic field mode of the bottom layer at Rb is used as the
criterion.

In Fig. 3(a; D1) and (d; D2 and D3) we demonstrate these crite-
ria by overplotting the smoothed curves (orange thick lines) and
the corresponding upper/lower limits (yellow horizontal lines)
on top of the original data. In the remaining parts of this sec-
tion, we use these definitions to analyze some key quantities dur-
ing the different activity states. In practice this is done by com-
puting the mean of a quantity over the whole simulation run,
dividing the data points into different states according to each
criterion, and computing the mean profiles for the three activ-
ity states separately. If the profiles obtained in this way differ

significantly from the global mean, i.e., the difference is larger
than the standard deviation of the quantity, we take note of this
dependence.

4.5. Variation of the dynamo numbers

In this section, we investigate the variability of the three key fac-
tors involved in the dynamo process, namely differential rotation
and meridional circulation (Sect. 4.5.1), as well as the inductive
effects due to convective turbulence (α effect; through kinetic
and magnetic helicities as its proxy, Sect. 4.5.2), using the dif-
ferent definitions of the activity level.

4.5.1. Rotation and its non-uniformities

As stated in Sect. 2, the input angular rotation velocity is five
times the solar rotation rate. The differential rotation profile gen-
erated in the simulation is solar-like, although the equator is ro-
tating only approximately 7% faster than the poles when the
magnetic fields have grown and saturated at dynamically sig-
nificant strengths. Therefore, the obtained latitudinal differential
rotation is approximately three times weaker than in the Sun.
We have also performed a hydrodynamical counterpart simula-
tion, in which the latitudinal differential rotation is found to be
two times stronger (pole-equator difference of 14%). The dis-
tribution of angular velocity is fairly similar to the MHD state,
discussed later in this section, and therefore the HD results are
not shown separately. Furthermore, the hydrodynamic state is
steady, and shows no oscillatory behavior similar to the dynamo
run. Therefore, the variations seen in the MHD state (Fig. 4)
arise as a consequence of the dynamically significant magnetic
field to the flow field. Such a backreaction can occur through
two pathways: a large-scale Lorentz-force J × B (the so-called
Malkus-Proctor effect; see Malkus & Proctor 1975) or through
turbulence effects either directly on the convective motions and
thereby the generators of differential rotation (the Λ-effect: see
Rüdiger 1989) as recently explored in Karak et al. (2015), or
through the turbulent Maxwell stress (e.g., Käpylä et al. 2004).
At the same time as it quenches the flow field, the magnetic field
suppresses its own generators. One argument to explain both the
regular and irregular parts of the solar cycle is related to this
mechanism (see, e.g., ABMT). The classical theory of turbulent
hydromagnetic dynamos, however, allows for the excitation of
oscillatory solutions independent of the pre-existence of such
modulation in the flow field (see, e.g., Parker 1955). In this sec-
tion we investigate the role of the changes seen in the mean flow
to the long-term evolution of the magnetic field, especially to its
disturbed states.

We begin by investigating the angular velocity variations Ωv

over time in more detail. Here Ωv = Ω − 〈Ω〉t, where Ω =
uφ/r sin θ+Ω0 and 〈Ω〉t is time-averaged over the saturated stage.
We plot a time-latitude diagram of this quantity at Rs (Fig. 7, top
panel), at which depth the most prominent variations occur in
the equatorial regions. In addition to the strongest, seemingly
irregular changes symmetrically distributed around the equator,
a weaker modulation corresponding to the poleward migrating
magnetic cycle can be seen at high latitudes throughout the sim-
ulation. In Fig. 7, second panel, we investigate the role of the
large-scale Lorentz force J × B in causing the changes seen in
the angular velocity. It is evident that the high-latitude variations
in the angular velocity, following the mean magnetic cycle, are
mediated through this effect. The sudden drops of the surface
magnetic field strength are very clearly seen as similar behavior
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Fig. 7. From top to bottom: time-latitude diagram of the angular velocity variations Ωv, variations of the large-scale Lorentz force J × B, and
the Reynolds stress components Rrφ and Rθφ near the surface (at Rs). For the Reynolds stress plots, the contours have been clipped at half of the
maxima/minima.

in the large-scale Lorentz force and occur simultaneously with
the surface field disappearances, especially pronounced during
the first 50 years of the simulation. Only very mild enhance-
ments of differential rotation at higher latitudes are accompanied
by the sudden drops in the Lorentz force. The strong variations
seen in the angular velocity near the equator, on the other hand,
cannot be explained by the large-scale Lorentz force.

Their symmetric character with respect to the equator hints
that they are related to the Reynolds stress component Rrφ =

u′ru
′
φ. Instead of inspecting all the Reynolds stress components,

we concentrate here on examining the variability of those known
to be the most significant for the generation of differential rota-
tion, namely Rrφ for vertical and Rθφ = u′θu

′
φ for horizontal dif-

ferential rotation, and postpone the full analysis of the turbulent
quantities to a forthcoming paper. The time-latitude plot of the
aforementioned Reynolds stress components are shown in the
two lowermost panels of Fig. 7. As is evident from these figures,

both stress components undergo variations on the time scale of
the shortest dynamo cycle (M1), while showing no modulation
by the dominant magnetic cycle (M7). The stresses have non-
zero values only near the equatorial regions, where the strongest
angular velocity variations are seen. The minima/maxima of the
stresses coincide very well with the minima/maxima of the angu-
lar velocity and therefore indicate a strong connection between
these quantities.

