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Quasi-closed phase forward-backward linear prediction analysis
of speech for accurate formant detection and estimation

Dhananjaya Gowda,a) Manu Airaksinen, and Paavo Alku
Department of Signal Processing and Acoustics, Aalto University, Otakaari 5, FI-00076 Espoo, Finland

(Received 16 May 2016; revised 6 July 2017; accepted 24 August 2017; published online 22
September 2017)

Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering

was proposed. However, the QCP analysis which belongs to the family of temporally weighted

linear prediction (WLP) methods uses the conventional forward type of sample prediction. This

may not be the best choice especially in computing WLP models with a hard-limiting weighting

function. A sample selective minimization of the prediction error in WLP reduces the effective

number of samples available within a given window frame. To counter this problem, a modified

quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is pre-

dicted based on its past as well as future samples thereby utilizing the available number of samples

more effectively. Formant detection and estimation experiments on synthetic vowels generated

using a physical modeling approach as well as natural speech utterances show that the proposed

QCP-FB method yields statistically significant improvements over the conventional linear predic-

tion and QCP methods. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.5001512]

[CYE] Pages: 1542–1553

I. INTRODUCTION

Accurate detection, estimation, and tracking of formant

frequencies from speech signals has potentially many appli-

cations in acoustic-phonetic analysis (Fant, 1960; Assmann,

1995), voice morphing (Singh et al., 2016), speech recogni-

tion (Welling and Ney, 1998; Smit et al., 2012), speech or

signing voice synthesis (Pinto et al., 1989; Chan et al.,
2015), voice activity detection (Yoo et al., 2015) and in

designing hearing aids for people suffering from sound-

induced hearing loss (Schilling et al., 1998; Bruce, 2004).

Several algorithms have been proposed for tracking formant

frequencies (Boersma, 2001; Sjolander and Beskow, 2000;

Deng et al., 2007; Mehta et al., 2012). Most of these algo-

rithms have a detection stage, where an initial estimate of

the vocal tract resonances (VTRs) (manifested as spectral

peaks or formants) is obtained, followed by a tracking stage

(Boersma, 2001; Sjolander and Beskow, 2000). However,

some algorithms try to do a simultaneous estimation and

tracking from an initial representation of the vocal tract

system (Deng et al., 2007; Mehta et al., 2012). In either

approach, analysis of the signal for accurate estimation

(or modeling) of the vocal tract system is an important and

necessary computational block.

Linear prediction (LP) analysis is one of the widely

used techniques for modeling the vocal tract system and esti-

mating the VTRs from speech signals (Atal and Schroeder,

1967; Itakura and Saito, 1968; Makhoul, 1975). Several var-

iants or formulations of LP analysis have been proposed to

improve the accuracy of these estimations (Kay, 1988).

However, the autocorrelation (ACOR) and covariance

(COV) based analyses are the most popularly used methods

for formant estimation and tracking (Boersma, 2001;

Sjolander and Beskow, 2000). Covariance based LP analysis

is known to provide more accurate formant estimates than

the popular ACOR analysis, but does not ensure stability of

the estimated filter (Makhoul, 1975; Wong et al., 1979). The

instability of the filter in itself is not a serious problem as

long as the task on hand is only formant tracking with no

need for reconstructing the signal such as in speech synthesis

or coding. Also, a closed phase analysis of the speech signal

is known to provide even more accurate VTR estimates, by

avoiding the open phase regions of the glottal cycle which

are influenced by the coupling of the vocal tract with the

trachea (Steiglitz and Dickinson, 1977; Yegnanarayana and

Veldhuis, 1998). But the closed phase analysis works better

for low-pitched (male) voices which has more samples in the

closed phase of the glottal cycle as against high-pitched

female and child voices. One way to counter this problem is

to do a selective prediction of speech samples and over mul-

tiple glottal cycles.

The family of weighted linear prediction (WLP) meth-

ods performs a selective prediction by giving a different

temporal weighting on the prediction error at each sample

(Mizoguchi et al., 1982; Yanagida and Kakusho, 1985; Lee,

1988; Ma et al., 1993; Magi et al., 2009; Pohjalainen et al.,
2010; Alku et al., 2012, 2013; Airaksinen et al., 2014). A

sample selective linear prediction analysis with a hard reject-

ing weighting function to eliminate outlier samples was pro-

posed by Mizoguchi et al. (1982) for better modeling of the

vocal tract area function. A more generalized version of

WLP was proposed by Yanagida and Kakusho (1985) with a

continuous weighting function on the prediction residual.

Lee (1988) proposed a robust linear prediction algorithm

using iterative solutions by utilizing the non-Gaussian nature
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of the excitation source to derive a weighting function based

on the magnitude of the residual samples.

