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Dipole emitters used in nano optics and nanophotonics (e.g., fluorescent molecules or quantum

dots) are weak radiators and thus detecting the radiation of a single emitter gets possible only if it

is significantly enhanced. For this enhancement, one often utilizes resonant nanoantennas

(Purcell’s effect); this method, however, requires the exact knowledge of source location and

radiation frequency which constitute a significant drawback. One known possibility for broadband

location-insensitive radiation enhancement is to use a layer of the so-called hyperbolic metamate-

rial. However, the enhanced radiated energy is mainly directed into the volume of the lossy

medium, where it is lost to heating. In this work, we suggest specific shapes of macroscopic

hyperbolic metamaterial samples to open radiation windows for enhanced radiation to free space.

We show that hyperbolic media slabs with properly shaped macroscopic grooves convert the

evanescent waves produced by a dipole into waves traveling in free space, which results in the

enhancement of useful radiation by one to two orders of magnitude. That level of enhancement of

radiation into free-space which is also wideband and of non-resonant nature has not been reported

up to now. These results may open possibilities for realization of broadband and directive antennas,

where the primary radiators are randomly positioned fluorescent molecules or quantum dots.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900528]

I. INTRODUCTION

A. Enhancement of radiation

Electrically (optically) small objects are very poor and

inefficient radiators of electromagnetic waves. In the antenna

terminology, radiation ability of an antenna is characterized

by its radiation resistance, which behaves as ðl=kÞ2 for small

electric dipole radiators. Here, l is the radiator size and k is

the wavelength in the surrounding space. At radio and micro-

wave frequencies, this problem is conventionally overcome

with the use of antennas. Usual antennas are structures which

have the dimensions comparable or larger than the wave-

length, allowing huge radiation enhancement due to electri-

cally large apertures and activated resonances. In the optical

domain, similar results can be achieved with the use of nano-

antennas, which are, basically, resonant objects brought

close to a deeply subwavelength light source.

In the optical literature, this effect of radiation enhance-

ment is called Purcell’s effect, and the radiated power

increase factor is called Purcell’s factor. In most common

schemes these resonators are plasmonic nanoantennas, e.g.,

bow-tie structures formed by two silver or gold triangular

patches of submicron dimensions (see e.g., indicative

works1,2). For the antenna to operate, the primary radiating

nanoobject must be precisely positioned with respect to the

antenna, for example, in the gap between the two arms of a

bow-tie nanostructure, and the resonance frequency of the

antenna should match the frequency of the radiating mole-

cule or nanoparticle. In many practical situations small

radiating or scattering particles may be located at some ran-

dom points at a surface, moreover, in the presence of many

(and possibly different) emitting molecules or particles the

radiation frequency may vary in a wide range of frequencies.

Obviously, within this scenario, nanoantennas cannot be

used to provide an effective radiation channel and couple the

particles with waves propagating in free space. In this paper

we will propose means to enhance dipole radiation in these

situations.

To quantify the increase of radiated power of a given

small source due to a non-resonant environment, we will use

the ratio of the radiated powers in the presence and absence

of the radiation-enhancement structure. If the dipole moment

of the source is fixed and does not depend on the environ-

ment, this ratio is equal to the ratio of the corresponding radi-

ation resistances, and in the case of a resonant nanoantenna

it is equivalent to the conventionally used Purcell’s factor

FP.3 We assume that the size of the antenna is finite, and our

goal is to find means to enhance radiation into surrounding

free space. To account for possible losses of power in the

antenna itself, we take the ratio of powers propagating in

free space, in the far zone of the antenna. This figure of merit

we will call Enhancement of Useful Radiation or EUR.

Probably the simplest possibility to enhance power radi-

ated from a small emitter whose location cannot be fixed and

when the radiation frequency is not exactly known is to posi-

tion the emitter in a homogeneous lossless dielectric medium

(refractive index n). It is well known that the radiation resist-

ance of a dipole with the dipole moment p located in a usual
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dielectric with refractive index n is n times larger than that

of the same dipole p in free space.4 However, this radiated

power increase refers to the power radiated into this sur-

rounding medium. To allow radiation into free space, the

dielectric sample must be of a finite size, and reflections at

the interface with the surrounding free space will reduce

EUR. Using the normal-incidence reflection coefficient at

the dielectric-vacuum interface, the total radiation increase

factor can be estimated as 4n2=ðnþ 1Þ2, which cannot

exceed the value of 4 for n> 0. Theoretically, this difficulty

can be lifted using shells of materials with equal relative

permittivity and permeability, because the interface with

vacuum can be matched, eliminating normal-incidence

reflections. However, this cannot be directly realized due to

the absence of non-resonant magnetic materials at high fre-

quencies. Note that in the regime of n¼�1, the dielectric

cover acts as a resonant antenna, which is not suitable for

our present goals.