Next we apply the three different definitions of high and low
magnetic activity states (D1−D3) introduced above, and look for
significant deviations, indicative of the sensitivity of the mean
flow field on the quantity chosen. The mean flow is almost com-
pletely insensitive to the variations of the surface magnetic activ-
ity level (D2), and not significantly different when the bottom ac-
tivity level is used (D3). Some significant differences, however,
can be detected using the global magnetic activity level (D1) as
an indicator.
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Fig. 8. Top row, from left to right: normalized time-averaged rotation profile 〈Ω〉t/Ω0, and difference to the rotation profile ∆Ωstate during the high,
low, and nominal state of global activity (D1). Middle (bottom) row, the same for mean radial (latitudinal) differential rotation.

Results with D1 are depicted in Fig. 8, where we compare
the time-averaged rotation profile to the different activity states
(low, nominal, and high) denoted and defined as

∆Ωstate = (〈Ω〉t − 〈Ω〉state)/Ω0, (5)

where 〈Ω〉t is the time-averaged rotation profile, computed over
the whole simulation excluding only the initial kinematic stage
when the magnetic field is still growing, and the quantities in-
cluding angular brackets denote averages over a certain state.
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Fig. 9. Meridional flow, indicated as arrows, and time-averaged dynamo parameter Cu, indicated with color contours. On the left, we show the
meridional circulation profile averaged over the whole simulation time span, and the next three panels show the difference ∆Cu,〈state〉 = Cu−Cu,〈state〉
to the mean during a high, low, and nominal global activitystate (D1).

Using this definition, enhancement and quenching with respect
to the average value during a certain state will show up as nega-
tive and positive values in the plot, respectively.

The time-averaged rotation profile is very similar to the ones
obtained and reported in various earlier works (Käpylä et al.
2012, 2013b), being solar-like, but with a somewhat more cylin-
drical profile, showing a mid-latitude region of slower rotation
leading to a region of reversed sign of radial and latitudinal
differential rotation. This region was found to be instrumental
in causing the equatorward migration of the magnetic field in
Warnecke et al. (2014). The variations in the rotation profile av-
eraged over different global magnetic activity states are weak
(roughly 0.4 percent), while the instantaneous variations near the
surface (see Fig. 7) could be as large as 5 percent during the early
stages of the simulation (consistent with the slowly rotating con-
vection of Karak et al. 2015). During a low/high state, slightly
faster/slower equatorial rotation is obtained. This is consistent
with the picture that the stronger the magnetic field, the stronger
the suppression of the velocity field. The region with a reversed
gradient of Ω, however, is observed to persist during all activity
states, with virtually no change in its magnitude.

In Fig. 8 (middle row, radial differential rotation; lower row,
latitudinal differential rotation) we investigate how the magni-
tude and distribution of differential rotation change depending
on the global magnetic activity level. Here we define the radial
shear as ∆r = ∂Ω/∂r and the latitudinal shear as ∆θ = ∂Ω/r∂θ,
and the profiles computed over different activity states as

∆i,state = 〈∆i〉t − 〈∆〉i,state, (6)

where the quantities with angular brackets are averages over the
whole time series except for the kinematic stage (index t) or
over a certain state (index i). It is evident that during high/low
states of magnetic activity, the radial differential rotation is also
quenched/enhanced in a similar way to the rotation itself, the
magnitude of the change being roughly 1.5 percent in the equa-
torial region. No significant change is seen for the latitudinal dif-
ferential rotation, except at the high latitude regions, which show
hemispheric asymmetry especially during the low state. Finally,

we define a dynamo number describing the magnitude of the ra-
dial differential rotation as

CΩ =
∆r(∆r)3

ηt0
, (7)

where the turbulent diffusivity is approximated by ηt0 =
τu′ 2rms(r, θ)/3, and where τ = αMLTHp/u′rms(r, θ) is the local tur-
bulent correlation time, αMLT the mixing length parameter, and
Hp = −(∂ ln p(r, θ)/∂r)−1 the pressure scale height. Following
our previous studies, we use αMLT = 5/3. The spatial distribu-
tion of CΩ follows closely that of the radial gradient of the an-
gular velocity (the leftmost panel in the middle row of Fig. 8),
and therefore we do not plot it separately, but we merely report
its spatial extrema [−30, 110] averaged over the whole time span
of the simulation, which is similar to those obtained in Käpylä
et al. (2013b) and Warnecke et al. (2014).

