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Abstract: Three absorbing layers are investigated using standard
rectilinear finite-difference schemes. The perfectly matched layer
(PML) is compared with basic lossy layers terminated by two types
of absorbing boundary conditions, all simulated using equivalent
memory consumption. Lossy layers present the advantage of being
scalar schemes, whereas the PML relies on a staggered scheme where
both velocity and pressure are split. Although the PML gives the lowest
reflection magnitudes over all frequencies and incidence angles, the most
efficient lossy layer gives reflection magnitudes of the same order as the
PML from mid- to high-frequency and for restricted incidence angles.
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1. Introduction

Simulations of free-field condition using a truncated numerical domain require a trun-
cation that shows both significant absorption of outgoing waves and a low memory
consumption. The numerical techniques used for the domain truncation can be split
into two categories: absorbing boundary conditions and absorbing layers. Whereas
absorbing boundary conditions are usually applied on a single node, absorbing layers
are defined over the range of nodes constituting the layer thickness. Although absorb-
ing conditions have been tested under various types of configuration with time-domain
methods, their efficiency is not often related to their relative memory requirements.

Modern finite-difference time-domain (FDTD) simulations are often computed
on massively parallel computation hardware such as graphics processing units
(GPUs).1 In those environments, the computational performance is typically limited by
the memory bandwidth as opposed to being compute-bound. For this reason, our
main focus is on memory usage although numbers of required operations are reported
as well. The selected absorbing techniques are tested for equivalent memory consump-
tion using standard rectilinear- (SRL-) FDTD updates, also known as standard leap-
frog.2 The numerical results, simulated using two-dimensional (2D) domains, give an
estimate of the absorbing efficiency as a function of frequency, incidence angle and
layer thickness. The theory related to absorbing conditions is briefly reviewed in Sec. 2.
The numerical results are presented in Sec. 3.

2. Theory

2.1 Absorbing boundary conditions

In this section, a 2D Cartesian coordinate system (x, y) is considered. The boundary is
parallel to the y-axis, and perpendicular to the propagation direction that follows the
x-axis.

The first-order Engquist and Majda boundary condition3 (EM-BC) at x¼ x(b)

is given by

@p
@x bð Þ

� 1
c
@p
@t
¼ 0; (1)

where c is the sound speed. Equation (1) can be written as a two-step (in time) SRL-
FDTD update
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N bð Þk
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where bpn
i is the discretized pressure at the node i and at the discrete time n, j corre-

sponds to the axial nodes, N is the total number of axial nodes, N(b) is an indicator
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function giving the number of boundary nodes, and k is the Courant number defined
by

k ¼ cTs

h
; (3)

where Ts is the time step and h is the spatial step.
The second-order Taylor series (T-BC) defined for the digital waveguide meth-

od4 can be applied to numerical methods that use rectilinear topologies such as the
SRL-FDTD method. The T-BC is defined as follows:

bpnþ1
i bð Þ ¼

5
2
bpn

i bð Þ�1 � 2bpn�1
i bð Þ�2 þ

1
2
bpn�2

i bð Þ�3; (4)

where the subscript i(b) corresponds to the location of the boundary. Compared to
EM-BC, it requires an additional step: bpn�2

iðbÞ�3. The SRL-FDTD update form of the
T-BC is a three-step scheme written as
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: (5)

2.2 Absorbing layers

An absorbing layer can be seen as an anisotropic media that gradually decreases the
pressure field magnitude along a given direction.

The basic lossy layer (LL) can be derived from the lossy wave equation

@2p
@t2 � c2Dpþ 2r

@p
@t
¼ 0; (6)

where r is the attenuation factor that gradually increases following the main propaga-
tion direction inside the absorbing layer, i.e., the direction normal to the boundary. It
is defined as

rx ¼ rmax
x� x0

eAL

� �2

; (7)

where eAL is the layer thickness, x0 the beginning of the absorbing layer, x 2 ½x0; xeAL �.
The attenuation factor is equal to zero outside the absorbing layer. The value of rmax

in Eq. (7) is empirically determined for given layer thickness by minimizing both the
round-trip and the transition reflections.5 The quadratic shape is chosen as a compro-
mise between linear and higher orders shape to minimize the transition reflection and
increase the performance of the layer.6 The SRL-FDTD update for Eq. (6) can be
written
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1
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The perfectly matched layer (PML) can be defined using different approaches
as reminded by Osokoi et al.5 It is chosen here to use a staggered finite difference
scheme,8 where the velocity and pressure grids are interleaved in both space and time.
In 2D, the update can be written as7