B. Use of hyperbolic media

Practically realizable possibilities for strong broadband

enhancement of radiation using non-resonant materials

appear if one uses so called hyperbolic media.5 Hyperbolic

metamaterial (HMM) is an optically uniaxial material, whose

electromagnetic properties can be described in the condensed

form by effective relative permittivity tensor (with optical

applications in mind, we consider only non-magnetic

media),

e ¼
ejj 0 0

0 e? 0

0 0 e?

0
@

1
A; (1)

such that the diagonal components ejj and e? have different

signs. More specifically, in HMM this property concerns the

real parts of these complex values: <½ejj�<½e?� < 0 (whereas

the imaginary parts are assumed to be sufficiently small, i.e.,

j=½e?;jj�j � j<½e?;jj�j). In contrast to conventional anisotropic

dielectrics where the permittivity tensor is positive-definite

and to plasmas where it is negative-definite, in hyperbolic

media the permittivity tensor does not belong to any of these

two classes; therefore, HMMs are also called indefinite

media.6 This difference in signs makes the HMM operate as

a conventional magneto-dielectric for waves, propagating

along one direction, and as a metal for waves propagating

along another direction, perpendicular to the first one. The

word hyperbolic in the name of these composite media

comes from the shape of the isofrequency contours that

describe the solution of the dispersion equation in a uniaxial

medium for the case ejj < 0 and e? > 0,

q2
x

e?
� q2

t

jejjj
¼ k2

0; (2)

which permits infinitely large wavenumbers q for a lossless

material. Similar formulas are obtained for the case when

ejj > 0 and e? < 0. Here q ¼ ðqx; qy; qzÞ is the wave vector

in the HMM, qt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

y þ q2
z

q
is its transverse component and

k0 ¼ x=c ¼ 2p=k0 is the wavenumber in free space. The

time dependence is selected in the form expðþjxtÞ.
A remarkable property of a dipole source embedded in

such a medium is strong enhancement of radiation and a

very specific radiation pattern called radiation cones. The

enhancement of radiation is related with the elimination of

reactive electromagnetic power usually stored in the vicinity

of a dipole source in the form of evanescent waves whose

magnetic field vector is orthogonal to the medium axis (TM-

waves). No restriction to the wave number q of propagating

waves means that all TM-polarized spatial harmonics pro-

duced by a dipole are propagating and the electromagnetic

energy of TM-waves completely irradiates, that is, the radia-

tion resistance is theoretically infinite. The effect of radiation

cones means that the radiated field is concentrated at a bi-

conical surface whose apex is the source point. In other

words, the radiated wave inside the hyperbolic medium does

not diverge and its field is not inversely proportional to the

propagation path unlike usual dielectric media. In the case of

realistic (lossy) HMM, the radiated field retains a high mag-

nitude across this bi-conical surface, even at optically large

distances from the source and decays exponentially versus

the distance from the radiation cones.

Radiation cones were first predicted7 for a cold strongly

magnetized plasma operating at radio frequencies. Such

plasma also possesses an indefinite permittivity tensor

<½ejj�<½e?� < 0 and, therefore, hyperbolic dispersion.8 Giant

enhancement of radiation of a dipole antenna in a cold mag-

netized plasma has been also claimed;9 however, calcula-

tions in that work were incorrect.10 Correct calculations of

the radiated power for a point dipole in a lossless cold mag-

netized plasma11 have shown the infinite value for its radia-

tion resistance. The radiated power remains finite if we

realistically assume that the source has a finite size, instead

of considering a point dipole.12 Radiation enhancement for a

short dipole antenna located in cold magnetized plasma oper-

ating at radio frequencies was measured in paper.10

In several works,13–16 Purcell’s factor of a uniform

unbounded HMM was studied. In these papers, the authors

took into account the geometry and sizes of dipole emitters,

optical losses in realistic HMM, and its internal granularity.

Purcell’s factor of a realistic HMM has the order of magni-

tude between ðk=aÞ2 and ðk=aÞ3, where k is the effective

wavelength in the dielectric constituent of HMM and a is the

period of the lattice of metallic constituents.5 Practically, the

enhancement can be as high as 102 � 104. Unfortunately, so

high values of Purcell’s factor do not imply strong radiation

through the interface HMM-free space due to the total inter-

nal reflection of waves whose transverse wave vector compo-

nents exceed k0, and no significant enhancement of useful

radiation (EUR) has been achieved. Most part of radiation is

directed into the metamaterial substrate and is spent to its

heating like it holds for embedded sources.17 Enhancement

of useful radiation to free space happens only due to the

thickness (Fabry-Perot) resonance of the HMM sample.