Next we examine the meridional flow profiles and compute
a dynamo number

Cu =
urms

mer∆r
ηt0

, (8)

where urms
mer =

√
ur

2
+ u2

θ and other quantities are defined in the
same way as in Eq. (7). The largest deviation from the time-
averaged profile is, similarly to the differential rotation, obtained
when the activity states are defined based on the global magnetic
field energy (D1), the magnitude of the change being maximally
6 percent in a thin layer concentrated in the equatorial region
near the surface. The results are presented in Fig. 9, zoomed into
the equatorial region. However, there are also some enhanced
meridional flows generated near the latitudinal boundaries, but
as these are most likely artifacts arising from the latitudinal
boundaries, they are not shown here. The meridional flow pattern
(Fig. 9, leftmost panel) is very similar to those obtained earlier
by Käpylä et al. (2012, 2013b) and Warnecke et al. (2013, 2015),
i.e., consisting of three cells in radius, aligned with the inner tan-
gent cylinder. Additionally, there is one counter-clockwise cell
confined near the surface and equator, the near-surface poleward
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flow being the strongest at this location. The strongest variations
in magnitude over time are related to this region. The dynamo
number varies spatially between 0 and 3 averaged over the whole
simulation time span, the dynamo number of the meridional flow
being more than thirty times weaker than of the Ω effect (ra-
dial differential rotation). The high (second panel in Fig. 9) and
low (third panel in Fig. 9) states show no marked difference in
the spatial distribution nor strength of the main cells; the small
near-equator cell undergoes the strongest variations. The most
interesting observation is the marked hemispheric asymmetry
pronounced especially during the low state: the meridional flow
in the southern hemisphere is more strongly quenched than the
northern one. A similar effect, but more localized at the surface
regions, is seen during the high state when the northern surface
flow gets reduced, while the southern one gets stronger.

In conclusion, if the MM was an epoch of a global mag-
netic energy minimum, our results would predict faster sur-
face rotation, stronger differential rotation, and hemispherically
asymmetric meridional flow pattern. If a global magnetic en-
ergy maximum was actually occurring in the deeper layers of
the convection zone during the MM, then our prediction would
be reversed to slower surface rotation and weaker differential
rotation, while the meridional flow would retain its asymmetric
character. Neither of these scenarios is consistent with the actual
observations of sunspot proper motion during the MM (Eddy
et al. 1976; Ribes & Nesme-Ribes 1993). Overall, however, our
analysis suggests that the surface activity disturbances have no
direct and/or straightforward relation to changes in the rotational
speed nor the strength of differential rotation. Moreover, the
meridional circulation is so weak that it is most likely incapable
of influencing the global dynamics significantly.

During the first 100 years of the simulation there are strong
dips in the angular velocity, accompanied by simultaneous max-
ima in the global magnetic field strength. However, only one of
these events (during t = 20−45 yrs) leads to the disappearance
of the surface activity. Even then, the dip in the angular veloc-
ity does not coincide with the beginning and the duration of the
disturbed surface activity period. Therefore, we can conclude
that the surface irregularities do not originate from the varia-
tions seen in the angular velocity or meridional circulation, at
the same time noting that a disturbed surface activity may not be
indicative of a decrease in the global magnetic energy level.

4.5.2. Proxy of the α effect

We build a proxy for the isotropic α effect following the defini-
tion of Pouquet et al. (1976),

α = − 1
3τ

(
ω′ · u′ − J ′ · B′/ρ

)
, (9)

where the current helicity consists of the fluctuating current
J ′ = ∇ × B′/µ0 and the fluctuating magnetic field B′ = B − B.
When looking at the kinetic and magnetic contributions to the α
effect proxy, it can be observed that the kinetic helicity is dom-
inating the signal, the current helicity being roughly an order of
magnitude weaker. Therefore, in the following we mostly con-
centrate on examining the properties of the kinetic helicity, while
also computing a suitable dynamo number.

First we examine the time evolution of the azimuthally aver-
aged kinetic helicity Hkin = ω′ · u′. This quantity shows a clear
mean signal as a function of latitude, so that negative (positive)
values are obtained in the north (south), increasing towards the
poles where maximum values are obtained, with a strong local-
ized enhancement seen in both hemispheres in the low-latitude

regions, extending to at least half of the depth of the convection
zone. Close to the bottom of the convection zone at high-latitude
regions, the sign of this quantity is reversed. These results are
in agreement with earlier ones both in local and global domains
(e.g., Käpylä et al. 2009, 2013b). In Fig. 10a, we show this quan-
tity with the mean profile over the whole time series subtracted,
showing that most of the variation occurs near the equatorial re-
gion. The signal is dominated by the high-frequency modes (M1
and M2), while at higher latitudes the dominant mode M7 in the
magnetic field is detectable, but not significant in comparison
to the high-frequency signal. The zoomed-in plots of Figs. 10b
and c reveal the presence of the weak basic cycle modulation
in the kinetic helicity, but with half of the length of the magnetic
cycle. Especially during times of clear antisymmetry (Fig. 10d) a
modulation pattern is seen near the surface both at low latitudes
(location of the strongest signal in kinetic helicity, solid lines
in the figure), and at higher latitudes (location of the toroidal
magnetic field maximum, dashed lines). The modulation pat-
tern is such that the extrema of helicity roughly coincide with
those of the radial magnetic field at mid-latitudes (dotted lines).
During times when M7 shows stronger symmetry with respect
to the equator (Fig. 10e) all the observed weak dependencies in
the earlier antisymmetric phase of the simulation break down,
although signs of immediate restoration of the modulation pat-
tern can be detected when the symmetry abruptly switches back
(at around t = 234 yrs) to antisymmetric. Interestingly, signs of
a longer-term modulation are seen in Fig. 10d, as during that
epoch the kinetic helicity signal is systematically more negative
(positive) in the north (south) in comparison to the mean value
over the whole time span. This is also manifested in Fig. 10b as
solid blue (yellow) stripes at low northern (southern) latitudes.
Detected by EEMD only through the high value of the regularity
measure, however, this modulation is of much lower energy than
the high-frequency modes.

