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Abstract

We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find
that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the
Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile
at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of
temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to
nonlocal energy transport by buoyantly driven downflows in the upper parts of the CZ. Analysis of the force
balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the
commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient
does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-
gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A
quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge
into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong
downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the
lower part of the CZ.

Key words: convection – hydrodynamics – turbulence

1. Introduction

Convection plays a vital role in stellar activity by generating
turbulence that, together with the star’s overall rotation, leads
to differential rotation (e.g., Rüdiger 1989) and dynamo action
(e.g., Krause & Rädler 1980). Energy transport due to
convection is important for almost all stars during some stages
of their evolution (e.g., Kippenhahn et al. 2012). Hence, a
proper parameterization of convection is crucial for stellar
structure and evolution in one-dimensional models.

Mixing length theory (MLT) continues to be a popular
description of stellar convection. The formulation of MLT, as it is
used today, goes back to the seminal work of Vitense (1953),
where the properties of convection are related to the local value
of the superadiabatic gradient - ad, with = d T d pln ln
and ad being the actual and adiabatic logarithmic temperature
gradients, respectively. Here, T and p are temperature and
pressure, respectively, while overbars denote horizontal aver-
aging. Convection is supposed to occur only if the horizontally
averaged temperature stratification is superadiabatic,  > ad,
which is equivalent to the Schwarzschild criterion for convection,

<ds dz 0, where s is the specific entropy.
The MLT has deeply influenced the way in which three-

dimensional ab initio convection models are constructed: often
a fixed profile of radiative heat conductivity K is chosen,
producing a superadiabatic layer of fixed depth (e.g., Hurlburt
et al. 1986). Alternatively, the static thermodynamic back-
ground state is taken from an MLT-based stellar evolution
model (e.g., Brun et al. 2011; Kitiashvili et al. 2016). In such
setups, convection is driven at the largest scale available. This

is a possible cause for the discrepancy in the convective
velocities at large horizontal scales between simulations and
time–distance helioseismology (Hanasoge et al. 2012). Smaller
length scales could instead be imprinted by convection driven
solely by the surface layers (Cossette & Rast 2016), which
leads to a topology change of the downdrafts from a tree-like
structure near the surface to strong plumes penetrating into
deeper layers as cool entropy rain; see Spruit (1997). The latter
can take part in the convective flux in these layers through a
non-gradient contribution known as Deardorff flux (Deardorff
1966; Brandenburg 2016).
We present simulations in which we use either a physically

motivated heat conduction formulation based on a Kramers-
like opacity (Brandenburg et al. 2000) or two types of fixed
heat conductivity profiles to study their effect on the structure
of the convection zone (CZ). Furthermore, we demonstrate the
existence of a non-gradient contribution to the enthalpy flux
and use a quantitative analysis to study the topology change of
the downflow and upflow structures in the simulations.

2. The Model

2.1. Basic Equations

We solve the equations of compressible hydrodynamics:

r = - · ( )u
D

Dt

ln
, 1

S
r

nr = - -( · ) ( )u
g

D

Dt
p

1
2 , 2
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2

where = ¶ ¶ + ·uD Dt t is the advective derivative, ρ is
the density, u is the velocity, = - ˆg eg z is the gravitational
acceleration with >g 0, and ν is the constant kinematic
viscosity. Frad and FSGS are the radiative and subgrid scale
(SGS) fluxes, respectively, and S is the traceless rate-of-strain
tensor with S d = + -( ) · uu uij i j j i ij

1

2 , ,
1

3
. We consider an

optically thick, fully ionized gas. Thus, radiation is taken into
account through the diffusion approximation, and the ideal gas
equation of state r=p T applies, where  = -c cP V is the
gas constant and cP,V are the specific heats at constant pressure
and volume, respectively. The radiative flux is given by

= -F K Trad , where K is the radiative heat conductivity. It
has either a fixed profile K(z) or it is a function of density and
temperature, r( )K T, , given by s kr=K T16 3SB

3 , where sSB

is the Stefan–Boltzmann constant and k k r r= ( ) ( )T Ta b
0 0 0 is

the opacity with coefficient k0, exponents a and b, and
reference values of density and temperature, r0, T0. These
relations combine into

r r r= - + -( ) ( ) ( ) ( )( )K T K T T, . 4a b
0 0

1
0

3

Here, we use a=1 and = -b 7 2, corresponding to Kramers
opacity law for free–free transitions (Weiss et al. 2004).

