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On hp-Adaptive Solution of Thin Shells of Revolution

Harri Hakula and Tomi Tuominen

Aalto University, Institute of Mathematics, Otakaari 1, 02015 Espoo, Finland

E-mail: Harri.Hakula@tkk.fi

Abstract. We present an a posteriori hp-adaptive algorithm for shells. In an hp-solver there
are two ways to increase accuracy: one can either refine the mesh (h-step) or increase the degree
of the polynomial (p-step). In the adaptive setting it is also necessary to have the capability to
reverse already made decisions.

Our p-approach is influenced by work of Houston and Süli on the estimation of Sobolev
regularity and analycity. Due to the possibility of numerical locking we initialize our algorithm
only after initial probing of the energy distribution of the solution.

1. Introduction
Thin shell problems are known to be challenging due to their dependence on the dimensionless
thickness and effects of the shell geometry. The solution of a given shell problem can be viewed
as a linear combination of features each of which has its own characteristic length scale: the
smooth component with scale equal to the diameter of the shell and the layers which can occur
at the boundaries or inside the domain.

Here we consider the a posteriori adaptive hp-FEM solution of thin shells of revolution using
standard finite elements. The choice of high order finite elements is due to numerical locking in
shells, see e.g. [4].

In the context of shells with the problem of numerical locking present, the question of choosing
the correct initial setup is central. Our approach is: Probe for locking by solving the problem
with minimal mesh but various polynomial degrees. The idea is not to minimize the energy but
to get a picture of the relative sizes of the energy components. In the numerical experiments we
show this is to be a very effective strategy.

2. Shell Model
2.1. Shell geometry
By shell we mean a three-dimensional domain

Ω =
{

(x, y, z) ∈ R3|(x, y) ∈ ω,−d
2
< z <

d

2

}
,

where d is the thickness of the shell, and ω is the mid-surface of the shell. Here we are interested
in shells of revolution for which the mid-surface can be defined as

ω =
{

(x1, x2, x3) ∈ R3 | x2
2 + x2

3 = Φ(x1)2, −1 < x1 < 1, 0 < Φ ∈ C1(−1, 1)
}
.
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2.2. Naghdi Model
Our two-dimensional shell model is the so-called Naghdi model, with a five-component
displacement vector field u = (u, v, w, θ, ψ), where the first three components are the axial
displacements and the remaining two rotations in longitudinal and latitudinal directions,
respectively.

The total energy is given by the quadratic functional

F(u) =
1

2
A(u, u)−Q(u), (1)

where A represents deformation energy and Q is the load-induced potential energy. The
deformation energy consists of three parts: bending (AB), membrane(AM ), and shear(AS):

A(u, u) = d2AB(u, u) +AM (u, u) +AS(u, u), (2)

with definitions

d2AB(u, u) = d2

∫
ω
[ν(κ11(u) + κ22(u))2

+(1− ν)

2∑
i,j=1

κij(u)2] A1A2 dxdy, (3)

AM (u, u) = 12

∫
ω
[ν(β11(u) + β22(u))2

+(1− ν)
2∑

i,j=1

βij(u)2] A1A2 dxdy, (4)

AS(u, u) = 6(1− ν)

∫
ω
[(ρ1(u)2 + ρ2(u))2] A1A2 dxdy, (5)

where ν is the Poisson number and A1, A2 are Lamé parameters, defined for shells of revolution
in terms of the geometry function Φ:

A1(x) =
√

1 + [Φ′(x)]2, A2 = Φ(x).

Further we need the principal curvature radii:

R1(x) = −A1(x)3

Φ′′(x)
, R2(x) = A1(x)A2(x).