Next, we define and compute a dynamo number

Cα =
α∆r
ηt0
· (10)

This quantity is plotted in Fig. 11, left panel, as the time average
over the whole length of the simulation. The profile is similar to
those obtained earlier, e.g., in Runs C1 and C2 of Käpylä et al.
(2013b).

This dynamo number is almost an order of magnitude larger
than the corresponding value from meridional circulation, but
roughly five times smaller than the value estimated from radial
differential rotation. The strongest deviation from the mean pro-
file is obtained when high and low states are determined accord-
ing to the surface activity level (D2), while selecting the time
points based on the global (D1) and bottom energy (D3) levels
produce no significant deviation from the mean. During the low
state, the α effect is strongly enhanced i.e., significantly higher
positive and negative values are obtained in these regions in
north and south, respectively. During the high state, there is also
a mild enhancement, while in the nominal state the α effect is
strongly reduced. The magnitude of the enhancement/quenching
is the largest of all the dynamo drivers, roughly 30 percent, but
acts in the opposite direction from that expected; i.e., with a lo-
cally and temporally larger Cα the naive expectation is to obtain
a more efficient dynamo near the surface, but weaker surface ac-
tivity is seen.

We also compute the migration direction of the magnetic
field predicted by the Parker-Yoshimura sign rule (Yoshimura
1976)

ξmigr = −αêφ × ∇Ω. (11)
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Fig. 10. a) Time-latitude plot of the kinetic helicity variations Hv
kin = Hkin − 〈Hkin〉t. Zoomed-in plots of Hv

kin over t = 50−65 yrs b) and t =
225−240 yrs c). d) Hkin at ±10◦ (solid) and ±25◦ (dashed) latitude for north (blue) and south (red) with the means over the whole time series
indicated with an orange horizontal line. The data is averaged with a running mean over a 1-year window, to smooth out the dominant high-
frequency component. The dotted lines show the radial magnetic field at ±25◦ latitude, scaled to fit the plot. All quantities are plotted at Rs.

We plot this quantity together with the rms value of the mean
toroidal magnetic field in the convection zone in Fig. 12, top
panel. In the entire region of negative radial shear, manifested
by the region of slower rotation in the differential rotation pro-
file, equatorward migration is predicted to occur in both hemi-
spheres. This region coincides with a toroidal field belt having a
maximum roughly at ±28◦ latitude and 0.85 R� depth. There is
another equatorward migration region at the very bottom of the
convection zone, coinciding with the location of the strongest
toroidal field belt roughly in a similar latitude range. In the up-
per third of the convection zone, however, the predicted migra-
tion direction is poleward. This matches with a toroidal magnetic
field belt at ±22◦ latitude and 0.9 R� depth. No strong radial mi-
gration is predicted for the lower parts of the convection zone,
where both upward and downward migration regions are seen,

but without a clear systematic pattern. The good agreement of
the predicted and actual migration direction as well the migra-
tion pattern itself fit well with the work of Warnecke et al. (2014,
2015). The migration pattern does not change significantly us-
ing any of the activity level definitions (D1−D3), which is likely
because the gradients of the angular velocity and the kinetic he-
licity, and therefore the α effect, are sensitive to different activity
indicators (the former to the global, the latter to the surface) and
the signal is cancelled out. Therefore, we note that the α effect
shows the most interesting behavior during the extrema seen in
the surface activity, but our approach to investigating its effects
via simple scalar proxies of kinetic and magnetic helicities is in-
adequate; we will return to this problem in a forthcoming paper.

Finally, to investigate whether the different cycle lengths of
the dynamo modes and their distinct spatial distribution is due
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Fig. 11. From left to right: Cα time-averaged over saturated stage. Difference to the Cα profile during the high, low, and nominal state of surface
magnetic activity (D2).

to a systematic, strong dependence of the magnetic diffusivity or
magnetic Reynolds number

ReM(r, θ) =
αMLTHpu′rms(r, θ)

η
, (12)

where η = 108 m2 s−1 is the molecular diffusivity profile either
on radius or latitude, we plot their radial profiles at two differ-
ent latitudes in Fig. 12, lower panel. To explain the co-existence
of dynamo solutions with more than two orders of magnitude
varying periods between the bottom and the top with the depen-
dence being due to a weaker diffusivity in the bottom parts, a two
orders of magnitude increase in the magnetic Reynolds number
as a function of radius should be seen. Even though the trend
seen is indeed increasing as a function of depth, the magnitude
of the increase is at most four, and is too weak to provide an
explanation.

4.6. Equatorial symmetry

In Fig. 13 we plot the equatorial symmetry of the magnetic field,
defined as

P =
Eeven − Eodd

Eeven + Eodd
, (13)

where Eeven is the energy of the quadrupolar (symmetric) and
Eodd the energy of the dipolar (antisymmetric) mode of the mag-
netic field. In Fig. 13a we show the global parity as a function of
time. This quantity is obtained by computing, for each latitude
pair for certain depth, the energies contained in the even and odd
modes, and taking the mean of the obtained data. Evidently, the
parity is mixed throughout the whole simulation, the dominant
mode being the dipolar (solar-like) mode (average parity −0.15
over the whole time series). A difference can again be observed
between the first 3/4 of the simulation (average parity of −0.26)

in comparison to the last quarter, when there are larger fluctua-
tions around the clearly positive mean parity of 0.1.