The radiative diffusivity c r= K cP can vary by several
orders of magnitude as a function of depth in the Kramers
opacity case. In order to keep the simulations numerically
stable, we apply additional turbulent SGS diffusivities in the
entropy equation:

r c c = - + ¢( ) ( )( ) ( )F T s s , 5SGS SGS
0

SGS
1

where ¢ = -s s s is the fluctuation of specific entropy, and
c( )

SGS
0 acts on the mean entropy and is non-zero only near the

surface, while c( )
SGS
1 is constant and acts on the entropy

fluctuations. We use the PENCIL CODE.8

2.2. Geometry, Initial, and Boundary Conditions

The computational domain is rectangular with
 - ( )x y d2 , 2 and  - z d0.5 1, where d is the depth

of the initially isentropic layer. The initial stratification consists
of two polytropic layers with indices n1=3.25 in

- <z d0.5 0 and n2=1.5 in  z d0 1. The former
is the same as in the special case where the temperature
gradient in the corresponding hydrostatic state is constant; see
Barekat & Brandenburg (2014).

The horizontal boundaries are periodic, whereas the vertical
boundaries are impenetrable and stress free for the flow. We set
the temperature gradient at the bottom according to
¶ = -T F Kz tot bot, where Ftot is a fixed input flux and Kbot is
the value of the heat conductivity at the bottom of the domain.
On the upper boundary we assume, for simplicity, a fixed
gradient of specific entropy such that ¶ º ¶ = -

~
( )d c s s 10z zP .

This condition allows the density and temperature to vary
locally.

2.3. Control Parameters and Diagnostics

Our models are fully defined by choosing the values of ν, g, a,
b, ¶
~

sz , Ftot, K0, r0, T0, the SGS Prandtl numbers =( )PrSGS
0

n c =( )( ) z d 1SGS
0 and n c=( ) ( )PrSGS

1
SGS
1 , the z-dependent profile

of c( )
SGS
0 , and the initial normalized pressure scale height at the

surface, x º =( )H d T gd0 p
top

top . The value of K0 is fixed by
assuming =F Frad tot at the bottom of the domain. The normal-
ized input flux is given by r=F F cn tot bot s,bot

3 , where rbot and
cs,bot are density and sound speed, respectively, at = -z d 0.5
in the initial non-convecting state. We also quote the Reynolds
number, n= u kRe rms 1, where urms is the volume-averaged rms
velocity and p=k d21 .
Dominant contributions to the mean vertical energy flux are

r= - ¶ = ( )uF K T F u, , 6z zrad kin
1

2
2

r c r= ¢ ¢ = - ¶( ) ( )( ) ( )F c u T F T s, . 7z zenth P SGS
0

SGS
0

The viscous energy flux is negligible. No mean flows are
generated, hence primes on u are dropped.

3. Results

Here, we describe the results of three simulations where the
heat conductivity is either based on Kramers’ law (Run K), or it
has a fixed profile that either coincides with the Kramers
conductivity (P) in the initial state of RunK or a piecewise
constant profile (S); see, e.g., Hurlburt et al. (1994).