A non-iterative solution to WLP was proposed by Ma

et al. (1993), where the short-time energy (STE) computed

over 1–2 ms was used as the weighting function to improve

the robustness of spectrum estimation. An STE weighting

function gives more weight to high energy regions within a

glottal cycle, which roughly correspond to the closed phase

regions as well. Several variants of the STE weighting func-

tion have been explored in order to improve the robustness

of WLP based features in the face of degradations (Ma et al.,
1993; Pohjalainen et al., 2010), and to ensure stability of the

estimated filter (Magi et al., 2009). However, it was shown

by Alku et al. (2012) that the accuracy of the vocal tract esti-

mates suffers if the designed weighting function gives more

weight to the region around the glottal closure instant (GCI)

during which maximum excitation is imparted to the vocal

tract. An attenuated main excitation (AME) weighting func-

tion was proposed to improve the accuracy of formant esti-

mation, especially in the case of high-pitched voices (Alku

et al., 2012, 2013). Based on these ideas, a quasi-closed

phase (QCP) analysis of speech signals for accurate glottal

inverse filtering was proposed by the present authors

(Airaksinen et al., 2014). A more generalized AME weight-

ing function with slant edges instead of vertical ones was

used. However, the paper was focused primarily on estimat-

ing the glottal source parameters, without any evaluation of

its performance in formant detection and estimation.

One drawback with the QCP analysis proposed by

Airaksinen et al. (2014) is that the net effective number of

samples over which the prediction error is minimized within

a fixed window frame is reduced due to the use of an almost

binary weighting function. This selective minimization of

error over a reduced number of samples does not seem to

result in data insufficiency problems when evaluating the

method for formant estimation accuracies (deviation from

the ground truth) using synthetic as well as long sustained

natural vowel data (Alku et al., 2013). However, its impact

on natural continuous speech utterances and the possible

remedies need to be studied carefully. Also, while comput-

ing formant estimation accuracies for natural speech signals,

the authenticity of the ground truth formant locations is

always questionable. Nevertheless, one thing that can be

safely assumed is that the reference formant locations

marked are within a reasonable deviation from an otherwise

unknown absolute ground truth. In such a scenario, formant

estimation accuracy is therefore not a good metric in evalu-

ating the performance of vocal tract estimation. In view of

this, the authors propose to evaluate vocal tract estimation

methods using a formant detection rate (FDR) defined as the

percentage of frames where the estimated formant location

is within a reasonable deviation from the ground truth.

In order to address the above limitation of QCP due to

selective optimization over reduced samples, the authors pro-

pose to combine, for the first time, two different approaches

in linear predictive analysis of speech signals: (1) the frame-

work of QCP analysis in which temporally weighted LP is

used, and (2) the forward-backward (FB) analysis. The pro-

posed combination of the two approaches gives rise to a new

algorithm, quasi-closed phase forward-backward (QCP-FB)

analysis. This new predictive algorithm provides two major

advantages over the conventional LP methods. First, a

weighting function which is used in QCP is based on the

knowledge of GCIs. This temporal weighting function

emphasizes the closed phase region of the glottal cycles, at

the same time de-emphasizing the open phase region as well

as the region immediately after the main excitation. This pro-

vides a more accurate closed phase estimate of the vocal tract

model, and with a reduced effect of the glottal source.

Second, FB analysis reduces considerably the problems of

data insufficiency, spectral line splitting, and sensitivity of

spectral peaks to window positioning as well as additive

noise, commonly associated with conventional LP analyses.

Formant detection experiments on natural as well as synthetic

speech signals show that the proposed QCP-FB method

improves considerably the formant detection accuracies as

compared to conventional LP and WLP methods.

II. QCP ANALYSIS

QCP analysis is a variant of WLP with a specially

designed weighting function based on the knowledge of

GCIs (Airaksinen et al., 2014). An overview of WLP and the

design of QCP weighting function is given in this section.

A. WLP analysis

In conventional LP, the current sample xn is predicted

based on the past p samples given by

x̂n ¼ �
Xp

k¼1

akxn�k; (1)

where fakgp
k¼0 with a0 ¼ 1 denotes the prediction coeffi-

cients. HðzÞ ¼ 1=AðzÞ denotes the estimated transfer func-

tion of the vocal tract system, where A(z) is the z-transform

corresponding to the prediction coefficients fakgp
k¼0. The

optimal prediction coefficients are required to reduce the

overall prediction error given by the cost function

E ¼
X

n

e2
n; (2)

where en ¼ xn � x̂n is the sample-wise prediction error. The

prediction coefficients are computed by minimizing the cost

function (@E=@ai ¼ 0; 1 � i � p) and solving the resulting

normal equations

Xp

k¼1

ri;kak ¼ �ri;0; 1 � i � p; (3)

where ri;k ¼
X

n

xn�ixn�k: (4)

In the above formulation, it can be seen that the predic-

tion error is minimized in the least-square sense with equal

temporal weight on predicting every sample or reducing the

error at each sample. However, in WLP the cost function
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gives a differential weight to the prediction error at each

sample. The cost function in WLP is given by

Ew ¼
X

n

wne2
n; (5)

where wn denotes the weighting function on the sample-wise

prediction error en. It should be noted here that the weighting

in WLP methods is on the error signal, and should not be

mixed up with the traditional short-time windowing (e.g.,

Hamming) used for reducing truncation effects. The predic-

tion coefficients can be computed in a similar way by mini-

mizing the cost function (@Ew=@ai ¼ 0; 1 � i � p) and

solving the resulting normal equations

Xp

k¼1

bi;kak ¼ �bi;0; 1 � i � p; (6)

where bi;k ¼
X

n

wnxn�ixn�k: (7)

B. Choice of weighting function

As mentioned earlier in Sec. I, several weighting func-

tions have been proposed for a sample selective WLP. In

this section, we discuss two most relevant weighting func-

tions for this study, namely, the STE weighting function and

the QCP weighting function. An illustration of the speech

signal, electroglottogram (EGG) signal, derivative of electro-

glottogram (dEGG) signal, STE weight, and the QCP

weighting functions along with rough closed and open phase

markings is shown in Fig. 1.