However, this is a narrowband resonant effect, which refers

to the classical Purcell’s effect due to coupling of a dipole

emitter to a resonator.18 A common feature of any resonant

scheme is a narrow frequency band of the enhanced emission
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and the necessity to engineer the resonance at the emission

frequency. The last requirement makes the fabrication of the

structure rather challenging, and this approach is not possible

if the radiation frequency is not exactly known.

To achieve strong EUR to free space, one needs to con-

trol transformation of spatial spectrum which accompanies

refraction at the material-air interface. To let the waves with

large wavenumbers jqj > k0 escape from the sample to free

space, we need to somehow transform them into waves with

wavenumbers jqj < k0. An evident way to do it is to locate a

well-known Kretschmann prism with refractive index n> 1

on the surface of a HMM sample. The waves jqj < k0n will

be propagating inside the prism and some of them can be

diverted to its output surface at the angles below the angle of

total internal reflection. This method was used19 to convert

waves propagating in a dielectric into free-space radiation.

However, for dielectrics with negligibly small losses in the

optical range we cannot have n > 2:4� 2:5, and EUR due

to such a prism cannot practically exceed 2. It has been also

suggested20 to texture the surface of the HMM sample trans-

forming it into as a facet with period a� k. This periodi-

cally textured surface efficiently scatters the internal waves

with tangential wave numbers qy � pm=a (here m is an inte-

ger number, and axis y is directed along the surface). These

waves are irradiated with wavenumbers ky ¼ qy � pm=a
which for some m are smaller than k0. However, in the

absence of the resonance of the grooves18 such patterning is

not very efficient due to a narrow spatial spectrum of meta-

material eigenmodes converted into useful radiation.

In this paper, we suggest a way to achieve a broadband,

non-resonant enhancement of useful dipole radiation using a

properly shaped macroscopic metamaterial sample. We may

modify both front and rear (with respect to the source) surfa-

ces or only one of them. The governing idea is based on the

fact that the tilt of an optical axis (OA) of HMM with respect

to the interface allows conversion of waves with jqj > k0

into waves with jqj < k0 and vice-versa when the wave

transmits through the interface. This conversion may happen

for a very broad (theoretically infinite) spatial spectrum,

which becomes possible due to concentration of radiated

power in radiating cones, discussed above. The exploited

effect has nothing to do with any resonance phenomena, and

we test the non-resonant nature of the radiation enhancement

for every single of the proposed configurations. It becomes

feasible by avoiding to optimize the structure with respect to

the variables that are responsible for possible resonances

(such as frequency) and, once we have concluded to the opti-

mal design, by representing EUR as a function of these

“resonance variables” to ensure that the selected combina-

tion of variables does not give a global optimum. This novel

mechanism of EUR, in accordance to our calculations, can

compete with the aforementioned result18 in terms of the

enhancement coefficient values. However, the use of the pro-

posed here non-resonant mechanism makes the phenomenon

broadband and does not require fitting the constitutive

parameters of HMM to the frequency of the source. The idea

of using a wedge-shaped sample with a tilted axis to convert

evanescent waves into waves propagating in free space was

elaborated in our works.21,22 Earlier, obliquely cut samples

of hyperbolic media were used in Ref. 23 for a different

purpose. Interface coupling of HMM modes with very large

wavenumbers to free-space modes when the optical axis is

tilted with respect to the interface plane has been previously

described also in papers25,26 in relation to the studies of

absorption of waves incident from free space. Furthermore, a

recent review paper24 analyzes the role of anisotropic plas-

monic metamaterials in constructing hyperlenses.

II. SUGGESTED METAMATERIAL STRUCTURES

A dipole located on the surface of a HMM sample gen-

erates evanescent waves with wave numbers jqj > k0. These

waves transmitted into HMM are converted into propagating

eigenmodes of HMM. If the rear interface of the sample is

parallel to the front one, the eigenwaves, passing through the

second interface, transform again into evanescent waves of

free space. If the two surfaces are not parallel, the fields even

after their transmission through the rear interface may

remain propagating. This simple speculation results in the

idea of an HMM wedge. The evanescent waves produced at

the front side of the wedge convert into propagating waves

irradiated from its rear side, as it was first noticed in our

works.21,22 The governing idea is illustrated by arbitrary

(non-optimized) numerical simulation results shown in

Fig. 1. If a sub-wavelength source (whose radiation into free

space is illustrated in Fig. 1(a)) is close to a HMM slab, the

power which the source radiates into the slab is strongly

enhanced, and a typical radiation cone is formed (Fig. 1(b)).

However, the radiated fields stay inside the slab, as the

waves there have large wavenumbers, which are not sup-

ported by free space. A typical standing-wave pattern inside

the slab is created due to reflections at the slab boundary.

The picture on the right shows that properly shaping the bot-

tom interface (here we make a wedge-shape cut, Fig. 1(c)),

we open a possibility for high-wavenumber waves traveling

inside the slab to pass through the interface. We observe

strong radiation through the wedge surface and formation of

a typical focused antenna pattern.