3.1. Revising the CZ Structure

As a basis for our analysis, we show in Figures 1(a) and (b)
the energy fluxes, defined by Equations (6) and (7), and the
superadiabaticity,  - ad. Depending on the signs of
enthalpy flux and superadiabaticity, four different regimes
and corresponding zones can be identified; see Table 1. The top
three layers, BZ, DZ, and OZ, are efficiently mixed while in the
lowermost (radiative) layer (RZ), mixing is inefficient. In
>z zBZ, we have  ad, whereas in < <z z zDZ BZ we have
 ad, and yet >F 0enth . In <z zDZ, we have <F 0enth ,

while in <z zOZ we also have ∣ ∣F F0.03enth tot. The positions
and thicknesses of the respective layers, dBZ, dDZ, and dOZ (see
Table 1), are listed in Table 2. We refer to the union of BZ, DZ,
and OZ as the “mixed zone” (MZ). Our BZ and OZ are in the
traditional parlance the CZ and OZ, respectively, while the DZ
has no counterpart in the usual paradigm of convection. Here,
we consider the layers where >F 0enth , i.e., the combination of
BZ and DZ, as the revised CZ.
We identify a DZ in RunsK and P. In RunK, Fenth remains

positive down to »z d 0, although the superadiabaticity
already turns negative at =z d 0.26. RunsP and K are similar,
but the BZ is somewhat shallower in P. This is a consequence of
the static profile of the heat conductivity as opposed to the
dynamic formulation of RunK, where the depth of the MZ is
not known a priori. In RunS with a fixed step profile for K, the
difference is more striking: even though the depths of the MZ
and CZ are the same as in RunK, the DZ is negligibly thin; see
Figure 1(b). This is due to the fact that the constant heat
conductivity above =z d 0 forces radiative diffusion to
transport a certain fraction of the flux (Brandenburg et al.
2005) and the abrupt change of K around z=0 prevents a
smooth transition to a stable stratification beneath.8 https://github.com/pencil-code
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It is remarkable that in RunsK and P, the lower~40% of the
MZ is stably stratified according to the Schwarzschild criterion.
In these runs, the mixed, but stably stratified layer is roughly
equally divided into DZ and OZ. This is similar to the results of
Brandenburg et al. (2000), who were the first to use a Kramers-
based heat conductivity. Roxburgh & Simmons (1993) used
a temperature-dependent heat conductivity in earlier two-
dimensional simulations and found a subadiabatic convective
layer at the base of the CZ. However, simulations of a M5 red
giant star, employing a heat conduction profile based on OPAL
opacities, did not indicate a DZ (Viallet et al. 2013). An extended
subadiabatic convective layer was also reported by Chan & Gigas
(1992) from a large-eddy simulation, although they applied a
prescribed step function for the heat conductivity. However, their
models had low resolution and their subsequent works did not
mention similar findings. More recent studies reported subadia-
batic convective layers in different contexts (e.g., Tremblay et al.
2015; Hotta 2017; Korre et al. 2017).

3.2. Why Does an Extended DZ Exist?

We show in Figure 2(a) for RunK that the fluid in the
upflows (downflows) is lighter (heavier) and warmer (cooler)
than average in almost all of the DZ, indicating that both

Figure 1. Solid lines: radiative (purple), enthalpy (blue), kinetic energy (magenta), and SGS (green) fluxes for RunsK (a) and S (b). Red:  - ad. Dashed lines in
(a): corresponding data from RunP. The thick horizontal lines on the abscissae mark the extent of the MZ.

Table 1
Definition of the Zones

Fenth  - ad Zone Label Lower Limit Thickness

>0 >0 Buoyancy BZ zBZ dBZ
>0 <0 Deardorff DZ zDZ dDZ
<0 <0 Overshoot OZ zOZ dOZ
≈0 <0 Radiative RZ L L

Table 2
Summary of the Runs, All with 2883 Meshpoints

Run K Re zBZ zDZ zOZ dBZ dDZ dOZ

K Kramers 27 0.26 0.00 −0.27 0.74 0.26 0.27
P profile 25 0.34 0.10 −0.19 0.66 0.24 0.29
S step 26 0.02 0.00 −0.28 0.98 0.02 0.28

Note. Column “K”: heat conduction scheme. Remaining columns: depths and
thicknesses of the zones; see Table 1. =( )Pr 0.5SGS

0 , =( )Pr 1SGS
1 , » -·F 2.1 10n

6,
and x = 0.0540 .