The best correlation between the different activity level def-
initions can be obtained when D3 is used. The parity not only
shows a clear modulation with a similar long-term cycle to the
toroidal field in the bottom of the convection zone, but also a
clear pattern is revealed for the first 3/4 of the simulation with
the D3 color-coding: during a bottom mode minimum, the par-
ity also obtains a minimum (−0.42), while during a high state,
the parity is the least solar-like (−0.14). During the last quar-
ter of the simulation, the bottom mode is so weak, that it falls
below the low activity limit for the whole epoch. Nevertheless,
the long-term cycle persists both in the bottom mode and in the
parity, suggesting a relation between these quantities.

As can be seen from Table 2, the low-frequency bottom
mode (M11) is predominantly of dipolar symmetry (mean par-
ity −0.36). From Fig. 13b, it is evident that rather strong parity
fluctuations are related to this mode, the excursions to positive
parity being more short lived than the periods spent in the nega-
tive parity region. The majority of the parity variation, however,
is related to the dominant basic cycle (M7), which on average
has a parity of roughly −0.12, but its symmetry strongly fluc-
tuates as a function of time, as is evident from Fig. 13b. The
parity fluctuates even more strongly than that of M11 between
nearly purely dipolar and quadrupolar states. Most of the time
M7 and M11 are in anti-phase, i.e., when M11 attains the largest
positive value, M7 is the most negative. There is a tendency for
irregular behavior when the parities of these modes are in phase,
such as during t = 20−45 yrs and t = 250−300 yrs. In Figs. 13c
and d we show two zoom-ins of the parity evolution, panel (c)
showing a clearly regular, antisymmetric behavior of the system
and the surface toroidal field (t = 50−65 yrs), while panel (d)
shows a predominantly symmetric state that during only a half
a cycle changes into an antisymmetric one (t = 225−235 yrs).
During the former epoch, the bottom toroidal magnetic field
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Fig. 12. Top panel: color contours of B
rms
φ in kGauss averaged over the

whole simulation run, zoomed-in to show the near equatorial region.
The overplotted arrows show the predicted (Eq. (11)) time-averaged
mean migration direction ξmigr normalized to unity. The dashed red lines
show the radius at ±25 degrees of latitude. Lower panel: radial depen-
dence of the magnetic Reynolds number at two latitudes (north − solid;
south − dashed).

strength attains a minimum, while during the latter, a maximum
is observed.

4.7. Variation of general cycle properties

Evidently, the overall properties of the magnetic cycles show
quite a large variation over time. In Fig. 14 we plot three

Fig. 13. a) Parity P as function of time. The color-coding is defined
using Definition D3. b) Parity of M7 (black) and M11 (red) as a function
of time; their means are indicated with the horizontal lines with the
same color-coding. c) Parity (black) and toroidal magnetic field near the
surface (blue: north, red: south) at ±25◦ latitude, during the low state of
the bottom toroidal mode, panel d) shows the same quantity, but for a
high state of the bottom toroidal mode.

indicators, namely the cycle length of the toroidal field near the
surface at ±25◦ latitude, the inclination of the butterfly wing,
and the butterfly width in degrees for north (triangles) and south
(plus signs) separately.

As for the toroidal field cycle length (Fig. 14, top panel), two
distinct types of events can be seen. During suppressed mag-
netic activity near the surface layers (t = 20−45, 275−285,
and 310−320 yrs), the field ceases to change its sign; therefore,
some cycles are missed, and then cycles that are twice as long
are detected as a result. The other type of variation are the less
abrupt fluctuations around the mean cycle length, the shortest
cycle lengths being slightly less than 4 years and the longest one
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Fig. 14. Top panel: magnetic cycle length determined from the toroidal
magnetic field, Bφ, at ±25◦ latitude and r = Rs, blue/red indi-
cating positive/negative parity, north with triangle and south with
plus symbols. Middle panel: time evolution of butterfly wing incli-
nation. Bottom panel: butterfly wing widths, red/orange/blue indicat-
ing high/nominal/low bottom magnetic field energy (according to D3),
north with triangle and south with plus symbols.

around 8 years. The cycle length is not sensitive to any of the ac-
tivity level definitions (D1−D3), but there is a tendency for the
cycles to be shorter if the parity is more symmetric (blue sym-
bols), while greater cycle length variations occur for more solar-
like (antisymmetric; red symbols) parities. Also, all the “miss-
ing” cycles occur during the more solar-like parity.

To further analyze the general cycle properties we filtered the
surface magnetic field data so that only points with |Bφ| > 4 kG
were retained. This way the concentrations of strong magnetic
field are clearly grouped into separate half-cycles or wings. The
relative properties of these structures, such as the latitudinal ex-
tent (width) and duration can then be directly measured. Based
on these properties we define the inclination of the butterfly wing
as the half cycle width divided by its duration. For north/south, a
solar-like cycle would have negative/positive inclinations, while
for cycles where migration is weak or non-existent, values close
to zero are expected. As is evident from the middle panel of
Fig. 14, there is a tendency for the missing cycles to appear with
weak migration only. Anti-solar cycles are also observed a num-
ber of times both for north and south, but not at simultaneous
epochs. It appears that the shorter the cycle, the higher the prob-
ability for anti-solar migration pattern.

