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A multimodal spectral approach to characterize rhythm

in natural speech

Anna Maria Alexandrou,® Timo Saarinen, Jan Kujala, and Riitta Salmelin
Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Finland

(Received 10 September 2015; revised 25 November 2015; accepted 22 December 2015; published
online 12 January 2016)

Human utterances demonstrate temporal patterning, also referred to as rhythm. While simple oromo-
tor behaviors (e.g., chewing) feature a salient periodical structure, conversational speech displays a
time-varying quasi-rhythmic pattern. Quantification of periodicity in speech is challenging. Unimodal
spectral approaches have highlighted rhythmic aspects of speech. However, speech is a complex mul-
timodal phenomenon that arises from the interplay of articulatory, respiratory, and vocal systems.
The present study addressed the question of whether a multimodal spectral approach, in the form of
coherence analysis between electromyographic (EMG) and acoustic signals, would allow one to char-
acterize rhythm in natural speech more efficiently than a unimodal analysis. The main experimental
task consisted of speech production at three speaking rates; a simple oromotor task served as control.
The EMG-acoustic coherence emerged as a sensitive means of tracking speech rhythm, whereas
spectral analysis of either EMG or acoustic amplitude envelope alone was less informative.
Coherence metrics seem to distinguish and highlight rhythmic structure in natural speech.

© 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1121/1.4939496]

[SSN]

I. INTRODUCTION

Natural speech is characterized by regularities in the
occurrence of its constituent elements. These temporal regu-
larities may also be referred to as speech rhythm. A salient
rhythmic structure can be observed in basic oromotor com-
municative gestures such as lip—smacking in primates
(Ghazanfar, 2013), as well as in rudimentary forms of
speech, such as babbling (Dolata et al., 2008) and syllable
repetition (Ruspantini et al., 2012). Despite its inherently
more complex structure, natural speech also displays rhyth-
mic components which are, however, harder to detect and
quantify. Rhythm is viewed as a key organizational principle
of speech and considered crucial for communication
(Cummins and Port, 1998; Kohler, 2009; Tilsen, 2009).
Speech rhythm enables language acquisition (e.g., Petitto
et al., 2001; Nazzi and Ramus, 2003), development of read-
ing skills (Flaugnacco et al., 2014; Woodruff et al., 2014),
dynamic coupling of speech production and speech percep-
tion (Martin, 1972; Smith, 1992), and predictions about sa-
lient future events that facilitate subsequent processing
(Cutler and Butterfield, 1992). The present study aims to
quantify the temporal regularities in spontaneous, natural
speech by examining the periodic structure of speech-related
physical signals.

The definition of speech rhythm adopted in the present
study is, hence, somewhat different from a predominant out-
look on speech rhythm which emphasizes linguistic and pho-
netic aspects of rhythm such as meter and prosody. A
conventional linguistic approach to speech rhythm divides
languages into different rhythmic categories (“time-stressed”
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or “syllable-stressed”) according to timing patterns of
stressed syllables (Abercrombie, 1967). This premise of sim-
ple isochrony in speech has since been questioned (e.g.,
Cummins and Port, 1998; Ramus et al., 1999; Kohler, 2009).
Speech rhythm has subsequently been assessed through de-
scriptive measures examining the temporal relationships
between basic phonological units, using, for instance, speak-
ing rate variations (Dellwo and Wagner, 2003; Dellwo,
2008). Alternatively, approaches based on coupled oscilla-
tors (e.g., Barbosa, 2007; O’Dell and Nieminen, 2009;
Meireles and Gambarini, 2012) view speech rhythm as being
composed of two interdependent recurring elements, perio-
dicity and structure (Fraisse, 1974), or a syllabic and
syllable-stress oscillator, respectively (Barbosa, 2007). This
multiplicity and evolution in methods and approaches for
quantifying rhythm can be seen as a testimony to the fact
that speech, in general (Greenberg, 2006), and speech
rhythm, in particular (Kohler, 2009), is a multi-layered phe-
nomenon which can be studied from various viewpoints. The
present paper focuses on one quantitative aspect of speech
rhythm that considers periodic fluctuations in speech signals
associated with the production of words and syllables. Such
a mechanistic definition of speech rhythm may also be
understood in terms of the syllabic oscillator part of the
coupled oscillator model proposed by Barbosa (2007), and is
a description of rhythm that uses measurable speech-related
signals. Periodic components in a speech stream may be
characterized by spectral decomposition of speech signals
(Tilsen, 2008; Tilsen and Johnson, 2008), where periodicity
is identified as power maxima in acoustic amplitude enve-
lope spectra (e.g., Chandrasekaran et al., 2009).
Frequency-domain signal processing tools are being
increasingly employed to investigate the acoustic (Das et al.,
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2008; Tilsen and Johnson, 2008; Tilsen and Arvaniti, 2013)
and muscular (electromyographic, EMG) (e.g., Ruspantini
et al., 2012) aspects of speech signals and speech rhythm.
The acoustic envelope carries temporal features which
reflect rhythm in speech (Rosen, 1992). These are observed
on slow timescales and chiefly consist of low-frequency am-
plitude fluctuations of the acoustic envelope (Rosen, 1992).
In speech rhythm research, the acoustic signal has often been
investigated in the time domain (e.g., Ramus et al., 1999); in
particular, energy fluctuations in the acoustic amplitude en-
velope are suggestive of syllabic rhythm (Marcus, 1981;
Cummins and Port, 1998). When aiming to describe rhythm
in speech, the power spectrum of the amplitude envelope of
the acoustic signal seems more informative than time-
domain methods since the spectral estimate does not rely on
any pre-determined hypothesis about the rhythmic structure
of an utterance (Tilsen and Johnson, 2008). In addition to
acoustic signals, neuromuscular (i.e., EMG) signals are
highly relevant markers of speech rhythm: they indirectly
measure the synchronous firing of motor neurons and, hence,
are indicative of motor control and activation patterns of a
given muscle or muscle group. For instance, peri-oral EMG
(e.g., Wohlert and Hammen, 2000) is a reliable marker of
muscular activity associated with the movement of the artic-
ulators (e.g., lip and tongue). Frequency-domain analysis of
surface EMG signals has demonstrated a rthythmic pattern of
activation in articulatory muscles during speech-related tasks
(Smith et al., 1993; Ruspantini et al., 2012; Shepherd et al.,
2012). While EMG alone captures various important aspects
of speech production, articulatory muscle activity is invaria-
bly accompanied by respiratory and phonatory events from
the vocal tract and vocal chords. It could be, thus, suggested
that acoustic and EMG signals are interrelated in both time
and frequency domains, although each signal may also dif-
ferentially highlight (sub)segments of speech, such as conso-
nants or vowels (e.g., Gracco, 1988).