Thus, we can write the expressions for bending, membrane, and shear strains, κij , βij , ρi,
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respectively:[1]

κ11 =
1

A1

∂θ

∂x
+

ψ

A1A2

∂A2

∂y
,

κ22 =
1

A2

∂ψ

∂y
+

θ

A1A2

∂A2

∂x
,

κ12 = κ21 =
1

2
[

1

A1

∂ψ

∂x
+

1

A2

∂θ

∂y
− θ

A1A2

∂A2

∂y
− ψ

A1A2

∂A2

∂x

− 1

R1
(

1

A2

∂u

∂y
− v

A1A2

∂A2

∂x
)

− 1

R2
(

1

A1

∂v

∂x
− u

A1A2

∂A1

∂y
)],

β11 =
1

A1

∂u

∂x
+

v

A1A2

∂A1

∂y
+

w

R1
,

β22 =
1

A2

∂v

∂y
+

u

A1A2

∂A2

∂x
+

w

R2
,

β12 = β21 =
1

2
(

1

A1

∂v

∂x
+

1

A2

∂u

∂y
− u

A1A2

∂A1

∂y
− v

A1A2

∂A2

∂x
),

ρ1 =
1

A1

∂w

∂x
− u

R1
− θ,

ρ2 =
1

A2

∂w

∂y
− v

R2
− ψ,

The energy norm ||| · ||| is defined in terms of the deformation energy (2):

E(u) := |||u|||2 := A(u, u) (6)

Let us also introduce notation for different energy components:

B(u) := d2AB(u, u) (7)

M(u) := AM (u, u) (8)

S(u) := AS(u, u) (9)

2.3. Variational Formulation
We solve by minimizing the total energy (1), which in turn leads to a following variational
problem: Find u ∈ U ⊂ [H1(ω)]5 such that

A(u, v) = Q(v) ∀v ∈ U . (10)

3. Adaptive Algorithm
3.1. Detecting Locking
Our basic tenet is that detection of possible bending locking is central to success of any a
posteriori scheme for shells. Here we rely on the p-method: We simply use a minimal mesh to
probe for any possible changes in the energy distributions.

Consider a cylindrical shell defined by Φ = 1 with d = 1/100 and load f(x, y) =
cos(2y). The computational domain (0, 1) × (0, π/4) is discretized using two triangles K1 =
{(0, 0), (1, 0), (0, π/4)} and K2 = {(1, π/4), (1, 0), (0, π/4)}. Due to the special form of the
loading we can use symmetries at boundaries x = 0, y = 0, and y = π/4, and at x = 1
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Table 1. Cylindrical Shell: Clamped Boundary

|||u−uh|||
|||u||| (%)

B(uh)
E(uh)

M(uh)
E(uh)

S(uh)
E(uh) (%)

p = 1 93,1 0,0113 32,0 68,0
p = 2 62,3 0,127 43,2 56,6
p = 3 20,2 0,339 94,1 5,59
p = 4 7,8 0,675 98,1 1,27
p = 5 2,9 0,941 98,7 0,34
p = 6 0,96 1,32 98,6 0,13

Table 2. Cylindrical Shell: Free Boundary

|||u−uh|||
|||u||| (%)

B(uh)
E(uh)

M(uh)
E(uh)

S(uh)
E(uh) (%)

p = 1 99,99 0,023 40,8 59,1
p = 2 98,92 1,36 92,2 6,44
p = 3 23,8 94,2 5,5 0,318
p = 4 1,11 99,4 0,56 0,034
p = 5 0,19 99,6 0,33 0,0204
p = 6 0,034 99,7 0,25 0,0134

either free or clamped boundary conditions. In Tables 1 and 2 we give a break-up of energy
distributions in terms of p. Note how in the bending-dominating case (free boundary) we observe
a dramatic change in bending energy at p = 3.

3.2. Error Indicators
Our error indicators are bubble-mode based. Let us denote the solution space (without bubbles)
with Uh and the additional bubble modes with U+

h . Let uh be the discrete solution: Find uh ∈ Uh
such that

A(uh, v) = Q(v) ∀v ∈ Uh.
Taking uh as known, we add bubbles u+

h ∈ U
+
h to the solution vector. Thus, the problem

becomes: Find u+
h ∈ U

+
h such that

A(uh + u+
h , v) = Q(v) ∀v ∈ U+

h . (11)

Since every bubble is supported by exactly one element, the problem (11) can be solved element-
by-element:

A(u+
h , v)e = Q(v)e −A(uh, v)e ∀v ∈ U+

h , (12)

e = 1, . . . , emax. Since the solution lies in a subspace of U we can transform (12) with (10) so
that we end up with

A(u+
h , v)e = A(u− uh, v)e ∀v ∈ U+

h (13)

The problem (13) can be interpreted so that the error uerr = u−uh is approximated in subspace
U+
h ⊂ U .