1. STE weighting function

STE is one of the popular weighting functions used. The

STE weighting function is computed as

wn ¼
XðDþMÞ

k¼ðDþ1Þ
x2

n�k; (8)

with M¼ 12 samples corresponding to 1.5 ms at 8 kHz sam-

pling rate, and D¼ 0. The delay parameter D controls the

peak position (or emphasis) of the weighting function within

the glottal cycle. The length parameter M controls the peak

or pulse width as well as the dynamic range and smoothness

of the weighting function. It can be seen that the STE

weighting function gives more weight to the high energy

closed phase regions of the glottal cycle. However, it can be

seen that the degree of suppression of the open phase and the

main excitation depends on the signal decay within the glot-

tal cycle and need not necessarily suppress these regions

completely.

2. QCP weighting function

A detailed illustration of the QCP weighting function wn

along with the glottal flow derivative signal un for about one

glottal cycle is shown in Fig. 2. The QCP weighting function

is characterized by three parameters, namely, the position

quotient (Qp ¼ tp=T0), duration quotient (Qd ¼ td=T0), and

the ramp duration tr, where T0 is the fundamental period. A

small non-zero value, dw ¼ 10�5, is used to avoid any possible

singularities in the weighted ACOR matrices. It can be seen

that the weighting function emphasizes the closed phase region

of the glottal cycle, while at the same time de-emphasizes the

region immediately after the main excitation as well as the

open phase region.

The QCP weighting function provides two distinct

advantages over the traditional LP or WLP methods. (1)

Emphasis on the closed phase region provides for a more

accurate modeling of the vocal tract by reducing the effect

of coupling between subglottal and supraglottal cavities. (2)

De-emphasizing the region immediately after the main exci-

tation reduces the effect of glottal source on vocal tract

modeling. De-emphasizing the main excitation can also be

justified from the observation that this region typically

shows large prediction errors that become increasingly domi-

nant with short fundamental periods. This QCP analysis has

been shown to yield more accurate estimates of the glottal

source parameters compared to some of the popular glottal

inverse methods (Airaksinen et al., 2014). However, the

performance of the QCP analysis in accurately modeling

the vocal tract system parameters such as formants was not

studied in Airaksinen et al. (2014).

III. QCP-FB ANALYSIS

In the traditional LP formulation, also referred to as

forward prediction, the current sample is predicted based on

the past p samples. At the same time, the current sample can

also be predicted based on future p samples, referred to as

backward prediction. It should be noted here that the forward

and backward coefficients are inter-convertible, and hence do

not carry any additional information when computed sepa-

rately. However, a FB analysis combines both forward and

backward predictions, where the current sample is predicted

based on past as well as future samples using a common set of

p coefficients. The combined error to be minimized is given by

E ¼ Ef þ Eb; (9)
FIG. 1. (Color online) Speech signal, EGG, dEGG, STE, and QCP weight-

ing function. The y-axis is relative and the signal offsets are only for clarity.
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where

Ef ¼
X

n

xn þ
Xp

k¼1

akxn�k

 !2

(10)

and

Eb ¼
X

n

xn þ
Xp

k¼1

akxnþk

 !2

; (11)

are the forward and backward errors, respectively. The pre-

dictor coefficients are computed by minimizing the combined

error (@E=@ai ¼ 0; 1 � i � p) and solving the resulting nor-

mal equations

Xp

k¼1

ci;kak ¼ �ci;0; 1 � i � p; (12)

where ci;k ¼
X

n

xn�ixn�k þ
X

n

xnþixnþk: (13)

FB analysis is known to reduce substantially the depen-

dence of traditional autoregressive spectral estimators on the

initial sinusoidal phase (Chen and Stegen, 1974; Ulrych and

Clayton, 1976), and the shifting of true frequency locations in

the face of additive noise (Swingler, 1979). It is also known to

reduce the line-splitting problem, where a single sinusoidal com-

ponent appears as two distinct peaks in the estimated spectra,

often encountered with the conventional ACOR or COV based

LP analysis (Fougere et al., 1976). The estimated spectral peak

locations are therefore less sensitive to window positioning, and

the use of both forward and backward predictions provides more

samples to compute the correlations for a given window size. In

view of this, the authors propose to use a QCP-FB analysis that

combines the advantages of QCP and FB analyses for accurate

formant detection and estimation.