Frequency-domain analyses of acoustic and EMG sig-
nals thus have, each separately, proven their usefulness in
describing speech rhythm. However, it seems important to
consider these two signals jointly as they represent comple-
mentary parts of the process of natural, coherent speech
production. Speech is a complex signal originating from the
coordination of numerous effectors with varying intrinsic
timescales. Multiple processing levels involving the neuro-
muscular, articulatory, and respiratory systems come to
play in order to produce the resulting acoustic output
(Alfonso and Baer, 1982). Furthermore, the rhythmic char-
acteristics of the output are dynamic and vary with time,
thus making it difficult to accurately define and quantify
speech rhythm (O’Dell et al., 2007; Tilsen and Arvaniti,
2013). Because of this, it would seem unlikely that collect-
ing data from a single modality would be sufficient to fully
describe the temporal rhythmic features of the acoustic out-
put. In accordance with previous views (Cummins, 2009,
2012), it is thus proposed that reaching a global description
of speech rhythm would greatly benefit from adoption of a
multimodal and integrative perspective. Coherence analysis
between acoustic and EMG signals is a multimodal method
which provides a quantitative measure of the correlation of
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these signals in the frequency domain. Coherence analysis
as a measure of synchrony between two signals (for
instance, EMG-EMG or EMG-cortical coherence) has valu-
able applications in both basic neurophysiological research
and clinical applications (for a review, see Grosse et al.,
2002).

In this study, a multimodal approach including coher-
ence analysis of EMG and acoustic signals is employed to
investigate rhythm in conversational speech. Acoustic and
EMG signals are collected during natural speech production
at different speaking rates. Speaking rate is a complex tem-
poral variable determined by both articulation time and
pause time (Grosjean and Deschamps, 1975). Habitual
speaking rates are behaviorally expressed as phonemic
(10-12 Hz), syllabic (4-5 Hz), and word (2—-3 Hz) production
frequencies (Levelt, 1999; Poeppel et al., 2008). Speaking
rate displays remarkable flexibility: one may voluntarily
modulate the rate of an utterance so that it is faster or slower
than the habitual rate (Grosjean and Lane, 1976). In running
speech, linguistic units such as words and syllables recur in a
semi-regular fashion as a function of time. This quasi-
periodic recurrence of linguistic units results in a distinctive,
albeit time-varying, rhythmic pattern in speech signals
(Tilsen and Arvaniti, 2013). Speaking rate is viewed as a
global parameter that affects the entire command sequence
for an utterance. Modulations in speaking rate induce pho-
netic modifications which alter the temporal features of an
utterance and, therefore, its rhythmic structure (Smith et al.,
1995; Dellwo, 2008; Meireles and Barbosa, 2008).
Physically, these changes are reflected as shifts in the spec-
tral power distribution of speech-related signals (Kelso
et al., 1986; Smith et al., 2002). In the present experimental
design, speaking rate is employed as an independent variable
that serves to alter the power spectral distribution of the
measured signals in a controlled manner and, in the subse-
quent signal analysis, helps to determine the relevance and
adequacy of our multimodal approach in discerning rhyth-
mic patterns in speech. The natural speech production tasks
are complemented by a /pa/ syllable repetition task as a con-
trol (Ruspantini et al., 2012). Syllable repetition represents a
rudimentary form of speech (Davis and MacNeilage, 2002)
that offers a simple and clear-cut rhythmic motor task to
serve as a frame of reference when investigating the rhyth-
mic features of the more complex natural speech.

The present study addresses the question of an effective
means of measuring how rhythm is encoded in natural
speech. Given that speech production is inherently multimo-
dal, coherence analysis between EMG and acoustic signals
could reveal the shared, functionally most relevant frequen-
cies of operation of the human speech production apparatus.
A further key point of interest is whether these operational
frequencies correlate with behaviorally estimated production
frequencies of linguistic units such as words and syllables. If
proven efficient, a multimodal approach, such as the one pre-
sented here, could shed more light on the nature of speech
rhythm and contribute to a better understanding of the under-
lying mechanisms of the production of rhythmic linguistic
output.

Alexandrou et al.



Il. METHODS
A. Participants

Twenty healthy Finnish-speaking volunteers (11
females; 9 males; all right-handed; mean age 24.5 yr, range
19-35 yr) gave their informed consent to participate in the
study, as approved by the Aalto University Ethics
Committee.