The first structure we suggest here is a 2D biprism filled

with an HMM as shown in Fig. 2. Here, the negative optical

axis is stretched horizontally (<½ejj� < 0). Let a number of

poorly radiating point sources (blue dots) creating a broad

spatial spectrum of evanescent waves be located on the con-

cave part of the sample surface. The evanescent waves with

the transverse wave numbers ky ¼ K > k0 and ky ¼ �K <
�k0 (red arrows in the left side dispersion graph) that pene-

trate into the medium are transformed into propagating

waves with the wave vectors q1 and q2 (green arrows in the

left side dispersion graph), respectively. For the wave vector

q1, the component parallel to the plane B1B2 is preserved,

while the component of the wave vector q2 parallel to B2B3

is preserved (left side projection). At the rear surface, the

waves q1 and q2 are transformed into propagating waves

with the wave vectors k1 and k2. The dashed lines corre-

spond to waves that are passing from a boundary (phase

matching projections) and the vectors normal to the disper-

sion curves u1; u2 denote the group velocities. In this way,

the energy which is normally stored in the evanescent waves
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ðK; j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � k2

0

p
Þ and ð�K; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � k2

0

p
Þ, will be radiated from

the rear surface of the sample into free space.

The width of the spatial spectrum of evanescent waves

converted into propagating ones using this approach depends

on the negative value e?=ejj (in the lossless case) and on the

2D biprism angle a. It is easy to show that under the condi-

tion ejj cos2aþ e? sin2a ¼ 0 (the exact zero is possible if we

neglect the losses in HMM) the whole spatial spectrum 0 <
jKj < þ1 is effectively transformed to propagating waves

at the rear interface since the tangential components are

again matched (the right-side projection). More exactly, this

important condition can be formulated as

<½ejj� cos2aþ <½e?� sin2a ¼ 0: (3)

Of course, even if this condition is satisfied, the conversion

of every evanescent spatial harmonic into a propagating

wave is only partial since at both interfaces waves experi-

ence partial reflections. Therefore, the optimal biprism angle

a for given e? and ejj may depend on other factors e.g., on

the location of the source. Further, we consider the sources

located near the front corner of the biprism at a small dis-

tance L from this corner. Note that the internal reflection of

the waves propagating inside the HMM will result in the

transformation of evanescent waves emitted by the source

into propagating waves for the reflected field too. A thorough

description of this conversion in the case of the wedge is

given in earlier publications.21,22

In the 2D structure shown in Fig. 2, we neglect the com-

ponents of the wave vectors that may be orthogonal to the

plane xy. In fact, this figure refers to the case when the

source is a line of dipoles (it may be e.g., a quantum wire). If

the source is a point dipole, it produces also evanescent

waves with kz ¼ K > k0 and kz ¼ �K < �k0 which can be

converted into propagating ones. Then we come to a 3D ana-

logue of Fig. 2—to the structure with two conical or pyrami-

dal grooves. These 3D structures are expected to offer higher

enhancements than the 2D biprism due to the presence of

waves with nonzero kz.

The same functionality as that illustrated by Fig. 2 is

achievable in reflected fields if one puts a mirror at the plane

A-A. Also, similar consideration as in Fig. 2 can be

done for the case when the negative optical axis is vertical

FIG. 1. A numerical illustration of the effect of shaping a HMM sample. (a)

A cylindrical wave radiated by a dipole line (the radiating line is normal to

the picture plane, and the dipole moment is in the horizontal plane). (b)

Fields of the same source in the presence of a HMM slab. (c) The same, but

the slab has a wedge-shaped cut, with the angle equal to the radiating cone

angle. Plot parameters: e? ¼ ex ¼ ð4� 0:08jÞe0; ejj ¼ ey ¼ ð�4� 0:08jÞe0.

FIG. 2. The geometry of an HMM biprism with interfacial sources in the

concave part. The negative axis of HMM is horizontal (x). Circles k2
x þ k2

y ¼
k2

0 show the isofrequency contour of free space, hyperbolas correspond to

the isofrequency contour of the HMM which determines the eigenmode

wave vectors (e.g., q1 and q2). A theoretically infinite spatial spectrum of

evanescent waves is partially transformed into waves irradiated from the

rear surface (e.g., wave vectors k1 and k2). The corresponding pictures for

the vertical direction of the negative axis of HMM show the same effect.
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(along A-A). It is easy to see that the conversion of spatial

spectrum occurs in this case under the same conditions.

Furthermore, we understand that the role of the groove apex

may be destructive because it may lead to the creation of a

hot spot inside the metamaterial. Especially, this refers to the

front groove since the source may be located near its apex.

Since HMM has finite losses, the presence of a hot spot may

cause high optical losses. Consequently, we may need to

smooth the apex of the pyramidal or conical groove.