The corresponding butterfly width (Fig. 14 bottom panel)
is most often large for the missing cycles, which is in striking
contrast to the observational evidence for the MM (see Usoskin
et al. 2015, and references therein), if these two types of events

in reality represent one and the same phenomenon. There is a
tendency for narrow widths to occur when the bottom magnetic
field is weak.

4.8. Irregular event during t = 20−45 yrs

Finally, we present a close-up of the most clearly pronounced
irregular activity epoch during t = 20−45 yrs. In Fig. 15, we re-
produce the plot shown in Fig. 7, but restrict the plotting range to
20−65 years, which shows both the irregular evolution, followed
by the resumption of the regular behavior, indicating that the
system changes itself very abruptly after the distortion. The time
resolution in the figure is high enough to clearly show the high-
frequency (M1) mode of the magnetic field (top), not clearly dis-
cernible in any other longer time span figure; this cyclicity is
seen to persist regardless of the irregularities seen in the modes
M7 and M11.

The irregular behavior is first seen in the southern hemi-
sphere, see Fig. 15a, and the event appears to be preceded by
a field enhancement in the bottom mode (M11; Fig. 15b). Even
though the toroidal field of the mode M7 gets very weak, the
surface activity does not totally cease, but the field evolves with
significantly longer period without a polarity change. The south-
ern cycle, therefore, appears truly as a missed one; meanwhile,
the northern hemisphere continues as usual. After twice the time
of a normal cycle has elapsed, the bottom magnetic field attains
another strong maximum. This is reflected by a strong minimum
in the Reynolds stresses, Figs. 15d and e, and surface differential
rotation, Fig. 15c. Immediately after this, the toroidal magnetic
field practically vanishes from the northern hemisphere, while
the south seems totally unaffected by the northern disruption.
Again, after the south has produced two normal magnetic cycles,
normal activity is also rapidly restored in the north. After that,
the bottom magnetic field exhibits no further strong extrema, and
the mode M7 continues its evolution in a regular manner. It is
also noteworthy that the bottom magnetic field changes its po-
larity during the disturbed epoch.

During this epoch, it is evident even by eye that there
is especially strong equatorial (north-south) asymmetry related
to the surface toroidal magnetic field. This is reminiscent of
the observations of the Maunder and Dalton minima (Ribes
& Nesme-Ribes 1993; Usoskin et al. 2009), which indicate
strong hemispheric asymmetry and a relatively strong quadrupo-
lar component of the magnetic field. The global parity does not
strongly reflect this local surface anomaly as a sudden, persistent
change towards a quadrupolar state (+1), although the quantity
fluctuates strongly between the values [−0.9, 0.7]. This is most
likely due to the fact that the symmetry properties of the very
strong bottom toroidal magnetic field dominate the signal, at all
times remaining close to a dipolar configuration.

Although similarly dramatic events cannot be isolated from
the rest of the time series, it is clear that both extrema and
polarity reversals of the bottom mode M11, frequent during the
first 3/4 of the simulation time, make the system more irregular
than during the last 1/4 when especially the energy contained in
the bottom mode M11 gets weaker.

5. Conclusions

In this paper we have analyzed a semi-global (wedge-shaped)
DNS that produces a solar-like oscillatory dynamo with surface
migration properties of the magnetic field resembling those from
observations. The mean cycle length is 4.9 years, and the simu-
lation is evolved over 80 such magnetic cycles. If scaled to solar
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Fig. 15. From top to bottom: zoom-ins of the time-latitude diagram of the mean toroidal magnetic field near the surface (at Rs) and bottom (at Rb),
the angular velocity variations, and the Reynolds stress components Rrφ and Rθφ near the surface (at Rs) during t = 20−65 yrs, showing that the
magnetic cycle and surface activity are strongly disturbed (t = 20−45 yrs), after which the regular state is quickly recovered (t = 45−65 yrs).

units using the fact that the Sun has a magnetic cycle of roughly
22 years, our simulation would correspond to two millennia of
solar evolution. The chosen parameters, most notably the mod-
est stratification and the values of the Reynolds numbers, are
still far from the real Sun; nevertheless, this combination of pa-
rameters produces a solar-like dynamo, and it is computationally
affordable to integrate it over a large number of cycles. The
rotation rate is five times solar, resulting in a differential ro-
tation that is roughly three times weaker than in the Sun. The

rotation profile is solar-like, but somewhat more cylindrical, and
the meridional circulation consists of multiple cells in radius.
Nevertheless, we expect that this simulation can easily be used
to study the long-term evolution of solar-type dynamos.

A general property of the dynamo solution is its cyclic na-
ture: even though there is a clear magnetic cycle, the various
non-linearities in the system drive it away from an exactly pe-
riodic (harmonic) state. Therefore, special time series analysis
techniques are needed that can cope with non-periodic signals. In
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this study, we perform a statistical analysis over the whole con-
vection zone, investigating the properties of all relevant quanti-
ties at different depths and latitudes. The methods we choose to
employ are the EEMD and D2 statistics.