B. Experimental design

The participants were asked to produce connected
speech prompted by questions (in Finnish) randomly derived
from six distinct thematic categories (own life, preferences,
people, culture/traditions, society/politics, general knowl-
edge; Table I). To avoid repetition and learning effects, each
thematic question was presented only once during the
experiment. When replying, the participants were asked to
speak casually, as if talking to a friend, at one of three rates:
natural/normal, slow, or fast. With regard to the slow rate,
they were asked to aim for 50% of their normal speaking
rate, by preferably increasing their articulation time rather
than their pause time. For the fast rate, they were instructed
to speak as fluently and continuously as possible at the high-
est speaking rate possible, however, without severely com-
promising the intelligibility or the correct articulation of the
produced speech.

A training phase preceded the actual experiment to help
the participants to outline and modify their speaking rate
range. The participants were presented with a speaking rate
continuum (modified from Tsao et al., 2006) that represented

the range schematically and in which 100% stood for the
spontaneous, natural speaking rate. The continuum consisted
of several anchoring points at 25%, 50%, 75%, 125%,
150%, and 200% of the normal speaking rate. Participants
were presented with a training set of thematic questions (dif-
ferent than those used in the actual experiment) to be
answered first at normal rate (i.e., at 100%), and then at a
faster (~150% of normal) or slower (50% of normal) rate
than normal speech, aided by the anchoring points.
Subsequently, in the actual experiment, speaking rate varia-
tions were carried out based on the subjective perception of
the participants; no external pacing device was used.

A single speech production block consisted of a spoken
thematic question (duration 3-9s; mean 5.6 = 1.3s) and a
40-s response period. A signal tone (50-ms, 1-kHz tone)
indicated the beginning of a block, and another signal tone
(50-ms, 75-Hz tone) signified the beginning and end of the
response period. All sounds were presented via panel loud-
speakers. The mean interval from the end of one response
period to the beginning of the next one was 9.1 s, composed
of a 2.5-s rest period between blocks, mean question dura-
tion 5.6 s and a 1-s delay before response onset.

As a control condition, we examined repeated produc-
tion of the syllable /pa/ (Ruspantini et al., 2012). All partici-
pants performed this task at their normal rate; additionally,
10 out of 20 subjects were randomly chosen as a control
group that performed /pa/ repetition at slow (50% of normal
repetition rate) and fast rates (close to maximal, ~150% of
normal repetition rate). A /pa/ repetition block consisted of a
40-s /pa/ repetition period, with a tone signal (50-ms, 75-Hz
tone) indicating the beginning and end of the period.

TABLE 1. Thematic questions used to elicit natural speech from the participants. Each column stands for one thematic category, each category consisting of

five questions.

General
Own Life Likings People Culture/Traditions Society/Politics Knowledge
What are your What kinds of foods do Describe a known Describe what What is the role of What do you
plans for this day you like? musician, singer, happens during a the President of know about skiing
and/or the follow- or composer. Why holiday at a cot- Finland? Describe and
ing days? do you find her/ tage in the Finnish the Finnish presi- snowboarding?

him interesting?
Describe a known
artist, writer, or
film director. Why
do you find her/
him interesting?
What is a typical What kinds of books or Which movie, lit-
weekend like for movies do you like? erature, or comic
you? book character
would you like to
be and why?
Describe a top
athlete from the
present or the
past.

What kind of hob-
bies do you have
or have had during
your life?

‘What kinds of vacation
trips do you like?

What kinds of animals do
you like?

Talk about your
work or
education.

What is a typical What kinds of desserts do Describe the cur-
weekday like for you especially enjoy? rent President of
you? Finland.

countryside.
Describe a tradi-
tional Christmas
holiday.

Describe the tradi-
tional
Midsummer’s cel-
ebration in
Finland.
What kinds of tra-
ditions are associ-
ated with May 1st
celebration in
Finland?
Describe what
happens during a
summer festival in
Finland.

dential institution.
Describe the polit-
ical parties of
Finland.

Talk about public

transport and pri-

vate car usage in
Finland.

How does the
Finnish school
system operate?

What do you
know about gar-
bage and recy-
cling policies in
Finland?

Describe what
happens during
the Olympic
games.

Describe Africa’s
geography and

nature.

Talk about what
comes to mind
about poker and
gambling.

What kinds of
buildings can be
seen in the center
of Helsinki (capi-

tal of Finland)?
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Repetition blocks were separated by 10s of rest to approxi-
mate the timing of the speech conditions.

The order of the experimental conditions was random-
ized across participants. Prior to the first block of each con-
dition, participants were informed of the upcoming task
(speech production or /pa/ repetition) via visual input. There
were six blocks per experimental condition, thus, totaling
~4 min of data for each rate of speech production and /pa/
repetition. During the measurement, participants were
instructed to keep their gaze on a fixation point projected on
a screen that was placed in front of them, at a distance of
~1 m from their sitting position.

The data reported in the present study were collected as
part of a more extensive neuroimaging project in which mag-
netoencephalography was used to track brain dynamics in
the aim to characterize the correspondence between neural
patterns and behavior in natural language perception and
production. The neuroimaging data will be reported
separately.

C. Recordings

Acoustic signals were recorded using a portable audio re-
corder (FOSTEX FR-2LE, Tokyo, Japan) and sampled at
44.1kHz. Surface EMG signals were registered with reusable
circular electrodes (conductive area diameter 0.4 mm), low-
pass filtered at 330 Hz, and sampled at 1.5 kHz. Two bipolar
EMG channels were used to record muscular activity from
the lower lip muscles (orbicularis oris), as well as muscular
activity associated with tongue and jaw movements (primarily
from genioglossus and mylohyoid muscles). Muscular activity
from lower lip muscles was measured by placing the pair of
electrodes directly under the left-hand side of the lower lip,
~1cm from the midline. Muscular activity associated with
tongue and jaw muscles was recorded by placing the pair of
electrodes on the soft tissue directly beneath the jawline (left-
hand side), ~2 cm from the midline. The exact location of the
electrodes was determined individually for each participant
via tactile inspection of the soft tissue beneath the jawline
during repetitive production of the /n/ consonant. For both
EMG channels, inter-electrode distance was 1.5 cm. Electrode
resistance remained below 10 kQ.