QCP-FB analysis involves the use of FB analysis within the

framework of WLP. The resulting FB-WLP imposes a temporal

weighting function wn on the forward and backward errors indi-

vidually, and the combined error to be minimized is given by

F ¼ F f þ F b; (14)

where

F f ¼
X

n

wn xn þ
Xp

k¼1

akxn�k

 !2

(15)

and

F b ¼
X

n

wn xn þ
Xp

k¼1

akxnþk

 !2

(16)

are the weighted forward and backward errors, respectively.

The resulting normal equations are given by

Xp

k¼1

di;kak ¼ �di;0; 1 � i � p; (17)

where di;k ¼
X

n

wnxn�ixn�k þ
X

n

wnxnþixnþk: (18)

Equations (17) and (18) form the main backbone for the for-

mant detection experiments in the rest of the paper. An appro-

priate choice of range for the variable n results in ACOR or

COV based FB-WLP (Makhoul, 1975; Kay, 1988). Also, note

that there are multiple choices for the temporal weighting func-

tion that can be used for wn in Eq. (18). The choice of QCP

weighting function shown in Fig. 2 for wn results in a special

case of FB-WLP that will be referred to as QCP-FB analysis.

IV. FORMANT DETECTION EXPERIMENTS

The formant detection and estimation accuracies of the

proposed QCP-FB method are evaluated using both synthetic

as well as natural speech signals. Two different types of

synthetic signals are considered, one generated using the

Liljencrants-Fant (LF) source-filter model, and the other gener-

ated using a physical modeling approach of the speech produc-

tion system. At this point, it would be good to discriminate the

task of formant detection and estimation from formant track-

ing. In principle, most of the tracking algorithms can be

applied on the initial estimates of formant locations derived

using any underlying spectral representation. Therefore, in this

section, the ability of different spectral representations in pro-

viding evidence for formant detection and estimation is evalu-

ated, without the use of any tracking algorithm.

A. Experimental setup

Performance of different variants of the QCP method

along with their LP and WLP counterparts is studied using

different LP formulations, namely, ACOR, COV and

FIG. 2. (Color online) QCP weighting

function wn (dotted line) along with

the glottal flow derivative (dEGG) sig-

nal un (solid line) for about one glottal

cycle.
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forward-backward covariance (FBCOV) analyses. It is to be

mentioned here that it is possible to have a FB ACOR formu-

lation as well. However, only results for the FBCOV formu-

lation are presented here as the COV formulations are

traditionally known to perform better than ACOR formula-

tions in formant estimation. In view of this, the proposed

QCP-FB method will also be referred to as the QCP-FBCOV

method in the remaining part of the paper.

A common framework is employed for detecting for-

mants using each of the spectral representations, and for

evaluating the performance of formant detection. All meth-

ods process the pre-emphasized speech signal [using a finite

impulse response filter PðzÞ ¼ 1� 0:97z�1] over 30 ms win-

dow segments and a frame rate of 100 frames per second. A

Hamming window is used for ACOR analysis, whereas rect-

angular windowing is used for COV and FBCOV analyses.

A position quotient of Qp ¼ 0:05, duration quotient of

Qd ¼ 0:7, and a ramp duration of tr¼ 7 samples is used for

the QCP weighting function. The weighting function is

derived based on the knowledge of GCIs detected using the

SEDREAMS algorithm (Drugman et al., 2012). A prediction

order of p¼ 13 is used for all the methods at a sampling rate

of 8 kHz, unless otherwise specified. The peaks in the spec-

trum are detected by convolving the spectrum with a

Gaussian derivative window of width 100 Hz and picking

the negative zero-crossings. The top five peaks are picked as

the formant candidates. During performance evaluation, the

reference ground truth for each of the first three formants is

associated with the nearest formant candidate lying within a

specified deviation.

B. Performance metrics

The performance of the methods is evaluated in terms of

FDR and formant estimation error (FEE). FDR is measured

in terms of the percentage of frames where a formant is

hypothesized within a specified deviation from the ground

truth. The FDR for the ith formant over N analysis frames is

computed as

Di ¼
1

N

XN

n¼1

I DFi;nð Þ; (19)

IðDFi;nÞ ¼
1 if ðDFi;n=Fi;n < sp and DFi;n < saÞ
0 otherwise;

�
(20)

where Ið�Þ denotes a binary formant detector function and

DFi;n ¼ jFi;n � F̂i;nj is the absolute deviation of the hypothe-

sized formant frequency F̂i;n for ith formant at the nth frame

from the reference ground truth Fi;n. The thresholds sp and

sa denote the percentage deviation and absolute deviation,

respectively.

On a linear frequency scale, using a single detection

threshold, either a percentage threshold or an absolute

threshold is problematic. The percentage deviation for higher

formants needs to be smaller than that for the lower for-

mants. Similarly, the absolute deviation for lower formants

needs to be smaller than that for the higher formants. In

order to address this issue, two thresholds, one on percentage

deviation and the other on absolute deviation, are used in

order to define a common detection strategy for all formants.

The percentage threshold is set to control the detection rates

of lower formants, whereas the absolute threshold controls

the detection rates of higher formants.