The behavior of the dynamo solution is extremely complex.
In addition to changing cycle length, we observe epochs of dis-
turbed and even ceased surface activity, and strong short-term
hemispherical asymmetries. The major general findings related
to the overall dynamics of the system include the following:

– The hemispheric asymmetries are related to the magnetic
field alone, while the velocity field remains almost perfectly
symmetric at all times.

– The epochs when the surface activity has decreased or is
practically non-existent are not global magnetic energy min-
ima but maxima, as strong magnetic fields are stored in the
deeper parts of the convection zone.

The main goal of this study is to find the causes for the irregular
behavior rather than to make direct comparisons with the ob-
served characteristics of the solar magnetic cycle. Therefore, we
have concentrated our efforts toward analyzing the dynamo solu-
tion itself to investigate how the most important properties (cy-
cle length, migration properties, energetics) change during the
irregular epochs. We also investigated all the key factors in the
dynamo process, namely the rotation and its non-uniformities,
meridional circulation, the inductive action arising from turbu-
lent convection (α effect), and the changes of these as functions
of a relevant activity level measures. The major findings from
this part of the analysis can be summarized as follows:

– The specific dynamo solution analyzed here contains not
only one, but three separate modes, having distinct cycle
lengths and symmetry properties, and are located in different
parts of the convection zone. The dominant mode is the near-
surface 4.9 year cycle (denoted with M7) showing equator-
ward migration at lower latitudes and poleward migration
at higher latitudes. This mode is accompanied by a weaker
high-frequency poleward migrating mode (M1, 0.11 years)
in the equatorial region and a low-frequency mode at the bot-
tom of the convection zone (M11, roughly 50 years).

– The crucial property of the different dynamo modes is their
different symmetries. While the dominating surface mode
has a mixed equatorial symmetry that undergoes strong fluc-
tuations over time, the bottom mode exhibits nearly pure an-
tisymmetry and is also more regular than the surface mode.

– There is a close relationship between the global magnetic
and kinetic energies such that strong magnetic fields quench
the flow field in a manner that the angular velocity is signif-
icantly reduced, differential rotation gets somewhat weaker,
and the meridional circulation attains an asymmetric char-
acter with modifications of the circulation magnitude espe-
cially in near-equatorial surface regions. We expect that this
is what would have been seen during the MM, if it was an
event corresponding to the abrupt disappearance of surface
activity with a simultaneous global energy maximum in the
bottom of the convection zone (see, e.g., Küker et al. 1999,
Karak 2010, for similar arguments).

– A more common way of interpreting MM is an overall drop
in the magnetic activity level. Our simulation produces no
such events, which is naturally not proof that they do not oc-
cur in the real Sun. The only quantity markedly linked to the
surface magnetic activity level in our model is the magnitude
of the α effect.

– Two kinds of irregularities are separable from the dynamo
solution itself: smooth variations in the cycle properties and

abrupt changes that lead to missing cycles and ceased sur-
face activity. All these can be satisfactorily explained as the
interplay of the different dynamo modes and their influence
on the flow field.

Even though this simulation was run for a considerable length of
time, we still observe a secular trend − especially for the long-
term cycle in the bottom of the convection zone. To fully cap-
ture and understand this trend, and to find out whether it is a
transient or a real cycle, the simulation would still need to be
continued further. Although we present a rather elaborate and
time consuming data analysis of the results, we have merely
touched upon the turbulent quantities. In particular, the α ef-
fect was treated in a very simplified manner, only using a proxy
from the kinetic helicity, which is far from adequate. We recently
undertook an effort to compute the full tensorial representation
of both the diffusive and anti-diffusive contributions to the elec-
tromotive force using the spherical test-field method (Warnecke
et al. 2016) from a similar, but shorter, solar-like dynamo simu-
lation. It would therefore be useful to compute and compare the
turbulent transport coefficients from the different epochs of the
long run presented here. The simplified analysis presented here,
however, re-affirms our earlier conclusion that the general dy-
namo solution and its migration can be explained in terms of a
turbulent αΩ dynamo (Käpylä et al. 2012; Warnecke et al. 2014).
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Appendix A: Empirical mode decomposition

Fourier spectral analysis provides a general method for examin-
ing the global energy−frequency distributions. For its validity,
some crucial conditions must hold: the system must be linear
and the data must be strictly periodic or stationary. If these re-
strictions are not satisfied, the non-stationary nature of the data
causes the energy to be spread over a wide frequency range.
Additionally, deformed wave-profiles, which are a direct conse-
quence of non-linear effects, need additional harmonic compo-
nents to be fitted. As a result, the energy−frequency distribution
can be misleading and hard to interpret (Huang et al. 1998).

Different analysis methods have been developed for the pur-
pose of describing non-stationary signals. Well-known examples
are short-time Fourier transform and wavelet transform (e.g.,
Qian 2002; Cohen 1995). An alternative to the aforementioned
methods is the Hilbert-Huang transform (HHT; Huang et al.
1998). In contrast to almost all the other methods, HHT works
directly in the temporal domain rather than in the corresponding
frequency space, and the basis functions, also known as intrinsic
mode functions (IMFs), are derived from the data not selected a
priori. The decomposition implicitly makes the simple assump-
tion that, at any given time, the data may have many coexisting
simple oscillatory modes of significantly different frequencies,
one superimposed on the other (Huang & Wu 2008).