D. Behavioral analysis

The raw acoustic signal was analyzed both through a be-
havioral pipeline [Fig. 1(A), left] and a signal analysis pipe-
line [Fig. 1(A), right].

The audio materials from all participants, comprising
both the speech production and /pa/ syllable repetition
conditions, were transmitted to a transcribing company
(Tutkimustie Oy, Tampere, Finland) for strict verbatim tran-
scription, in which the audio materials are transcribed with-
out being edited or modified. For speech audio materials, all
spoken words, including utterances, false starts, repetitions,
filler words, and slang were transcribed, including meaning-
ful pauses and usual sounds (such as laughter). Any other
kind of non-verbal communication was excluded. Syllable
repetition materials were transcribed using the same princi-
ples. Transcription was carried out manually (i.e., without the
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A Analysis of the acoustic signal

Raw acoustic signal
(speech and /pa/)

/N

Behavioral Spectral and
analysis coherence analysis
Transcription Amplitude envelope

(audio to text) extraction

v v

Behavioral
frequencies
(word, syllable, /pa/)

Power spectra and
their cross-correlation
(coherence spectra)

B Examples of raw acoustic and EMG signals
Acoustic signal ) EMG signal
1 1
0
0
-1 -0.6
0 5 0 5

Acoustic amplitude EMG amplitude

envelope envelope
0.6 1
-0.4 0 .
0 5 0 5

FIG. 1. Analysis procedures. (A) Flow chart of behavioral (left) and spectral
(right) analysis of the acoustic signal. See Sec. II for a detailed description.
(B) Examples of raw data (top) and resulting amplitude envelopes (bottom)
of acoustic (left) and EMG (right) signals recorded from one participant dur-
ing normal-rate speech production. Normalized amplitude (in arbitrary units;
y axis) is plotted against time (in seconds; x axis). Each plot displays a 5-s
chunk of data taken from a 40-s speech production block. For this particular
block, mean word and syllable repetition frequencies were 2.66 Hz and
5.45 Hz, respectively.

aid of any voice-recognition system) using a transcription-
specific software to play back each audio file.

Subsequently, based on the transcription, syllable pro-
duction frequencies were calculated by syllabifying all tran-
scribed words. Word and syllable production frequencies or
the /pa/ syllable production frequency were calculated sepa-
rately for each 40-s speech production block. The mean val-
ues of the word and syllable production frequencies, or the
/pa/ syllable repetition frequency, for a given experimental
condition and participant were obtained by averaging the
values across the six blocks.

The individual mean word and syllable production
frequencies were used as a behavioral reference to interpret

Alexandrou et al.



any peaks appearing in the acoustic and EMG amplitude
envelope spectra and EMG—acoustic coherence spectra of
individual subjects. Similarly, the grand average across-
participants behavioral word and syllable production fre-
quencies and mean /pa/ syllable repetition frequencies were
used as reference in order to interpret any peaks emerging in
the group-level acoustic and EMG amplitude envelope spec-
tra and EMG-acoustic coherence spectra.

Speaking rate varies within a speaking turn that is com-
prised of multiple utterances and even within the course of a
single utterance. Such variation can be described with statis-
tical dispersion measures of syllable and word production
frequencies which may help to interpret power and coher-
ence spectra. Here, the dispersion measure of choice was the
range of word and syllable production frequencies and /pa/
syllable repetition frequencies for each subject and each
speaking rate. The range was computed as the difference
between the minimum and maximum mean production and
repetition frequency observed across the six 40-s blocks per
speaking rate. To facilitate comparisons between speaking
rates, normalized mean ranges for a given linguistic unit
(word, syllable) and /pa/ syllable at a given speaking rate
were obtained by dividing the mean range by the mean pro-
duction or repetition frequency.

E. Statistical analysis

All variables were first tested for normality of distribu-
tion using a Shapiro—Wilk test of normality. The effect of
speaking rate on mean word and syllable production fre-
quencies and ranges (20 participants) was tested using a one-
way within-subjects analysis of variance (ANOVA). The
same ANOVA design was used to evaluate the effect of rep-
etition rate on mean /pa/ repetition frequencies and ranges
(ten participants), as well as to compare within-participant
variation for speech and /pa/ syllable repetition at a given
rate (ten participants). Post hoc pairwise comparisons were
Bonferroni corrected.

The effect of speaking rate on the variance of word and
syllable production frequencies (20 participants) or /pa/
repetition frequencies (10 participants) was tested using a
likelihood-ratio (LR) test of equality of variances for paired
samples. This test evaluates differences between two nor-
mally distributed variances by extracting two separate
restricted log-likelihood values for each variable. The dif-
ference of these two log-likelihood values was computed
and referred to as a chi-squared distribution.