With this in mind, we come to a topology of a hemi-

spherical notch (or semicircular cut in the 2D case). As to

the opposite side of the sample, the conical or pyramidal

groove (triangular cut in the 2D case) can be probably kept

there. Due to the divergence of radiation propagating in the

HMM, possible harmful influence of the apex on the rear

side is less significant. This design solution is shown in Fig.

3. Alternatively, one can make a semicircular cut (spherical

groove in the 3D case) also on the opposite side, as depicted

in Fig. 4(a). Finally, if one is interested to obtain EUR in the

reflected field, one comes to the structure shown in Fig. 4(b).

For all these structures, the EUR is a priori possible for

both directions of the negative optical axis—vertical or hori-

zontal. In the absence of a complete analytical model, it is

difficult to predict which orientation of the dipole source is

preferred in these cases. At the first glance, it seems that the

dipole has to be oriented along the negative axis. Really, in

the near electric field of an electric dipole the component

parallel to its dipole moment is dominant. Therefore, such a

dipole will be more strongly coupled to the metamaterial. If

the dipole is orthogonal to the negative axis, its near electric

field is mainly orthogonal to the negative axis, i.e., is mainly

formed by the evanescent waves of TE-polarization. These

waves are not transformed into propagating eigenmodes of

the metamaterial—TE-polarization corresponds to ordinary

waves in HMM. Therefore, the dipole directed along the

negative axis seems to operate better than the dipole orthogo-

nal to it. However, this speculation is very approximate and

needs to be checked. In practice, a small radiator can be arbi-

trarily oriented and it creates evanescent waves with both

TE- and TM-polarizations. Therefore, we assume an arbi-

trary dipole tilt angle h with respect to the negative axis of

HMM and check its impact on the structure performance.

The minimal distance between the front and rear surfa-

ces is another parameter to be considered and optimized.

Though we intentionally refuse to profit from the resonance

of the whole HMM sample and of the grooves and consider

their dimensions as macroscopic, the minimal thickness d of

the sample (the distance between the grooves) cannot be

optically very large. Otherwise, optical losses inherent to

HMM will suppress the useful radiation. Evidently, the opti-

mum of d has nothing to do with the thickness resonance.

This optimum corresponds to a compromise between the

amount of converted eigenmodes and their decay in the

metamaterial bulk.

FIG. 3. Sketch of an alternative design: a triangular cut (pyramidal or coni-

cal groove in the 3D case) on the front side of the sample is replaced by a

circular cut (a spherical groove in the 3D case).

(a)

(b)

FIG. 4. Sketches of two design solutions. (a) A double concave lens of

HMM and (b) a mirror-backed lens of HMM. Negative axis can be either

parallel or orthogonal to the whole structure.
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III. FULL-WAVE SIMULATIONS AND OPTIMIZATION

A. 2D geometries

Here, we numerically investigate three design solutions

which correspond to Figs. 2, 3, and 4(a). The dimensions of

the studied structures are given in Fig. 5. The structure

depicted in Fig. 5(a) corresponding to our first suggestion is

referred as the triangle-triangle design. The structure

depicted in Fig. 5(b), corresponding to our second suggestion

(the front cut is circular) is referred as the circle-triangle

design. Finally, the structure depicted in Fig. 5(c) is referred

as the circle-circle design. For all these structures, we study

the enhancement of useful radiation EUR in transmitted

fields (infinite semi-circle with x> 0). With this purpose, we

optimize the following parameters of 2D structures depicted

in Fig. 5: the minimal thickness d, the effective permittivities

of HMM e?; ek, and the optimal tilt angle h for the dipole

moment vector. We have inspected both possible orienta-

tions of the HMM negative axis in Fig. 5: along the x and y
directions. We show only the results for the negative axis

along the x axis (<½ek� < 0). The alternative choice of the

negative axis does not bring qualitatively new results.

The source is an electric dipole line,11 i.e., an infinite

line stretched along the z-axis with a uniformly distributed

electric dipole moment, orthogonal to the line axis. The ori-

entation of the dipole in the transverse plane is defined by

the angle h between the dipole direction and the horizontal

axis, see Fig. 5. In the xy plane, the line source is initially

located at the point x ¼ �d=2� d; y ¼ 0 at a very small dis-

tance d < d from the surface of HMM. The utilized software

(COMSOL Multiphysics27) does not allow the dipole line to

be located exactly at the sample surface, but d can be arbitra-

rily small. In our simulations, the selection of d was dictated

by meshing limitations. It should be stressed that the line can

move tangentially to the HMM surface, and we define its

position by the distance L from the center, see Fig. 5.