bvx
nþ0:5
i;j ¼ ef

x bvx
n�0:5
i;j � ec

xð bpx
n
iþ1;j � bpx

n
i;jÞ; (9a)

bvy
nþ0:5
i;j ¼ ef

y bvy
n�0:5
i;j � ec

yð bpy
n
i;jþ1 � bpy

n
i;jÞ; (9b)

followed by the pressure update

bpx
nþ1
i;j ¼ ea

xbpn
i;j � eb

xðbvx
nþ0:5
i;j � bvx

nþ0:5
i�1;j Þ; (10a)
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where bpnþ1
i;j ¼ bpx

nþ1
i;j þ bpy

nþ1
i;j . The factors ea, eb, ef, and ec are defined for the x coordi-

nate as
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ea
x ¼ e�rxTsqc2

; eb
x ¼

1� e�rxTsqc2

hrx
; (11a)

ef
x ¼ e�rxTs ; ec

x ¼
1� e�rxTs

hqrx
: (11b)

Equations (11) for y and z coordinates follow a similar form and are not given here
for brevity. The attenuation factor rx is defined following Eq. (7), and the maximum
value is set using7

rmax–PML ¼ �
log R
qch

; (12)

where the value of the reflection coefficient R is set to be at the lowest and adjusted by
minimizing the round-trip and the transition reflections5 for the average layer
thickness.

2.3 Memory requirements

The number of operations and the memory consumption per pressure-node is given in
Table 1 for ndim dimensional space. The thickness of the layer N and the number of at-
tenuation directions nrdir are taken into account in the estimation of the final memory
consumption of each layer. Both boundary conditions EM-BC and T-BC present simi-
lar memory consumption. The PML, because of the staggered scheme and the split
pressure field in Eqs. (9) and (10), presents a larger memory cost than the LL. For in-
stance, a 2D (ndim¼ 2) and single direction (nrdir¼ 1) PML of N¼ 4 pressure-node
thickness is equivalent in memory to a 10 nodes LL (Sec. 3.2).

3. Numerical results

Both boundaries and layers can be numerically tested by taking advantage of the geo-
metrical symmetry that allows to reduce the dimension of the domain from 3D to 2D,
without loss of information. The following simulations are implemented using 2D
schemes, which still enables to test several incidence angles and layer thicknesses.

3.1 Simulation settings and principle

The numerical domain used for 2D simulations is made of a propagation domain and an
absorbing condition, as depicted in Fig. 1. The source and the receivers are located at the
same distance from the absorbing boundary or from the entrance of the absorbing layer.

Table 1. Memory requirements for each absorbing condition for a layer thickness of N pressure-nodes, ndim

dimensional space, and nrdir the number of attenuation factor directions.

EM-BC T-BC LL PML

Thickness 1 1 N N
(pressure-node)
Additions 5þ ndim 6þ 2ndim 5þ 2ndim 4ndimþ (ndim � 1)
Multiplications 9 7 7 4ndim

Total operations 14þ 2ndim 13þ 2ndim N(12þ 2ndim) N(8ndimþ (ndim � 1))
per pressure-node
Memory consumption 3 4 N(2þ nrdir) N(2ndimþ 4nrdir)
(stored values)

Fig. 1. (Color online) Computational domain (2D) used for the assessment of the efficiency of (a) the combina-
tion of LLþ EM-BC or LLþT-BC; (b) PML.
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Eighty-one receivers are located along a line parallel to the boundary or the layer at dis-
tances that correspond to angle of incidence h ranging from 0� to 80�.

The propagation domain is made of a scalar pressure scheme computed over a
grid of regularly spaced pressure-nodes. The PML is the only absorbing condition that
requires interleaved pressure and velocity grids,8 i.e., the scheme is staggered. In this
case, SRL scalar and staggered schemes are equivalent9 and can be directly connected
to each other.

The sampling frequency is set equal to Fs¼ 8000 Hz, which is equivalent to
a time step Ts¼ 1.25¼ 10�4 s. The simulations are carried out at the Courant limit
k ¼ 1=

ffiffiffi
2
p

. Using a sound speed c¼ 340 m s�1 gives a spatial step equal to h¼ 6.00
� 10�2 m. The total number of time steps for a simulation is set equal to 448, i.e.,
0.056 s. The source is soft type10 that emits a pulse with a constant frequency content
in the range f¼ [0, 2000] Hz, that corresponds to a normalized frequency range of
fnorm¼ f/Fs¼ [0, 0.25].