F. Spectral analysis of acoustic and EMG signals

As summarized in Fig. 1(A) (right), the raw acoustic
signal [example in Fig. 1(B), top left] was first bandpass fil-
tered (fourth order Butterworth filter) at 80-2500Hz to
emphasize the voiced signal portions which are relevant for
speech rhythm analysis (Hertrich et al., 2013). Subsequently,
the amplitude envelope of the bandpassed signal was
extracted by full-wave rectifying the signal and low-pass fil-
tering (fourth order Butterworth filter) at 10 Hz (Tilsen and
Arvaniti, 2013). The amplitude envelope was then normal-
ized by subtracting the mean and rescaling the envelope by

J. Acoust. Soc. Am. 139 (1), January 2016

its maximum absolute value, resulting in values between
1 and —1 [example in Fig. 1(B), bottom left]. The spectrum
of the downsampled (by a factor of 10), Tukey-windowed
(r=0.2), and zero-padded envelope was calculated by taking
the squared magnitude of the fast Fourier transform using an
8192-point window. Finally, a moving average operation
was applied to the resulting spectrum in order to smooth out
random spectral peaks and thus facilitate interpretation of
the spectrum (Tilsen and Arvaniti, 2013).

The raw EMG signal [example in Fig. 1(B), top right]
was first high-pass filtered at 15 Hz to remove motion arti-
facts (Van Boxtel, 2001). Subsequently, the EMG amplitude
envelope [example in Fig. 1(B), bottom right] was extracted
by full-wave rectification of the signal. EMG envelope spec-
trum was calculated using Welch’s spectral estimator with a
Hanning window (8192 points) at 75% overlap (Ruspantini
etal., 2012).

Group-level acoustic and EMG amplitude envelope
spectra for both speech production and /pa/ syllable repeti-
tion at all three speaking rates were computed by first divid-
ing the amplitude envelope spectrum of each individual
participant by its mean value and then summing these nor-
malized spectra across participants.

G. Coherence analysis

EMG-acoustic coherence was computed to determine
possible common periodic features in the EMG and acoustic
signals. Coherence quantifies the relationship between two
time-series in the frequency domain. The coherence spec-
trum was obtained by first computing the cross spectrum of
the amplitude envelopes of the two signals and subsequently
dividing it by the power spectra of the amplitude envelopes
of both signals (fast Fourier transform, Hanning 4096-point
window). Group-level EMG-acoustic coherence spectra for
both speech production and /pa/ syllable repetition at all
three speaking rates were computed by first dividing each
individual-participant coherence spectrum by its mean value
and then summing these normalized spectra across
participants.

lll. RESULTS
A. Behavioral analysis of speech rate

Word and syllable production frequencies [Fig. 2(A);
Table II] differed significantly between all speaking rates:
the rate increased from slow through normal to fast rate
[word: F(2,3.23)=237.32, P <0.0005; syllable: F(2,3.23)
=281.40, P < 0.0005; post hoc pairwise tests word and syl-
lable, slow < normal and normal < fast, P < 0.0005]. The
same increasing rate pattern was evident for /pa/ repetition
[F(2,0.67)=41.47, P <0.0005; post hoc pairwise tests, slow
< normal and normal < fast, P < 0.0005].

Between-participant variation [schematically illustrated
by the box length in Fig. 2(A)] was smallest for slow-rate
speech for both words and syllables [word: slow vs normal
¥* (13.38,1), P < 0.0001; slow vs fast y* (8.85,1), P < 0.005;
syllable: slow vs normal y*> (2.886,1), P <0.05]. For /pa/
repetition, variation increased systematically with speech
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rate: slow < normal < fast [slow vs normal ;(2 (13.67,1),
P <0.0005; slow vs fast 3> (54.95,1), P < 10" normal vs
fast y* (2.81,1), P < 0.05].

Within-participant variation, that is, the normalized fre-
quency range of words and syllables [Fig. 2(B); Table III]
was larger at the slow rate than at normal or fast rates for
speech conditions [word: F(2,38)=7.9, P <0.001; syllable:
F(2,38)=13.5, P <0.0005; post hoc pairwise tests, word:
slow > fast, P <0.05; slow > normal approaching signifi-
cance P =0.07; post hoc pairwise tests, syllable: slow > nor-
mal, P <0.01; slow > fast, P < 0.0005]. For /pa/ repetition,
range values did not differ significantly between the different

TABLE II. Word and syllable production frequencies (n=20; mean
=+ standard deviation) and /pa/ syllable production frequencies (n=10) at
three production rates. For slow and fast rates, frequencies as percentages of
normal are given in brackets.

Word Syllable /pa/
Slow 0.86 =0.19Hz 2.08 £0.5Hz 0.87 £0.27Hz
(40%) (44%) (47%)
Normal 2.17£0.46 Hz 4.82 £0.81Hz 1.83 £0.82 Hz
Fast 2.84 =0.39Hz 6.26 + 0.65Hz 411 = 1.36Hz
(136%) (123%) (225%)
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TABLE III. Normalized word and syllable production range (n =20; mean
=+ standard deviation) and /pa/ syllable repetition range (n=10) at three
production rates.

Word production Syllable production /pa/ syllable

rate range rate range repetition range
Slow 0.36 +0.20 0.39 £0.23 0.13 £0.06
Normal 0.25£0.08 0.21 =0.12 0.13 £0.08
Fast 0.21 £0.07 0.15 £0.06 0.20£0.18

rates [F(2,18)=1.1; P =0.35]. When comparing speech and
/pa/ syllable repetition (n=10; only participants that per-
formed both tasks at all three rates), within-participant varia-
tion was smaller for /pa/ repetition than for speech at slow
[F(2,0.63)=7.59, P <0.005; post hoc pairwise tests, word
> [pa/, P < 0.05; syllable > /pa/, P < 0.05] and normal rates
[F(2, 0.18)=3.41, P <0.05; post hoc pairwise tests, word
> /pa/, P <0.05].