Error is measured in the energy norm, so the elemental error indicator is

η+
e := |||u+

h |||Ke (14)
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and the corresponding global indicator

η+ :=

√∑
e

(η+
e )2. (15)

3.3. Estimation of Sobolev Regularity
Let us first consider the reference interval (−1, 1) and a function û ∈ L2(−1, 1) with Legendre
series

û(ξ) =
∞∑
i=0

âiL̂i(ξ), (16)

where L̂i is a Legendre polynomial of degree i. Legendre polynomials are orthogonal∫ 1

−1
L̂i(ξ)L̂j(ξ)dξ = δij

2

2i+ 1
,

so the coefficients âi can be written as

âi =
2i+ 1

2

∫ 1

−1
û(ξ)L̂i(ξ)dξ. (17)

Let us define a sequence {li}i≥2 using âi:

li =
log
(

2i+1
2|ai|2

)
2 log i

. (18)

If l = limi→∞ li exists and l > 1/2, then

u ∈ H l−1/2−ε
loc (−1, 1), 0 < ε < l − 1/2.

In 2D proceed as above. Let K be a triangle and u ∈ L2(K) a function with Legendre series

u(x, y) =
∞∑

i,j=0

aijLij(x, y). (19)

Here we assume that the shape functions Lij are also orthogonal. Let F denote the mapping

from the reference quadrilateral Q̂ = (−1, 1)2 to K. Then

Lij(x, y) := (L̂ij |det JF |−1/2) ◦ F−1(x, y), (20)

where L̂ij(ξ, η) = L̂i(ξ)L̂j(η) and JF is the Jacobian of F .
The coefficients aij are

aij = cij

∫
K
u(x, y)Lij(x, y) dxdy

= cij

∫
Q̂
u ◦ F (ξ, η)Lij ◦ F (ξ, η)|det JF | dξdη

= cij

∫
Q̂
u ◦ F (ξ, η) L̂ij(ξ, η)|det JF |1/2 dξdη,

(21)
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where cij = 2i+1
2

2j+1
2 . We want to examine the convergence of the coefficient in ξ- and η-

directions, so we define

|αi|2 =
∞∑
j=0

|aij |2
2

2j + 1
and |βj |2 =

∞∑
i=0

|aij |2
2

2i+ 1
. (22)

and the sequences {lξ,i}i≥2: {lη,i}i≥2:

lξ,i =
log
(

2i+1
2|αi|2

)
2 log i

and lη,j =
log
( 2j+1

2|βj |2
)

2 log j
. (23)

If the limits lξ = limi→∞ lη,i and lη = limi→∞ lη,i exist and lξ, lη > 1/2, function u belongs to a
locally anisotropic Sobolev-space

u ∈ Hkξ,kη(K),

where
kξ = lξ − 1/2− ε, kη = lη − 1/2− ε.

In this paper we only consider the isotropic case, so k := min{kξ, kη}, and

u ∈ Hk
loc(K).

3.4. Estimation of Regularity of Solution uh
Let us examine an element e and assume that there are equal number (m + 1) of Legendre
coefficients in both directions; aij , i, j = 0, . . . ,m. Let us define lξ,i and lη,i as in (23). We
approximate the limits using the last coefficients of the sequences:

lξ := min{lξ,m−1, lξ,m}, lη := min{lη,m−1, lη,m}. (24)

lξ and lη are used to compute the highest suitable order of the polynomials on e:

p̂e := bmin{lξ, lη} − 1/2c. (25)

Note that scaling cuuh (cu ∈ R) does not affect the regularity in the general case, since

l̃i :=
log
(

2i+1
2|cu ai|2

)
2 log i

=
− log |cu|2

2 log i
+ li,

that is, limi→∞ l̃i = limi→∞ li. However, it is reasonable to require that uh and cuuh have the
properties in this sense. Let uh be the numerical solution on the discretization of domain Ω. Let
us define domain Ω̃ and the corresponding discretization using mapping G : (x, y)→ (cxx, cyy):

Ω̃ := {(x̃, ỹ) | (x̃, ỹ) = G(x, y), (x, y) ∈ Ω}.