Figure 2. (a) Temperature fluctuation (solid, left axis) and density fluctuation
(dashed, right axis), averaged separately over upflows (red) and downflows
(blue). (b) Horizontally averaged force F r= Du Dtz z (solid lines, left axis),
and the accelerating power F=P uz z z of those forces (dashed, right axis). Pz is
scaled up by a factor of five.Fvisc and Pvisc are the corresponding viscous force
and its power. (c) Averaged enthalpy flux (solid lines) along with
parameterizations according to Equation (8) (dashed). The inset shows tto

and tbu as functions of depth in units of d g . Data for RunK.
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contribute to positive Fenth. Furthermore, Figure 2(b) shows
that, in the BZ, the total force F r= Du Dtz z is negative for
the downflows and changes sign at zBZ, while for the upflows,
Fz is positive everywhere except very near the surface.
The associated power, F=P uz z z (blue dashed), shows that
the downflows gain energy mostly near the surface while the
upflows (red dashed) are accelerated throughout the MZ except
near the surface. The viscous force is non-negligible only near
the surface (dotted and dashed–dotted). We speculate that there
the upflows are decelerated by viscous momentum exchange
with the downflows.

Based on these data, we interpret the DZ as an overshooting
phenomenon, but with an upward enthalpy flux, and with the
resulting stable stratification being nearly adiabatic. We explain
the appearance of the DZ such that cool fluid elements that
originate near the surface are accelerated downward by gravity
and gain enough momentum to penetrate the convectively
stable layer beneath the BZ. There they are progressively
decelerated and heated up. If this proceeds fast enough, fluid
elements, having kept a sufficient part of their momentum, can
continue moving downward, but now with an excess of entropy
thus forming the OZ. The upflows in the stably stratified OZ
cannot be due to convective instability, but are driven by the
pressure excess exerted by the matter in the downflows. In the
Schwarzschild stable DZ, the upflows are lighter than their
surroundings, which is an important property of the DZ; see
Figure 1(d) of Brandenburg (2016). However, the force on
the downflows is decelerating; see Figure 2(b). Therefore, the
upflows in the DZ are not buoyancy-driven. Instead, we argue
that they are pressure driven, just like in the OZ.

We conclude that the Deardorff layer is associated with
nonlocal transport of heat as the downdrafts of cool matter
originating from the strongly cooled surface propagate not only
through the BZ, but further on to the bottom of the DZ. This
process is called entropy rain, which characterizes stellar
convection as being driven by radiative cooling at the surface
(Stein & Nordlund 1989).

In an attempt to quantify the different contributions to the
enthalpy flux, we compare the numerical results for Fenth with a
mean-field parameterization that takes into account the non-
gradient contribution introduced by Deardorff (1961, 1966).
Here, we use the expression derived by Brandenburg (2016):

t r= ¢ - ¶ º +( ) ( )F T g s c u s F F , 8z zenth
MF

red
2

P
2

D G

where tred is a reduced relaxation time, taking into account
radiative cooling and turbulent energy transport. The first term,
FD, describes the non-gradient Deardorff flux, which is positive
irrespective of the sign of the entropy gradient, whereas the
latter term, FG, is the traditional mean-field description of the
(gradient) enthalpy flux. In Figure 2(c), we show FD, FG, and
their sum for RunK, assuming that t t= t( ) ( )z c zred ,
where t t t=( ) ( )z min ,to bu is the minimum of the convective
turnover time t = H uto p rms and the buoyancy timescale t =bu