B. Spectral analysis of speech rhythm
1. Power spectra

For natural speech [Fig. 3(A)], the group-level acoustic
and EMG power spectra (lip and tongue) were characterized
by a rather flat pattern with no discernible power maxima
(beyond the lowest-frequency 1/f power increase) at any of
the three speaking rates. The pattern was the same for the
individual acoustic (Fig. 4) and EMG (Fig. 5) power spectra,
with no salient local maxima.

In contrast, /pa/ syllable repetition [Fig. 3(B)] revealed
salient group-level acoustic and EMG power maxima at all
three rates. Furthermore, both the acoustic and EMG (lip and
tongue) spectra displayed fairly similar power distribution
patterns and local maxima.

2. Coherence spectra

Group-level EMG-acoustic coherence spectra (Fig. 6)
demonstrated salient peaks. Contrary to the case of power
spectra, local maxima were evident for both speech [Fig. 6(A])
and /pa/ conditions [Fig. 6(B)]. For /pa/ repetition, coherence
of the acoustic signal with either tongue or lip EMG channels
displayed a quasi-identical spectrum. For speech, however, the
coherence peaks for the acoustic signal with either tongue or
lip EMG were slightly apart (~1Hz difference). The coher-
ence peaks approximately aligned with the mean behavioral
frequencies [see Fig. 2(A); Table II] for both speech and /pa/
syllable repetition.

A correspondence between behavioral frequencies and
coherence maxima was also evident at the individual level
for both speech production (Fig. 7) and, most strikingly, for
/pa/ syllable repetition (Fig. 8).

IV. DISCUSSION

The main finding of the present study was that the tempo-
ral regularities in speech are remarkably well captured using a
multimodal spectral approach. Specifically, EMG-acoustic
coherence emerged as a more informative measure than
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plotted against frequency (in Hz; x axis). Each plot displays data from three
production/repetition rates: slow (dashed line), normal (solid line), and fast
(dotted line). The x axis has the same scale (0—8 Hz) as for the behavioral
data displayed in Fig. 1(A). Normalized power was computed using differ-
ent normalizing factors for speech production and /pa/ syllable repetition;
consequently, the resulting group-level amplitude envelope spectra are not
directly numerically comparable between these two conditions. All visual-
izations of these results have been scaled so that the y axis has a minimum
value of 0 and a maximum value of 1.

spectral analysis of either EMG or acoustic amplitude enve-
lopes alone. Coherence spectral peaks reflected behavioral
frequencies, whereas no such peaks were observed in the
EMG or acoustic amplitude envelope spectra.

The combined frequency-domain analysis of EMG and
acoustic signals, in form of coherence, was here shown to suc-
cessfully highlight behaviorally relevant temporal patterning in
speech. Although both signals reflect articulatory processes—
EMG as a measure of muscle activity and acoustic signal as a
marker of the vocal respiratory function—they are very differ-
ent in nature and origin and contain other features not neces-
sarily directly related to articulation, including various kinds of
noise [such as pink noise with a characteristic 1/f trend (Voss
and Clarke, 1975)]. Coherence analysis helps to suppress ran-
dom, uncorrelated activity in the signals and accentuate any
shared oscillatory patterning. The present findings regarding
EMG-acoustic coherence are consistent with the global frame-
work of speech rhythm and oscillatory cycles as an organizing
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FIG. 4. Relationship of group-level and individual acoustic power spectra
(speech) with mean and individual behavioral syllable production frequen-
cies at the three speaking rates: slow (top), normal (middle), and fast (bot-
tom). For each rate, the upper panel displays the group-level spectrum:
normalized power (in arbitrary units; y axis) is plotted against frequency (in
Hz; x axis), with the mean syllable production frequency indicated with an
arrowhead. The lower panel compiles the power spectral distribution for the
individual participants (rows), with power peaks indicated by a lighter shade
of gray. The participants are ordered by their individual syllable production
frequencies (circles).

principle of speech and as such are linked, on a general level,
to prominent theories in speech-acoustic research (Cummins
and Port, 1998; MacNeilage, 1998; O’Dell and Nieminen,
2009; Tilsen, 2009). More specifically, the signal-processing
methods presented in this paper are able to directly distinguish
the oscillatory components in naturalistic speech signals asso-
ciated with word and syllable production frequencies
(Chandrasekaran er al., 2009; Tilsen and Johnson, 2008).
Furthermore, EMG-acoustic coherence may be linked to the
notion of articulatory gesture as defined in the theory of articu-
latory phonology (Browman and Goldstein, 2000). According
to this theory, events taking place during speech production
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spectral distribution for the individual participants (rows), with power peaks
indicated by a lighter shade of gray. The participants are ordered by their
individual syllable production frequencies (circles).

may be modeled by domain-general task dynamics (Saltzman
and Kelso, 1987). Task dynamics in speech consist of target
vocal tract configurations requiring specific action from certain
articulators (e.g., lip opening). Natural speech production and
syllable repetition, paradigms used in the present study, consist
of dynamic spatiotemporal events involving successive ges-
tures. Acoustic output follows a given articulatory movement
after a certain fixed amount of time (Schaeffler er al., 2014).
Thus, coherence seems like an appropriate measure for sin-
gling out the parts of the EMG and acoustic signals that are
most directly linked with articulatory dynamics.

Coherence analysis may be further extended to include
kinematic data, which may be combined with existing evi-
dence of time-domain correlations of articulator velocities
(Gracco, 1988) and articulator apertures (Chandrasekaran
et al., 2009) with EMG and acoustic signals. Kinematic data
would also allow the examination of how dynamic coupling of
articulatory gestural kinematics with linguistic units, such as
words and syllables (Tilsen, 2009), is manifested in the fre-
quency domain. Other uses of coherence analysis in speech
research involve the quantification of the functional coupling
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lip) for speech production (left) and /pa/ syllable repetition (right).
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repetition; consequently, the resulting group-level amplitude envelope spec-
tra are not directly numerically comparable between these two conditions.
All visualizations of these results have been scaled so that the y axis has a
minimum value of 0 and a maximum value of 1.