FEE is measured in terms of the average absolute devia-

tion of the hypothesized formants from the ground truth. The

FEE for the ith formant over N analysis frames is computed

as

Ei ¼
1

Ni

XN

n¼1

DFi;n: (21)

Mean absolute deviation is chosen over the root-mean-

square error measure so as to reduce the domineering effect

of the outliers on the average score.

C. Experiments on LF model based synthetic vowels

1. Dataset

The effect of QCP-FB analysis on formant detection and

estimation accuracy is studied using synthetic speech signals

generated using an LF glottal source signal (Fant et al.,
1985) and an all-pole vocal tract filter (Makhoul, 1975). The

synthetic signals are generated for six different vowels ([a],

[i], [u], [e], [o], [ae]) for four different phonation types

(creaky, modal, breathy, and whispered), and four different

fundamental frequencies (80, 150, 250, and 350 Hz) (Gobl,

2003; Airaksinen et al., 2014). The LF model is a parametric

model for the glottal flow derivative waveform (Fant et al.,
1985), where te, tp, ta, and Ee constitute the LF parameters

that define the waveform. The LF parameters can be repre-

sented in an alternate dimensionless form of Ee, Ra, Rg, and

Rk with the advantage that they can be interpolated within

their respective ranges obtained from Gobl (2003) to get a

thorough range of possible excitations. The all-pole filter is

generated using the typical first four formant frequency and

bandwidth values for all the vowels (Gold and Rabiner,

1968). The LF source parameter values used to synthesize

the vowels are given in Table I.

2. Results

Formant detection rates for the compared methods are

given in Fig. 3(a). A stringent detection threshold (within

sp ¼ 10% and sa ¼ 100 Hz deviation) is used for FDR com-

putation owing to the availability of absolute ground truth.

Two thresholds are used, one based on percentage to

TABLE I. The standard LF parameters used to synthesize the glottal flow

derivative signals with different phonation types.

Phonation type Ee Ra Rg Rk

Modal 1 0.01 1.17 0.34

Breathy 10ð0:7=20Þ 0.025 0.88 0.41

Whisper 10ð�4:6=20Þ 0.07 0.94 0.32

Creaky 10ð�1:8=20Þ 0.008 1.13 0.2
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constrain lower formants and the other based on the absolute

value to constrain higher formants. However, it is important

to note that all formants have to satisfy both conditions to be

considered as detected. It can be seen that all the QCP meth-

ods outperform the conventional LP based methods. The

improvements in FDR are around 16–18 percentage points

(pp) for the first formant, 3–4 pp for the second, and around

8 pp for the third.

Similarly, formant estimation accuracy of the methods

measured in terms of FEE is shown in Fig. 3(b). There is a

corresponding decrease in FEEs by around 20, 21, and 27 Hz

for the first three formants, respectively, between the LP-

FBCOV and QCP-FBCOV methods. It should be noted that

all the QCP methods perform significantly better than their

LP counterparts. Within the QCP family, the FBCOV

method performs marginally better (overall when averaged

over all three formants) compared to ACOR and COV for-

mulations, in spite of a marginal decline in the already high

F3 detection and estimation performance. It should however

be noted that the performance of all the QCP methods are

already quite high on the synthetic data, and the data may

not be challenging enough to demonstrate any decisive supe-

riority of the FBCOV method.

The average FDRs and FEEs of the different methods

for different phonation types and fundamental frequency are

given in Figs. 4 and 5. The QCP variants perform consis-

tently better than their LP counterparts by around 10 pp

across all phonation types both in terms of detection as can

be seen from Fig. 4(a). Similarly, the QCP methods perform

better than their LP counterparts at high fundamental fre-

quencies (250 and 350 Hz mean F0) by around 18–20 pp, as

can be seen from Fig. 4(b). This demonstrates the effective-

ness of the QCP weighting function. However, the LP and

QCP methods perform almost similar at low fundamental

frequencies (80 and 150 Hz mean F0).

The FEEs for the QCP methods are around 15–20 Hz

lower than their LP counterparts across all phonation types

as can be seen from Fig. 5(a). Similarly, the FEEs for the

QCP methods are around 1–2, 10, 25, and 40 Hz lower than

their LP counterparts for the four different mean F0 values,

respectively. In terms of FDR, the QCP-FBCOV method

shows marginal improvement in performance compared to

the ACOR or COV formulations across all phonation types

and across all fundamental frequencies (Fig. 4). In terms of

FEE, the QCP-FBCOV method when compared to their

ACOR and COV counterparts has 2–10 Hz lesser error

across different phonation types and fundamental frequen-

cies, except for some degradation for creaky phonation (by

around 12 Hz) and at 350 Hz F0 (by around 2 Hz). However,

the QCP-FBCOV method performs consistently and signifi-

cantly better than the conventional LP methods across all

phonation types and fundamental frequencies.