The Hilbert-Huang transform is performed in two steps:
first, using an algorithm called Empirical Mode Decomposition
(EMD), by which the signal is separated into a set of IMFs; sec-
ond, for each extracted mode, Hilbert spectral analysis is ap-
plied which allows each mode to be described as an analytical
signal having the form A(t) exp(iϕ(t)), where A(t) is an instan-
taneous amplitude and ϕ(t) an instantaneous phase. For signals
that result in such a form, the low frequency content is in the
amplitude term and the high frequency content in the exponen-
tial term (Cohen 1995). Having obtained a decomposition into
IMFs that satisfy the analytic signal conditions, we can localize
any event on the time and on the frequency axis. If local time-
dependent aspects of the IMFs are not of interest the second step
in the above algorithm can be replaced by a crude approach that
estimates the average mode period and amplitude by counting
zero-crossings and determining points of extrema.

One of the major drawbacks of the original EMD was the
problem known as mode mixing, which is a consequence of sig-
nal intermittency. To overcome this problem, a noise-assisted
data analysis method called Ensemble EMD (EEMD) was pro-
posed (Wu & Huang 2009). In Flandrin et al. (2004) it was
shown that when applied to Gaussian white noise, EMD acts
as a dyadic filter bank. Utilizing this property allows robust and
statistically significant IMFs to be extracted.

The Ensemble EMD method was previously applied to time
series of different solar activity proxies. An example of the ap-
plication to total solar irradiance and sunspot data can be found
in Barnhart (2011).

As an illustration of how EEMD works we selected a time
series of Bφ taken at Rb and a latitude of 22◦. This time series
was decomposed into 12 IMFs, most of the energy being dis-
tributed over modes 7−11, each of which individually contribute
more than 10% to the full energy. The given modes, with the cor-
responding instantaneous amplitudes are shown in the top 5 pan-
els in Fig. A.1. In the bottom panel the original time series of Bφ
and the sum of these five modes are shown. The small difference
between the curves comes from the fact that the less significant
modes (1−6, 12 and 13) have been excluded from the sum. We
also note that the form of the IMFs does not precisely satisfy the

criteria of an analytic signal on the one hand due to the finite
precision limit in the IMF extraction algorithm and on the other
hand due to the relatively small ensemble size (the noise does
not fully cancel out).

Appendix B: D2 phase dispersion statistic
The D2 phase dispersion statistic was first introduced in Pelt
(1983). Recent applications of the method can be found in
Lindborg et al. (2013), Karak et al. (2015), and Olspert et al.
(2015). Similarly to EEMD, the D2 statistic is well suited for
non-stationary data. However, while EEMD aims at decompos-
ing the initial time series into a set of quasi-harmonic signals,
the purpose of D2 is to find a set of average cycle lengths,
Pm, that are consistent with the full data set. The D2 statistic is
defined as

D2(P,∆t) =

N−1∑
i=1

N∑
j=i+1

g(ti, t j, P,∆t)[ f (ti) − f (t j)]2

2σ2
N−1∑
i=1

N∑
j=i+1

g(ti, t j, P,∆t)
, (B.1)

where f (ti), i = 1, . . . ,N is the input time series, σ2 is its vari-
ance, g(ti, t j, P,∆t) is the selection function, which is signifi-
cantly greater than zero only when

t j − ti ≈ kP, k = ±1,±2, . . . and (B.2)∣∣∣t j − ti
∣∣∣ / ∆t, (B.3)

where P is the trial period and ∆t is the so-called coherence time,
which is the measure of the width of the sliding time window
wherein the data points are taken into account by the statistic.
More precisely, in the given study the function g was chosen as
the product of cosine and Gaussian functions. Here the former
depends only on the phase difference of given points with respect
to the given trial period and the latter only on the time difference
between the corresponding points:

g(ti, t j, P,∆t) = g1(ti, t j, P) · g2(ti, t j,∆t), (B.4)

g1(ti, t j, P) =
1
2

(
cos

(
2π · frac

( t j − ti
P

))
+ 1

)
, (B.5)

g2(ti, t j,∆t) = exp
(
− ln 2

( t j − ti
∆t

)2)
, (B.6)

where frac((t j − ti)/P) removes the integer part of (t j − ti)/P.
As ∆t is made shorter, we match nearby cycles in a pro-

gressively narrower region, and consequently estimate a certain
mean cycle length Pm, not necessarily coherent for the full time
span. At large values of ∆t, i.e., when the time window width ap-
proaches the time span of the data, the D2 spectrum approaches
the result that would be obtained using Fourier transform, for
example. More precisely, Pm is determined from the dispersion
spectrum calculated for the longest coherence time for which
the shape of the minimum is still symmetric and singular (with a
single local minimum within a reasonably narrow search region
to exclude possible minima from higher harmonics). Denoting
this optimal coherence time by ∆topt we define the mean cycle
length as

Pm = arg min
P

{
D2(P,∆topt)

}
. (B.7)

When visualizing the spectrum, we plot the cycle length P on
vertical axis, but instead of directly plotting the coherence time
on horizontal axis, we use ∆t/P instead. This is just a count of
cycles with a corresponding period that fit into the time inter-
val equal to given coherence time. We call this entity coherence
length.
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Fig. A.1. Modes 7−11 of Bφ at Rb and a latitude of 22◦.
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