¢( )( )c g u szP
2 2 1 2, and cτ is a free parameter, for the best fit set

to 0.73. Figure 2(c) shows that Equation (8) provides a good
description in the BZ and even suggests that the Deardorff term
is the dominant contribution to the heat transport. However, the
expression in Equation (8) breaks down in the DZ and OZ.
Further, we separate Fenth in Figure 2(c) into contributions from

upflows ( Fenth) and downflows ( Fenth) for RunK. The down-

flows dominate the enthalpy flux with » F F3enth enth. We find

that gradient and Deardorff contributions match Fenth and
Fenth,

respectively, in the BZ. However, FD and FG contain
contributions from both upflows and downflows, and the
correspondence to Fenth and Fenth is likely coincidental. This
conjecture is supported by Figure 2(b), which suggests that the
downflows feel the local entropy gradient. The generality of
these results will be investigated elsewhere using wider
parameter studies.
Two recent studies (Hotta 2017; Korre et al. 2017) have

reported subadiabatic layers from convection simulations. The
former authors studied “weakly non-Boussinesq” convection in
spherical coordinates where the radial dependence of the
superadiabatic temperature gradient of the background state
was varied. They found that a subadiabatic layer appeared in
regions where convective transport was efficient (or radiative
diffusion inefficient). They also studied the contributions of
upflows and downflows separately and found that the upflows
in these cases contributed to downward flux of heat. This is
qualitatively different to our cases where Fenth is always nearly
zero (OZ, lower part of DZ) or positive (upper part of DZ, BZ).
In their case, the upflows are clearly pressure driven even in the
bulk of the CZ—in contrast to our simulations.
The study of Hotta (2017) is a close parallel to ours in that a

density-stratified, initially piecewise polytropic setup was used
to study overshooting in fully compressible simulations,
although with magnetic fields. The main difference to our runs
is that our density contrast is larger (37 in the CZ of Run K)
compared to about 6–7 in Hotta (2017). Furthermore, he used a
fixed profile of K that is smoother than in our RunS, but
steeper than in our RunP. This results in a similar subadiabatic
layer at the base of the CZ as in our RunsK and P. Moreover,
Hotta (2017) analyzed the vertical force balance (his Figure 13)
and came to the conclusion that the total buoyancy force
switches sign roughly at the same location as the entropy
gradient. We conclude that the mechanism forming a
subadiabatic layer in the runs of Hotta (2017) is very likely
the same as in our models.

3.3. Structure of Convection

Given the appearance of an extended DZ, we analyze the
flow in detail to find out whether its topology in the DZ is
altered in comparison to the BZ. We adopt the approach of
Brandenburg (2016), where the structure of convection is
characterized by the number and filling factor of downflows
(cf. his Figure 2). We have developed a dedicated algorithm (to
be reported on elsewhere) to detect isolated downflow plumes
(IDPs) and intergranular lanes (IGLs), compute their sizes and
numbers, and thereby their filling factors for such an analysis.
In CaseI of Brandenburg (2016), corresponding to forest-like
downflow structures, number, size, and filling factor of the
downflows are independent of depth. His MLT description
including the Deardorff flux is closest to his Case III, with a
tree-like structure, where the filling factor is constant, but the
number (size) of the downflows decreases (increases).
In Figures 3(a) and (b), we show representative patterns of

the vertical velocity of RunK from BZ, DZ, and OZ. They are
qualitatively similar to those found in numerous other studies
of stratified convection (e.g., Stein & Nordlund 1989; Stein
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et al. 2009; Hotta et al. 2014; Käpylä et al. 2016; Kitiashvili
et al. 2016): upwelling granules with downflows along a
network of connected IGLs near the surface. Deeper down, the
cellular structure disintegrates and IDPs appear. In the DZ and
OZ only a few IDPs survive in the midst of much larger scale
upflows.

The filling factors f of all downflows and of IGLs and IDPs
separately (for the latter two a proxy using average sizes and
numbers to ease comparison with panels (d), (e)) are shown in
Figure 3(c). We find that f of all downflows is almost
independent of depth in the redefined CZ (=BZ + DZ) for all
runs. The filling factors of IDPs and IGLs reveal that for Run S
in the bulk of the CZ (  z d0.3 0.8), the dominant IGLs
have roughly a constant filling factor while their size increases
and their number decreases, consistent with the tree-like
structure of Case III. For Runs K and P, the structure of
convection is clearly distinct from S, with the IGL network
starting to disappear at much smaller depths and the IDPs
already taking over at »z d 0.6.