Performing numerical simulations for macroscopic val-

ues of the dimensions G and g (Fig. 5), e.g., G=k0; g=k0 �
103 � 104 is impossible within realistic computation time;

moreover, the convergence of simulations will be not achiev-

able for so large sizes. Therefore, we have studied the trend

of EUR when we increase these sizes, locating and exclud-

ing the resonances of our structures. Taking the values of

sizes G and g which are reasonable compared to k0 but corre-

spond to the macroscopic trend G=k0; g=k0 ! þ1, we pre-

dict EUR for the macroscopic case. In this scenario, the only

dimension to be optimized is the thickness d. After this opti-

mization, we check the stability of the obtained EUR to

deviations from the optimized parameters found earlier, such

as the frequency x and the source location, measured by the

distance L.

According to our introductory description, the value of

EUR for two-dimensional structures is computed by

EUR ¼ lim
R!þ1

ðp=2

�p=2

jE R;/ð Þj2d/

ðp=2

�p=2

j~E R;/ð Þj2d/

: (4)

(a)

(b)

(c)

FIG. 5. The 2D configurations under numerical investigation. (a) A sample

of hyperbolic metamaterial (HMM) with overall dimensions T�G has two

symmetric triangular cuts of extent g (defining an angular extent of the prism

a), so that the corners are separated by distance d. (b) The similar structure

with the circular cut on the front side. (c) The similar structure with two cir-

cular cuts instead of triangles. All systems are excited by an electric dipole

line at azimuthal distance L from the left groove’s bottom, h is the tilt of the

dipole moment to the x-axis.
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Here, Eðq;/Þ is the electric field in presence of the structure

numerically calculated and integrated over the right-hand

side semi-circle of radius R (the source is on the left side of

the sample). Here, we focus on the enhancement in transmis-

sion through the sample, but alternative performance indica-

tors of the radiation enhancement can be given by taking

into account the far-field radiation into the entire space. The

notation ~Eðq;/Þ is used for the electric field in the absence

of the HMM antenna structure (in free space). The magnetic

field of the dipole line in free space possesses solely an out-

of-plane z component,

~Hzðq;/Þ ¼ H
ð2Þ
1 ðk0qÞ sinð/� hÞ; (5)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
(q¼ 0 corresponds to

the dipole line origin (x0, y0)), / ¼ arctanðx� x0; y� y0Þ
and symbol H

ð2Þ
1 is used for the Hankel function. The electric

field ~Eðq;/Þ is analytically calculated from (5) via

Maxwell’s equations.

In our examples, the frequency for which the optimization

has been done is equal to x0 ¼ 600p Trad/s that corresponds

to k0 ¼ 1 lm. The initial sizes for optimization are chosen

as follows: T ¼ 3k0; g ¼ 4k0; g ¼ 2k0; <½e?� ¼ 3:1e0; <½ek�
¼ �2:9e0. Furthermore, the starting point for the orientation

of the exciting dipole is: h ¼ 45� and for its position: L¼ 0. In

this section, we fix the losses of the parallel components at

=½ek� ¼ �0:2e0 (that is typical for known HMM operating in

the near infrared) and neglect losses for e? (a reasonable

approximation).

In Fig. 6(a), we show the quantity (EUR) as a function

of the distance d and we observe that in all cases the optimal

result is achieved for d ¼ 0:1k0. For this choice, we repre-

sent the enhancement factor EUR with respect to the perpen-

dicular permittivity e?=e0 (Fig. 6(b)), where different

behavior of the three designs is spotted. The optimal per-

formance points are selected and kept constant throughout

the rest of the sweeping study. In Fig. 6(c), the varying

parameter is the parallel permittivity ek=e0 and the graph

shapes are similar to the corresponding ones of Fig. 6(c). For

two designs (triangle-triangle and circle-circle ones), the

optimal ratio j<½ejj�j=<½e?� is linked to the optimal prism

angle a, since it is achieved for j<½ejj�j � <½e?� whereas

a � 135�. So, the geometric-optical condition (3) offers

nearly maximal EUR for these two designs. As to the circle-

triangle design, the optimum was achieved for <½e?� � 5e0

and <½ejj� � �e0. Equation (3) does not hold in this case; in

particular, our initial parameters do not correspond to the

macroscopic trend and thus our estimations based on the

geometric optics are not applicable in this design. When it

comes to Fig. 6(d), we find the best tilt angles for each of the

three configurations. As was expected, it fits the simplistic

estimation h ¼ 0� only for the circle-triangle and circle-

circle geometries. This result confirms the adequacy of our

speculations based on the geometric optics for the structure

without an apex. Though the size of the cut in this case is

only twice as large as k0, the dramatic shortening of the

wave in the HMM makes geometric optics applicable. For

the triangle-triangle structure with the source at L¼ 0, the

(a)

(b)

(c)

(d)

FIG. 6. The optimization graphs for the three 2D designs. (a) EUR as a func-

tion of the normalized distance between the notches d=k0, (b) EUR as a func-

tion of the perpendicular permittivity component of HMM <½e?=e0�, (c) EUR
as a function of the parallel permittivity component of HMM <½ek=e0� and (d)

EUR as a function of the tilt angle h of the source. Triangle-triangle design

(Fig. 5(a)) blue curves with circular dots, circle-triangle design (Fig. 5(b)) green

curves with square dots, circle-circle design (Fig. 5(c)) red curves with triangu-

lar dots.
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result is the opposite (the optimal h ¼ 90�) due to the impact

of the apex.