(EMG-EMG coherence) between perioral and mandibular
muscles involved in articulation, enabling the investigation of
motor control patterns during speech production in both adults
(e.g., Moore et al., 1998) and children (e.g., Moore and Ruark,
1996). Furthermore, coherence analysis has been used to
reveal functional links between the motor cortex and EMG or
kinematic signals in rhythmic tasks (e.g., Jerbi et al., 2007;
Piitulainen et al., 2013), including a rudimentary language pro-
duction task (e.g., Ruspantini et al., 2012).

In the present study, salient EMG-acoustic coherence
spectral peaks were found in both speech and /pa/ repetition
tasks, suggesting an operational synergy that does not depend
on the degree of linguistic complexity. The frequency of the
coherence peaks largely aligned with the behaviorally esti-
mated production frequencies, both at group-level and in indi-
vidual participants. The coherence peaks reflect an aspect of
speech rhythm closely associated with oscillatory properties of
speech-related signals, as opposed to approaches focusing on
linguistic aspects of rhythm, such as stress patterns. For /pa/
syllable repetition, use of either lip or tongue EMG resulted in
a very similar coherence spectrum. For speech, however, the
local maximum of the EMG-acoustic coherence spectrum
occurred at a slightly lower frequency for tongue than lip
muscles. This suggests that for a simple oromotor task,
muscles of the jaw area and lip muscles are tightly coordi-
nated, whereas speech production relies on a different mode of
operation, with some degree of desynchronization between the
articulators (Smith, 1992). Hence, it may be concluded that
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FIG. 7. Relationship of group-level and individual EMG-acoustic coherence
spectra for speech production (left, tongue; right, lip) with mean and individ-
ual behavioral syllable production frequencies, at the three speaking rates:
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displays the group-level coherence spectrum: normalized coherence (in arbi-
trary units; y axis) is plotted against frequency (in Hz; x axis), with the mean
syllable production frequency indicated with an arrowhead. The lower panel
compiles the power spectral distribution for the individual participants (rows),
with coherence peaks indicated by a lighter shade of gray. The participants
are ordered by their individual syllable production frequencies (circles).

EMG-acoustic coherence not only highlights periodic compo-
nents in speech but can also provide insights into the role of
various articulators.

Previous studies have used extensive speech corpora to
show that the production frequencies of linguistic units and,
hence, the periodicity of the speech signal could be mapped
as peaks in the acoustic amplitude envelope power spectra
(Das et al., 2008; Tilsen and Johnson 2008; Chandrasekaran
et al., 2009; Tilsen and Arvaniti, 2013). However, even for
larger data sets, 1/f trend removal has been deemed neces-
sary for saliently distinguishing spectral peaks related to
speech thythm (Chandrasekaran et al., 2009; see also
Ruspantini et al., 2012). In the present study, EMG and
acoustic spectra as such were not particularly informative for
assessing periodicity in speech production, although salient
peaks in power spectra were observed for the more rudimen-
tary /pa/ syllable production. One likely reason is the rela-
tively concise data set (speech material from 20 participants,
4 minutes of data per speaking rate per participant). The
rhythmic pattern of speech is characterized by inherent irreg-
ularities; these irregularities tend to become amplified with
lesser amounts of data. In the present study, irregularities in
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spectra for /pa/ syllable repetition (left, tongue; right, lip) with mean and
individual behavioral /pa/ syllable production frequencies, at the three repe-
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coherence x (in arbitrary units; y axis) is plotted against frequency (in Hz; x
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head. The lower panel compiles the power spectral distribution for the indi-
vidual participants (rows), with coherence peaks indicated by a lighter shade
of gray. The participants are ordered by their individual /pa/ syllable produc-
tion frequencies (circles).

rhythm are manifested as notable intra-individual variations
(within-subject variation) in word and syllable production
frequencies. According to the coupled oscillator model, the
lack of a continuous periodic patterning in the speech signal
may be theoretically represented by the introduction of
uncertainty (O’Dell et al., 2007). In contrast, /pa/ syllable
repetition, a simple rhythmic task, was shown to feature
much less variation compared with speech, especially for
slow and normal rates. Indeed, such a simple oromotor task
displays a nearly perfect oscillatory pattern with little varia-
tion in frequency (O’Dell and Nieminen, 2009). Importantly,
EMG-acoustic coherence analysis succeeded in extracting
salient spectral peaks even in the more irregular natural
speech and for this relatively concise experimental data set.
The high behavioral relevance of the resulting spectral peaks
is emphasized by their alignment with the behavioral sylla-
ble/word production frequencies as a function of speaking
rate.

EMG-acoustic coherence analysis could be especially
beneficial in a clinical context, where the amount of data
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tends to be limited. Specifically, several disorders of speech
and language, including aphasia (e.g., Hadar et al., 1998;
Patel, 2005), Parkinson’s disease (Fox et al., 1996; Giraud
et al., 2008; Lu et al., 2010), and stuttering (e.g., Alm,
2004), involve impairments of speech rhythm. Although the
etiology of these pathologies is quite diverse, dysfunctions
of rhythm-generating structures in the brain, such as the ba-
sal ganglia, seem to be a common causal factor (e.g.,
Brunner e al., 1982). Hence, it may be suggested that a
description of pathological manifestations of speech rhythm
in patient groups could possibly advance the understanding
of the underlying causes and, consequently, contribute to the
development of appropriate treatments for a given pathol-
ogy. EMG-acoustic coherence could be introduced as an ef-
ficient tool for such purposes.