After the IDPs take over as the dominating structure of
convection, we observe another difference between Run S and
Runs K and P. In the latter cases, after a smooth transition, the
IDP filling factor attains a constant value, while their size is
constant and the number is mildly increasing. These data
correspond most closely to Case I. This holds roughly at depths
 z d0 0.35, encompassing the DZ and the lower parts of

the BZ. Thus, the tree-like picture roughly holds until
»z d 0.35, below which a depth-independent number of

IDPs persist. In Run S, the IDP filling factor also tends to a
constant in between  - z d0.1 0.2, but this is accom-
panied by an increase of the number and decrease of the size of
IDPs, incompatible with both Cases I and III. These results
suggest that the structure of the downflows in the DZ and the
bottom part of the BZ is qualitatively different from that in the
upper parts of the BZ (forest-like instead of tree-like).

4. Conclusions

We have shown that, when a smoothly varying heat
conduction profile is used, a substantial part of the lower CZ
is weakly subadiabatic although >F 0enth . A smooth transition
can also be expected to occur in deep stellar interiors where a
Kramers-based conductivity is valid. Furthermore, with such a
heat conduction law, the depth of the CZ is an outcome of the
simulation and cannot be determined a priori.
We have shown that the subadiabatic layer can still lead to

an upward enthalpy flux due to downflows bringing low
entropy material from near the surface to the stably stratified
layers below. We also found that the upflows in the overshoot
zone are driven by the pressure excess due to the matter
brought down by the downflows. Except for the lowermost
parts, the ascending matter in the Deardorff layer is lighter than
the surroundings. Yet, we argue that also in the Deardorff layer

Figure 3. (a) Vertical velocity and (b) volume rendering of downflows at the periphery and from depths = -( )z d 0.98, 0, 63, 0.13, 0.13 corresponding to a near-
surface layer, and the middles of BZ, DZ, and OZ, respectively, in RunK. Tildes refer to normalization with =ũ u gdz z . (c) Filling factor of downflows (dashed–
dotted lines), a proxy filling factor for IDPs (solid), IGLs (dashed, only occurring at z d 0.0) and their sum (dotted), (d) average widths of IDPs and IGLs with the
standard deviations from the temporal evolution (shaded areas), and (e) their numbers as functions of z from RunsK (black), P (blue), and S (red).

5

The Astrophysical Journal Letters, 845:L23 (6pp), 2017 August 20 Käpylä et al.



the upflows are pressure driven. There is no buoyant
acceleration, and the downflows are instead decelerated in
accordance with the Schwarzschild criterion. Our results
confirm that convection is highly nonlocal and driven by
cooling at the surface resulting in cool entropy rain. The
traditional mean-field expression of the enthalpy flux fails in
the subadiabatic part of the CZ and a non-gradient term is
required. Our work demonstrates the existence of such a
contribution, introduced by Deardorff (1961) and applied to
stellar MLT by Brandenburg (2016), for the first time from
numerical simulations. A geometric analysis shows a transition
from a tree-like to a forest-like structure in the deep parts of the
CZ. Energetic considerations reveal that the downflows provide
the dominant contribution to the enthalpy flux everywhere
in the CZ. Furthermore, as they are largely responsible for
driving the upflows, their importance for the overall convective
structure is indeed crucial.

The current simulations may have too low resolution to fully
capture the driving of strong downflows near the surface so that
their effect in more realistic conditions can be even more
pronounced. This can lead to a further reduction of the depth of
the BZ, which, in conjunction with the topology change, could
alleviate the discrepancy between helioseismic and simulation-
based estimates of convective velocities (Miesch et al. 2012).
Furthermore, our results are obviously at odds with MLT,
which is widely used in stellar structure models, calling for
more advanced one-dimensional models (see, e.g., Kupka 1999;
Snellman et al. 2015). Another implication of a subadiabatic
layer above the base of the CZ comes from potentially breaking
the Taylor–Proudman balance of the solar rotation profile
(Rempel 2005). These questions will be addressed elsewhere.
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