D. Experiments on physical model based synthetic
vowels

One of the main issues with comparative experiments

using synthetic data is the possibility of an inherent bias in the

performance metrics toward any method with a modeling tech-

nique similar to that used for synthesizing the data. The experi-

ments in Sec. IV C using LF source and all-pole vocal tract

filter model are inherently biased toward any LP based

method. However, the bias is not very serious considering the

fact that the methods being compared are all based on LP.

Nevertheless, one way to address this bias issue is to use data

synthesized using a different modeling technique.

FIG. 3. (Color online) (a) FDR and (b)

FEE for the first three formants (F1, F2,

and F3) and the average performance

across all three formants (fourth row) on

synthetic vowels with the LF glottal

source averaged over all four phonation

types and all four fundamental frequen-

cies. In all subsequent figures, the error

bars on the FEE scores denote the 95%

confidence interval for the mean abso-

lute errors, and the legend denotes the

list of methods being compared in the

order of plotting.
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1. Dataset

A computational model of the physical speech produc-

tion system was used to generate synthetic vowel samples

for this purpose. The data consists of four different vowel

types ([a],[i],[ae],neutral vowel) synthesized at eight differ-

ent fundamental frequencies (100 to 450 Hz in steps of

50 Hz) for three different representative speakers (an adult

male, adult female, and a child aged approximately 5 yrs).

The dataset consists a total of 96 (4� 8� 3) steady vowels

of duration 0.4 s each at a sampling frequency of 44.1 kHz,

and later downsampled to 10 kHz. More details of the dataset

on the physical modeling of the vocal source and tract can

be found in Alku et al. (2013).

2. Results

Performance of the different LP and QCP methods with

ACOR, COV, and FBCOV formulations in formant detec-

tion and estimation is given in Table II. A prediction order

of 12 with a pre-emphasis filter ½1� 0:97z�1� was used for

all methods. The results in Table II are shown with and with-

out (in parentheses) inclusion the 8 female vowel utterances

[i] as almost all methods (except LP-ACOR) seem to have a

problem detecting the third formant at 4909 Hz (with 10 kHz

sampling rate) in these utterances. It is to be noted here that

the third formant frequency used for the female vowel [i] by

Alku et al. (2013) is a bit higher than the average F3 of

3372 Hz reported for adult female [i] by Hillenbrand et al.

FIG. 4. (Color online) FDRs of differ-

ent methods on synthetic LF vowels

averaged over the first three formants

for different (a) phonation types and

(b) fundamental frequency (F0).

FIG. 5. (Color online) FEEs of differ-

ent methods on synthetic LF vowels

averaged over the first three formants

for different (a) phonation types and

(b) fundamental frequency (F0).
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(1995). However, with the exception of this third formant,

QCP-FBCOV shows a consistent improvement over the other

methods. The FDR scores evaluated at a threshold of sp ¼ 30%

and sa ¼ 300 Hz deviation show that the QCP-FBCOV can

improve upon the QCP-COV method even though the LP-

ACOR method gives the best scores in some cases. The FEE

scores for the different methods point toward a trend where an

FBCOV analysis can in general improve upon the ACOR anal-

ysis. However, the scores for COV and FBCOV show a bit of a

conflicting trend with LP-COV being better than LP-FBCOV

and QCP-FBCOV being better than QCP-COV, though the dif-

ferences are small.

E. Experiments on natural speech

1. Dataset

Performance of formant detection is evaluated on

natural speech signals using the VTR-TIMIT database

(Deng et al., 2006). The test data of the VTR-TIMIT

database which has 192 utterances, 8 utterances each

from 24 different speakers (8 female and 16 male), are

used for the evaluation. The first three reference formant

frequencies provided in the database have been obtained

in a semi-supervised manner, where the formant tracks

derived using an LP based algorithm (Deng et al., 2004)

is verified and corrected manually based on spectro-

graphic evidence. Performance on natural speech data is

evaluated only using FDR, since the reference formant

locations cannot be taken as absolute ground truth for

FEE computation. All the speech data, originally

recorded at 16 kHz sampling rate, is downsampled to

8 kHz before processing.

2. Results and discussions

Performance of the LP and QCP methods for a detection

threshold of within sp ¼ 30% and sa ¼ 300 Hz deviation is

given in Fig. 6. The FDRs are computed only for the regions

of vowels, semivowels, and diphthongs. In general, it can be

seen that the COV analysis performs better than ACOR, and

FBCOV performs better than both ACOR and COV. Also,

the QCP methods perform better than their LP counterparts,

with the exception of QCP-ACOR and QCP-COV in detect-

ing the first formant. This may be due to the availability of a

less number of samples for prediction, mostly from the

closed phase regions, in the case of QCP methods within a

glottal cycle. However, it can be seen that the use of

FBCOV analysis improves the detection performance of

QCP-FBCOV method by 2–3 pp compared to the ACOR

and COV methods.

TABLE II. Formant detection and estimation performance of different LP and QCP methods on synthetic data generated using a physical model. The numbers

within the parentheses denote the performance excluding 8 female vowel ([i]) utterances with a difficult to detect third formant close to half the sampling

frequency.