At the next stage, our goal is to confirm that the initial

parameters found above correspond to the macroscopic trend

G=k0; g=k0. To do that, we have calculated EUR for increas-

ing dimensions G and g, keeping all the other parameters

constant. For the triangle-triangle and circle-circle designs

the conclusion is that already G ¼ 3k0 corresponds to the

macroscopic limit, as we do not observe significant changes

increasing G=k0 up to 6. However, for the circle-triangle

design where the initial parameters send us out of the macro-

scopic trend, the dependence on G keeps oscillating. As to

the dependence on g=k0, the value of EUR for the circle-

triangle and circle-circle designs weakly depends on this pa-

rameter in the range 3 < g=k0 < 6. For the triangle-triangle

design, EUR monotonically decreases with increasing g=k0.

This is because for the smallest value of g=k0, the source is

nearly at the apex of the double pyramid, which corresponds

to the fronts of the two cones excited in the HMM sample.

Further studies are made assuming G ¼ 4k0 and g ¼ 2k0.

The stability of EUR with respect to the frequency devi-

ation x=x0 and the deviation L=k0 of the source location is

illustrated by Fig. 7. The first plot (Fig. 7(a)) shows that the

enhancement which we have achieved is not an outcome of a

resonance, since the selected points do not coincide with the

global optima of the curves. The wideband behavior of the

proposed device is clearly demonstrated since its perform-

ance does not vary substantially with the deviation of the ar-

bitrary operational frequency x from x0. Furthermore, for

the circle-circle and circle-triangle geometries, the radiation

is stable when the position of the source changes (Fig. 7(b)).

The decay of enhancement with increasing L for the triangle-

triangle design takes place because the source is moved

away from the optimal position when the cut corresponds to

the radiating cone position and orientation. In other words,

the beneficial effect of the structure is not substantially de-

pendent on the exact position of the source.

In Fig. 8, we show typical spatial distributions of the

electric field for the three design solutions. Dramatic

enhancement of radiation is obvious, especially for the

triangle-triangle configuration (Fig. 8(a)). We can observe

that strong concentration and enhancement takes place not

only behind the antenna structure, but also in the reflected

field. This finding means that the enhancement factor EUR
would be larger if the overall radiation around the structure

was taken into account (instead of confining the computation

at the rear side of the HMM). The saturation of the figure

may be attributed to the finite meshing of the simulation soft-

ware. It is instructive to compare this phenomenon with

reflection from corner reflectors (formed by electric or mag-

netic walls as limiting cases) and see how our device outper-

forms conventional concepts. Since the distance from the

source to the reflector is very small (0:1k0), the radiated field

in the left half-space can be found using the image principle

as the sum of two very closely positioned dipole sources.

The amplitude of the total dipole moment can vary from

zero to the double value of that of the source dipole. Thus,

there could not be neither directed beam nor any significant

radiation enhancement for any reflection coefficient of the

corner reflector. On the contrary, the field distribution in Fig.

8(a) clearly shows that the whole surface of the triangular

cut is strongly excited and creates radiated fields in free

space. This results in a strong and directed beam.

In Sec. III B, we consider grooves shaped as spherical

segments which represent a 3D generalization of the circle-

circle structure.

B. 3D geometry

Since the effect for the transmitted field through the

circle-circle structure depicted in Fig. 4(a) is similar to the

effect for the reflected field in the case shown in Fig. 4(b),

we restrict our study to the case of a perfect mirror behind

the HMM sample. We investigate a sample of HMM whose

(a)

(b)

FIG. 7. The stability of the optimized structures with respect to frequency

and source location. Triangle-triangle design (Fig. 5(a)) blue curves with cir-

cular dots, circle-triangle design (Fig. 5(b)) green curves with square dots,

circle-circle design (Fig. 5(c)) red curves with triangular dots. (a) EUR as

function of the normalized frequency x=x0 (x0 is the frequency for which

the optimization was done). (b) EUR as function of L=k0. Design parameters

ensure the same EUR as is expected for macroscopic samples beside the

circle-triangle sample. The selected optimized cases are denoted by black

triangles.
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geometry is presented in Fig. 9. The simulation software for

the 3D problem is the ANSYS HFSS package28 and these

simulations are much more time consuming than the 2D sim-

ulations described above. Therefore, we essentially used the

results of our previous studies in order to minimize the

amount of our 3D simulations.