We get the function ũh by scaling uh:

ũh = cu uh ◦G−1(x̃, ỹ).

We get the Legendre coefficients of ũh in one of the elements K̃ in Ω̃:

ãij = cij

∫
Q̂
ũh ◦ F̃ (ξ, η)L̂ij | det JF̃ |

1/2dξdη

= cij

∫
Q̂
cu uh ◦ F (ξ, η)L̂ij

( |Ω̃|
|Ω|

)1/2
|det JF |1/2dξdη

= cu

( |Ω̃|
|Ω|

)1/2
aij ,
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where aij are Legendre coefficients of the solution uh. On the other hand for L2-norm of ũh we
get

||ũh||20,Ω̃ =

∫
Ω̃
ũ2
hdx̃dỹ =

∫
Ω
c2
uu

2
h

( |Ω̃|
|Ω|

)
dxdy = c2

u

|Ω̃|
|Ω|
||uh||20,Ω,

so
ãij

||ũh||0,Ω̃
=

aij
||uh||0,Ω

.

Here we scale the solution so that their L2-norms are equal to 1. Thus, the Legendre coefficients
are

aij :=
|K|1/2

2||uh||0,Ω
cij

∫
Q̂
uh ◦ F (ξ, η)L̂ijdξdη. (26)

The term |K|1/2/2 comes from | det JF |1/2, which in fact depends on the coordinate η if K is a
triangle. In practise we omit this dependence and precompute the term.

3.5. The ith Step of the hp-Algorithm
Let us assume that the solution of the step i− 1, ui−1

h , has been computed using the mesh T i−1
h

and p-distribution pi−1. Our goal is to find a solution uih by refining the mesh and/or altering

the p-distribution depending on the error indicators computed from the solution ui−1
h . At each

step a set of elements will be subjected to splitting, Si0, increasing of degree, U i0, or decreasing

of degree, Di
0. We drop the subscript 0 to indicate modifications at step i. Further, the set Ũ i

includes the elements subject to smoothing of the p-distribution.

(i) Compute the elemental error indicators ηe, e = 1, . . . , E. Stop if the global error estimate

η2 =
∑E

e=1 η
2
e is below the chosen tolerance.

(ii) Collect into the list of modified elements M those elements e, for which it holds that
ηe ≥ αmax1≤i≤E ηi. We choose α = 1/2.

(iii) Estimate the highest possible degree per element; p̂e, e = 1, . . . , E.

(iv) Divide the elements e ∈M into Si0, U i0, and Di
0:

(i) If pe < p̂e and pe < pmax , then e→ U i0.
(ii) If pe < p̂e and pe = pmax , then e→ Si0.

(iii) If p̂e ≤ pe ≤ p̂e + 1, then e→ Si0.
(iv) If pe > p̂e + 1, then e→ Si0 and e→ Li0.

(v) Check and correct choices made at i− 1. Initialize ∆p := 0, the list indicating the changes
in degrees.

(i) For e ∈ U i−1: If pe > p̂e, then ∆pe := −1 and e→ Si0.

(ii) For e ∈ Ũ i−1: If pe > p̂e, then ∆pe := −1.
(iii) For e ∈ Di−1: If pe < p̂e, then ∆pe := +1.
(iv) Update p-distribution: p := p+ ∆p.
(v) Smoothen p-distribution and update ∆p accordingly.

(vi) Update the mesh and p-distribution following the error indicators:

(i) Lower the degree (pe := pe − 1) of elements in Di
0 and set Li := Li0.

(ii) Refine the mesh at Si0. Add newly created elements to J i.
(iii) Let U i := U i0 \ (U i0 ∩ Si) and increase the degree (pe = pe + 1) of elements in U i. We

do not increase the degree of elements created in refinement step.
(iv) Smoothen p-distribution and collect the modified elements to Ũ i. Remove those from

the of lowered elements: Di := Di \ (Di ∩ Ũ i).
(vii) Let pi := p and compute the new solution uih using the new discretization (T ih , pi).