Method

FDR (%) FEE (Hz)

F1 F2 F3 dF1 dF2 dF3

LP-ACOR 94.7 (94.3) 94.1 (93.6) 93.4 (92.8) 76 (80) 102 (107) 100 (104)

LP-COV 95.0 (94.5) 94.1 (93.5) 85.5 (93.2) 74 (77) 96 (101) 219 (98)

LP-FBCOV 94.9 (94.4) 94.5 (94.0) 85.5 (93.2) 74 (77) 96 (101) 219 (98)

QCP-ACOR 91.3 (90.5) 91.9 (91.2) 89.2 (95.4) 72 (76) 82 (86) 173 (67)

QCP-COV 91.6 (91.4) 91.0 (90.2) 89.4 (95.8) 84 (74) 77 (82) 175 (63)

QCP-FBCOV 93.4 (92.8) 94.9 (94.5) 91.2 (95.5) 70 (74) 73 (76) 143 (66)

FIG. 6. (Color online) FDR for the first

three formants (F1, F2, and F3) on nat-

ural speech data.
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A male–female gender analysis of the results shows a

similar trend. All methods detect the first formant better in

female voices than male, while the trend is opposite in the

case of second and third formants. Also, the quantum of

improvement in FDRs by QCP-FBCOV over QCP-COV for

female voices (around 3–4 pp) is larger than that for male

voices (around 1–2 pp). Similarly, the FEE scores in Fig. 7

shows that the overall estimation error for QCP-FBCOV is

around 5 Hz (male 5 Hz, female 5 Hz), 16 Hz (male 12 Hz,

female 20 Hz), and 35 Hz (male 30 Hz, female 40 Hz) lesser

for the first three formants, respectively, as compared to the

QCP-COV method.

Performance of different methods averaged over all

three formants for three different phonetic classes, namely,

vowels, diphthongs, and semivowels, is shown in Figs. 8 and

9. It can be seen from Fig. 8 that the QCP-FBCOV method

consistently yields around 2%–4% improvement in detection

rates over other methods across all three phonetic classes.

The QCP-FBCOV reduces the estimation errors by 5–8 Hz

for the first formant, 10–25 Hz for the second, and 20–40 Hz

for the third, across the three phonetic classes. In general,

the improvements in FEE for the dynamic semivowel class

are larger compared to that for the steady vowel or diphthong

classes.

One important question that arises when evaluating a new

method is the significance of the improvements achieved. The

answer to this question mainly depends on the application in

which the proposed method would be used, e.g., auditory per-

ception of vowels, speaker identification, automatic speech

recognition, neurological speech disorder assessment. This

improved performance of QCP-FBCOV in FEE might not be

considered very meaningful from the point of view of human

auditory perception for which the difference limen for F1 and

F2 is known to be on the order of 3%–5% of the formant

FIG. 7. (Color online) FEE for the first

three formants (F1, F2, and F3) on nat-

ural speech data.

FIG. 8. (Color online) Average FDRs

(in %) of different methods for differ-

ent phonetic classes vowels, diph-

thongs, and semivowels.
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frequency (Flanagan, 1972). In acoustic-phonetic speech anal-

ysis, however, the lesser estimation error achieved by QCP-

FBCOV can be considered meaningful. Nevertheless, a statis-

tical significance test of these improvements using repeated

measures analysis of variance (RM-ANOVA) is presented in

Sec. IV E 3.

3. Repeated measures ANOVA

A RM-ANOVA followed by a post hoc Newman-Keuls

pair-wise t-tests was performed comparing the means of

absolute errors for the methods QCP-ACOR, QCP-COV,

and QCP-FBCOV. Significant differences (p< 0.001) were

observed in the means of the three methods for all three for-

mants (F1: [F(2, 53 796)¼ 427.55; p< 0.001; g2
p ¼ 0:02],

F2: [F(2, 53 796)¼ 568.05; p< 0.001; g2
p ¼ 0:02], and F3:

[F(2, 53 796)¼ 545.01; p< 0.001; g2
p ¼ 0:02]). A pair-wise

comparison of the methods showed that the QCP-FBCOV

method differed significantly (p< 0.001) from each of the

other two methods for all three formants. However, a com-

parison of QCP-ACOR and QCP-COV methods showed a

reduced significance (p< 0.05) for the first formant, a high

significance (p< 0.001) for the second formant, and no sig-

nificance (p> 0.05) for the third formant. Error bars denot-

ing 95% confidence intervals for the mean absolute errors

are shown in Figs. 7 and 9.

A similar comparison of the methods QCP-ACOR,

QCP-COV, and QCP-FBCOV was performed on LF syn-

thetic vowels and physical model based synthetic vowels. In

the case of LF synthetic data, the means of all three methods

showed significant differences (p< 0.05) for all formants,

except for the first formant between QCP-ACOR and QCP-

FBCOV as well as the second formant between QCP-ACOR

and QCP-COV. Similarly, in the case of physical models

data, all the means showed significant difference (p< 0.05)

for all formants, except for the third formant between QCP-

ACOR and QCP-COV.