Speaking rate as an integral part of speech rhythm is a
multifaceted variable. There is considerable intra-individual
variation in speaking rate, manifested as changes in the pro-
duction frequency and duration of linguistic units (Janse,
2004), due to a variety of both linguistic and extra-lingustic
factors, such as gender, neuromuscular constraints, and pres-
ence of noise in the environment and language (e.g., Byrd,
1992; Tsao et al., 1997; Jacewicz et al., 2009). The present
findings link speaking rate to variation in behavioral fre-
quencies and, thus, in temporal structure of speech. The
observed mean word (~2 Hz) and syllable (~5 Hz) produc-
tion frequencies at normal rate fall within the range previ-
ously reported in the literature for a variety of languages
(e.g., Levelt, 1999; Poeppel et al., 2008; Ruspantini et al.,
2012). Similar to speech, mean /pa/ syllable repetition fre-
quency at normal rate (~2 Hz) is also consistent with previ-
ous reports (Ruspantini et al., 2012). However, languages
have different rhythmic properties (e.g., Ramus and Mehler,
1999). As an example, habitual speaking rates demonstrate
language-specific variations (Dellwo, 2008), with lower syl-
labic frequencies in Spanish, German, and English than
Italian (Clopper and Smiljanic, 2011; Tilsen and Arvaniti,
2013). These differences would potentially be reflected as
spectral shifts in coherence peaks relative to our present find-
ings for Finnish.

Despite these cross-linguistic variations, the syllabic rate
of ~5Hz is regarded as an important structural element in
terms of binding and integration in speech across languages
(MacNeilage, 1998; Giraud and Poeppel, 2012) and plays a
central role in coupled oscillator models of speech rhythm
(e.g., O’Dell and Nieminen, 2009; Tilsen, 2009). Intriguingly,
the preference for certain frequencies does not seem to be con-
fined solely to speech-related tasks, but rather appears to be a
cross-modal phenomenon encompassing multiple human
motor behaviors, such as finger-tapping and walking
(MacDougall and Moore, 2005; Jerbi et al., 2007). The appa-
rent preference for a specific thythm may be a domain-general
phenomenon related to both optimized neural processing and
mechanical efficiency of task performance (Lindblom, 1983;
Sparrow, 1983; Tsao et al., 1997). Furthermore, such behav-
ioral motor rhythms seem to find counterparts in the neural dy-
namics of the motor cortex (Jerbi et al., 2007; Ruspantini
et al., 2012), as well as the basal ganglia and the cerebellum
(Buhusi and Meck, 2005).
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Speaking rate variations were duly carried out by the
participants; this observation was consistent with previous
reports of on-demand speaking rate modulations (e.g., Tsao
et al., 2006). However, for all three speaking rates, between-
participant variation was small. This suggests that within a
certain speech production tempo, the speaking rates of dif-
ferent individuals were rather similar. In contrast, /pa/ sylla-
ble repetition rates varied considerably between individuals
for all three speaking rates. It may be suggested that speech
is an over-learned, albeit complex, construct (Smith, 1992),
unlike the rather more artificial /pa/ syllable repetition.
Hence, it may be proposed that speech features a relatively
tight control of all its constituent parameters, ensuring that
there is little variation between individual speech production
frequencies. An alignment of normal speaking rates across
individuals may importantly serve a communicative purpose
by ensuring optimal coupling between interlocutors.

The present findings contribute to the recently initiated
cross-disciplinary discussion on the definition of rhythm that
seeks to bring together the fields of neurophysiology and
behavior (Smith et al., 2014). A description of speech
rhythm, such as the one provided here, would afford valua-
ble information when considering the functional role of
rhythm in speech comprehension. The existence of a hier-
archical, rhythmic internal structure in speech has been
advanced as the key element in initiating the process of
transformation of an incoming physical signal into compre-
hensible lexical units (Poeppel et al., 2008). In line with the
notion that speech production and speech perception are
functionally intertwined (e.g., Pulvermiiller and Fadiga,
2010; Giraud and Poeppel, 2012), speech rhythm has been
suggested to serve as the “bridging” element between these
two processes. Furthermore, correspondence of the syllabic
rate (~5Hz) with the timescales of spontaneous oscillatory
activity in cortical neuron populations has led to a view that
the existence of temporal regularities in both speech and
cortical signals is paramount for successful cortical process-
ing of spoken language (for a review, see Peelle and Davis,
2012). A number of studies from both a behavioral
(Drullman et al., 1994a,b; Shannon et al., 1995; Smith et al.,
2002) and a neurophysiological perspective (e.g., Ghitza and
Greenberg, 2009; Peelle and Davis, 2012) have provided
additional evidence that speech rhythm, in addition to spec-
tral detail, contains crucial information employed by the lis-
tener to extract meaning from an utterance. For instance, a
disruption of acoustic cues corresponding to the syllabic rate
(~5Hz) has proven detrimental to comprehension (e.g.,
Drullman et al., 1994a; Shannon et al., 1995).

V. CONCLUSIONS

The present findings demonstrate that coherence analy-
sis, a spectral analysis tool linking different measurement
modalities, is far more informative than a unimodal spectral
approach in quantifying periodicity of speech signals. Local
maxima in EMG-acoustic coherence spectra signify the ex-
istence of functional synergy between articulatory systems
and phonatory systems, and the frequency of maximum co-
herence aligns with speaking rate. Future studies on natural
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speech production could utilize these same approaches to
examine the relationship between recordings from oral artic-
ulatory systems and phonatory systems, as well as from
motor cortical areas.
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