WCCM/APCOM 2010 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 10 (2010) 012163 doi:10.1088/1757-899X/10/1/012163

7



Local changes in p can lead to highly uneven p-distribution. We smoothen by increasing the
degree in some additional elements: If the degree of at least two neighbours of e, e1 and e2, is
greater than that of e, pe < pe1 , pe2 , we set pe = min{pe1 , pe2}.

4. Numerical Experiments
In this section we consider three configurations.

(i) Free Cylindrical Shell: As above, our cylinder is defined by Φ(x) = 1 over −1 ≤ x ≤ 1,
and d = 1/100. Loading is fw(x, y) = cos 2y so that all symmetries can be taken into
account. The expected boundary layers are of types

√
t and t.

In this example numerical locking plays a significant role. In Figure 1(a) we see that in
terms of the error indicator, there is no convergence at p = 1. In reality the convergence is
very slow, but the error indicator fails due to locking. On the other hand, for higher values
of p we get the expected results, with hp-adaptive algorithm being the most efficient one
when compared against fixed p variable h -variants. Yet, Figure 1(b) shows that the high
condition number starts to affect the quality of the solution and convergence stalls at very
large systems.
In Figure 2 we show various meshes with p-distributions. The most notable one is Figure
2(a), where we see that for fixed p = 2 the algorithm refines everywhere which is appropriate
for the longest characteristic length scale. Yet, there is only very slow convergence.

(ii) Cut Cylindrical Shell: The domain is set so that for π/4 ≤ y ≤ 3π/4 or 5π/4 ≤ y ≤ 7π/4
we have the previous shell but otherwise x ∈ [−3/4, 3/4]. Here we consider a pressure load
fw = 1 so that the final computational domain is bounded by (0, 1) × (0, π/2). Boundary
at x = 3/4 is free, otherwise boundaries at x = 1 and y = π/4 are clamped.
There are three dominant features of the solution: Singularity at (3/4, π/4),

√
t-layer at

x = 1, and 4
√
t-layer along the characteristic line at y = π/4. Since we want to demonstrate

also the 4
√
t-layer, we choose d = 1/10000.

In Figure 3 we have two stages of the algorithm. The effect of the internal layer is evident
along the characteristic line at y = π/4.

(iii) Hyperbolic Shell Under Concentrated Load: Consider Φ(x) = 1 + 1/2x2 over
−1 ≤ x ≤ 1. Shell is clamped at x = ±1, and the concentrated load at (0, 0) is
fw(x, y) = exp(−100r2), where r2 = x2 +y2. Due to symmetries the computational domain
is (0, 1)× (0, π/2).
There are three dominant features of the solution: Large effect at (0, 0),

√
t-layer at x = 1,

and 3
√
t-layer traveling along the characteristic line starting at (0, 0). Since we want to

demonstrate also the 3
√
t-layer, we choose d = 1/10000 for contrast with the cut cylinder

above.
In Figure 4 we have two stages of the algorithm. Note how the algorithm resolves the
components of the solution in order: first the area close to or under the load, then the
internal layer, and eventually (not really clear here) the boundary layer. Note also that the
algorithm doesn’t touch elements outside the layers (white regions).

5. Conclusions
Our algorithm has the advantage that we do not assume any characteristics of the solution.
However, the next challenge is to combine our adaptive scheme with a priori knowledge on the
solution either given by an engineer or detected by some automatic means.
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Figure 1. Free Cylindrical Shell, d = 1/100
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(b) p = 4, (24435 ; 589)
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(c) hp, (p0 = 2) (22870 ; 252)
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(d) hp, (p0 = 2) (105435 ; 718)

Figure 2. Cylindrical Shell, Free Boundary, d = 1/100, (d.o.f. ; element count)
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(a) hp, (p0 = 1) (50540 ; 1015)
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Figure 3. Cut Cylindrical Shell, d = 1/10000, (d.o.f. ; element count)
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Figure 4. Hyperbolic Shell, d = 1/10000, fw = exp(−100r2), (d.o.f. ; element count)
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