4. Comparison with other WLP methods

A comparison of performance of the proposed QCP-

FBCOV method within the family of popular WLP methods

FIG. 9. (Color online) Average FEE

(in Hz) of different methods for differ-

ent phonetic classes vowels, diph-

thongs, and semivowels.

TABLE III. FDRs (in %) of different spectral representations for the first three formants (F1, F2, and F3) on natural speech data.

Method (!)
LP WLP XLP QCP

Analysis type (#) F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

FDR within 20% and 200 Hz dev

ACOR 83.2 80.5 78.9 81.5 79.7 77.7 83.1 79.9 76.9 81.1 81.0 79.9

COV 84.1 81.4 79.8 82.7 81.1 79.4 84.2 81.1 78.6 81.6 81.8 80.7

FBCOV 84.2 81.9 80.1 81.8 79.9 74.5 84.0 80.8 77.7 84.9 85.0 83.9

FDR within 25% and 250 Hz dev

ACOR 88.9 87.0 84.1 88.0 86.6 83.8 89.1 86.4 82.4 88.0 87.4 85.3

COV 89.3 87.7 85.0 88.6 87.5 85.0 89.7 87.2 83.7 88.1 87.8 86.0

FBCOV 89.4 88.2 85.2 88.8 86.5 80.9 89.7 86.9 82.9 90.4 90.5 89.1

FDR within 30% and 300 Hz dev

ACOR 92.2 90.9 87.4 91.5 90.9 87.4 92.5 90.6 86.0 91.6 91.4 88.5

COV 92.3 91.5 87.9 91.8 91.5 88.2 92.7 91.1 86.9 91.6 91.6 89.0

FBCOV 92.4 91.9 88.2 92.2 90.5 84.3 92.7 90.8 86.1 93.4 93.9 92.1
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in formant detection on natural speech from the VTR-TIMIT

database is given in Table III. It should be noted here that

the conventional LP analysis can also be considered as a spe-

cial case of WLP methods with equal temporal weight on the

prediction of each sample. The other two methods compared

are the conventional WLP using the STE weighting function

(Ma et al., 1993) and the extended linear prediction (XLP)

using a more generalized weighting function that allows dif-

ferent weights at different lags (Pohjalainen et al., 2010).

The WLP and XLP methods have been shown to provide

more robust spectral representations compared to conven-

tional LP under degradations and vocal effort mismatch.

The performance in Table III is provided for three dif-

ferent decision thresholds, and using all three formulations,

namely, ACOR, COV, and FBCOV, for each of the WLP

methods. It can be seen that the QCP-ACOR or QCP-COV

methods perform poorer than the conventional LP and XLP

methods in detecting the first formant. However the QCP-

FBCOV method performs better in detecting all three for-

mants compared among all WLP methods, and against all

analysis types. Results show that the proposed QCP-FBCOV

method performs better than the widely used LP-COV with

an improvement of �2.7 pp averaged across all formants

and thresholds. The improvements are much higher in the

case of second (�3 pp) and third formants (�4.1 pp) com-

pared to the first formant (�1 pp). Also, QCP-FBCOV

improves the detection rate of first formant by �2:7 pp com-

pared to the QCP-ACOR method. It can also be seen from

the results in Table III that the COV formulation performs

better than ACOR for all LP methods, and FBCOV improves

upon COV for LP and QCP methods. However, the quantum

of improvement by FBCOV over COV (or ACOR) is much

higher for the QCP method, demonstrating the effectiveness

of FB analysis in addressing the data-insufficiency problem

of the QCP analysis.

V. CONCLUSIONS

In this paper, a modified QCP analysis of speech signals

for accurate formant detection and estimation was proposed

that combines several advantages of WLP in the form of

QCP analysis and FB analysis. QCP analysis exploits the

WLP framework of sample selective prediction by designing

a weighting function that gives more emphasis on closed

phase regions and de-emphasizes the open phase as well as

the region immediately after the main excitation. The result

is a more accurate closed phase estimate of the vocal tract

system with a reduced influence from the glottal source. A

FBCOV analysis within the framework of WLP was utilized

for the first time. The FB analysis helps improve the FDRs

by providing more samples for prediction and by reducing

the problems of window positioning and line splitting.

Results from the formant detection experiments on natu-

ral speech data show that the proposed QCP-FBCOV method

performs significantly better than the conventional LP,

WLP, and QCP methods. QCP-FBCOV gives a FDR 2–3 pp

better than the QCP-COV method, and a reduction of aver-

age estimation error in the range of 6–35 Hz for the three

formants. QCP-FBCOV performs 1–4 pp better than the

LP-COV method in formant detection with a reduction of

average estimation error in the range of 1–44 Hz. The quan-

tum of improvement is higher for female voices as compared

to male voices underlining the significance of the method for

tracking formants from high-pitched voices.

However, it should be noted that the performance of the

proposed method is dependent on the accuracies of the esti-

mated GCIs. The robustness of the proposed method to inac-

curacies in GCI estimation in the face of degradations still

needs to be studied. Nevertheless, under clean conditions the

QCP-FBCOV method is clearly a better choice over conven-

tional LP based methods for formant detection, even more so

for high-pitched female voices.
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