The thicknesses of the studied layers are constricted in eAL¼ [4–32] pressure-
nodes �[0.24–1.92] m. The maximum value of the lossy layer attenuation factor is
empirically set5 at rmax¼ 3000 s�1. In the case of the PML,7 rmax–PML¼ 0.18 s�1 that
corresponds to a reflection coefficient R¼ 0.01 in Eq. (12).

The reflection magnitude is calculated in two steps: first, the free-field pressurebpfree is calculated using an extended propagation domain where outgoing waves do not
collide with any boundary during the simulation duration. Second, the acoustic pres-
sure bp is calculated at the same location in presence of absorbing conditions. The
acoustic pressures bp and bpfree are windowed and transformed in the frequency-domain
that gives ~P and ~Pfree, respectively. The absolute value of the difference between the
two frequency-variables gives the reflection magnitude as a function of frequency. This
reflection magnitude is presented in dB as

Rðf Þ ¼ 20 log10ðj~Pfree � ~PjÞ: (13)

3.2 Preliminary observations on the absorbing conditions

The basic LL, because of its simplistic approach, presents only poor absorbing proper-
ties compared with the PML that has already proved to be a highly absorbing layer.7

Fig. 2. (Color online) Reflection magnitude (dB) obtained with the LL-EM-BC, the LL-T-BC, and the PML,
for three angles of incidence 0�, 45�, and 80�.

Fig. 3. (Color online) Reflection magnitude in dB for incidence angles ranging from 0� to 80� along frequency
for the LL-T-BC (left) and the PML (right).
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However, absorbing properties of the LL can be improved using an absorbing
termination such as the EM-BC or the T-BC [Fig. 1(a)], which gives two layers: the
LL-EM-BC and the LL-T-BC, respectively. The following numerical results focus on
the reflection magnitude given by the three absorbing layers: the LL-EM-BC, the
LL-T-BC, and the PML, all for equal memory consumption.

Considering a 2D (ndim¼ 2) and single direction (nrdir¼ 1) PML of NPML
pressure-nodes, the equivalence between NPML and NLL for equal memory consump-
tion is given by 8NPML ¼ 3NLL þ 3NEM–BC ¼ 3NLL þ 4NT–BC, where NEM–BC ¼ NT–BC
¼ 1. Averaging the number of nodes NLL between the LL-EM-BC and the LL-T-BC,
for a range of NPML¼ [4, 8, 12, 16] nodes, gives a unique equivalent set of NLL¼ [10,
20, 31, 42] nodes.

3.3 Results

The reflection magnitudes obtained with the three layers LL-EM-BC, LL-T-BC, and
PML, are shown in Fig. 2, at three incidence angles and for equal memory consump-
tion. Among the three layers, the LL-EM-BC presents the highest reflection magni-
tudes. Although the LL-T-BC presents for specific frequencies the lowest reflection, the
PML remains on average overall frequencies and angles the most absorbing layer as
shown in Fig. 3.

Four layer thicknesses are compared in Fig. 4 between the LL-T-BC and the
PML for three incidence angles and three frequencies, i.e., fnorm¼ 0.01, 0.05, and 0.15.
The LL-T-BC presents lower reflection magnitudes than the PML at 0� and 45� only
at the highest frequency. For larger incidence angles the PML remains the most
absorbing layer.

4. Conclusions

Three absorbing layers have been compared to each other using the SRL-FDTD
schemes of equivalent memory consumption. The PML and the LL-T-BC present the
lowest reflection magnitudes. The PML performs better than the LL-T-BC at low
frequencies for all incidence angles, and for large incidence angles at all frequencies.
The LL-T-BC gives similar or better performance than the PML at mid- and high-
frequencies for low incidence angles. In terms of memory, the PML is the only
approach that requires a staggered pressure and velocity scheme, where the pressure
field is split following each direction. In comparison, the LL-T-BC only requires a
scalar pressure grid and an additional stored value at the boundary. Considering both
the absorbing efficiency and the memory cost, for specific geometries where low
incidence angles are predominant, the LL-T-BC can be an alternative absorbing
scheme of interest.
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