Besides of choosing a priori the spherical segment

shape for the groove, we have also preselected the vertical

orientation of the negative optical axis and the vertical orien-

tation of the emitting point dipole. Since the z axis is normal

to the mirror plane, the negative component ejj of the

permittivity tensor corresponds to the z-axis, whereas e? cor-

responds to the xy plane. The structure is excited by a z-

polarized Hertzian dipole located on the metamaterial

boundary. This choice fits an explicit implementation of the

HMM sample which appears to be feasible using the existing

technologies. In particular, such HMM can be fabricated as a

set of vertical silver or gold nanowires grown in vertically

aligned pores or holes. Nanoholes of diameter 50–100 nm

can be prepared in the area of several square millimeters

using electrochemical etching.29 Nanowires of diameter

20–50 nm can be fabricated using track membranes influ-

enced by an ion beam.30 As far as the metal inside nanopores

of a porous sample is concerned, it is introduced using elec-

trochemical deposition. In this way, one prepares arrays of

aligned nanowires in flat layers of optical glass, anodic alu-

minum oxide, polymer and semiconductors.31–34 In our opin-

ion, the curvature of the interface should not obstruct the

application of these technologies, since its radius is assumed

to be sufficiently large. First, one prepares the vertical nano-

pores in a flat layer of a host medium, then one mechanically

makes a macroscopic groove in it and finally one may elec-

trochemically deposit metal into the nanopores.

The full-wave simulation of a macroscopic groove is

again not possible; therefore, we have thoroughly studied the

trends for EUR increasing the curvature radius of the groove

ðsþ g=2Þ up to 9k0. Also, we increased the overall size G of

FIG. 9. The 3D structure under numerical investigation (side view). The

negative axis of the HMM sample with the length G	 k0 is orthogonal to

the structure. The groove is a spherical segment of depth g=2 which transits

into a hemisphere if s¼ 0.

(a)

(b)

FIG. 8. Spatial distributions of the electric field magnitude for: (a) the

triangle-triangle structure, (b) the circle-triangle structure, and (c) the circle-

circle structure.
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the sample up to 8k0. In three dimensions, we define the

enhancement of useful radiation as

EUR ¼ lim
R!þ1

ðp=2

0

ð2p

0

jE R; h;/ð Þj2d/dh

ðp=2

0

ð2p

0

j~E R; h;/ð Þj2d/dh

; (6)

where E and ~E are the electric fields of the dipole source in

presence and absence of the HMM sample, respectively.

Apparently, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; / ¼ arctanðx; yÞ and h ¼

arccosðz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Þ are the spherical coordinates of the

observation point (x, y, z). If the PEC (Perfect Electric

Conductor)-backed hyperbolic material is not present, the

far-zone electric field of a Hertzian dipole in the absence of

the PEC patch (dimensions G�G) has a single h component

given by the analytical expression:

~E R; h;/ð Þ ¼ ĥ A
e�jk0R

k0R
sin h: (7)

Since we consider a more realistic case than in the previ-

ous parts, let us discuss the electromagnetic properties of

HMM of gold nanowires located in a lossless dielectric host

of permittivity eh. Based on the well-known mixing formu-

las, the transverse and the axial components of the permittiv-

ity tensor are given, respectively, by35

e? ¼ eh

em þ ehð Þ þ fv em � ehð Þ
em þ ehð Þ � fv em � ehð Þ

; (8)

ek ¼ fvem þ ð1� fvÞeh; (9)

where em is the complex permittivity of gold, fv ¼ pr2
0=a2 is

the filling factor of metal in HMM (r0 is the wire radius, a is

the array period). To estimate the permittivity of gold, we

use the well-known Drude model

em ¼ e1 �
x2

pe0

x x� jcð Þ (10)

with the following model parameters:36 e1 � 9:5e0; xp

¼ 1367 Trad/s, and c¼ 105 Trad/s. The parameters to be

optimized are the minimal thickness d=2, parameter s deter-

mining the groove shape, and the filling fraction of nano-

wires fv. The wavelength for the optimization is the same as

above: k0 ¼ 1 lm (x0 ¼ 600p Trad/s). For r0=a ¼ 0:25 and

host medium eh � 2e0, we obtain using (8)–(10)

e? � ð3:1� j0:009Þe0; (11)

ek � �ð6:8þ j0:6Þe0: (12)

One could point out that due to the finite periodicity of

the underlying structure will impose a cut-off limit for the

wavenumber above which the homogeneous description is

no more valid. However, in the consider cases the losses in

the wire-medium HMM have much more impact than the in-

ternal granularity. In fact, taking into account granularity

will change nothing in the background of so high losses since

they already cancel the contribution of spatial harmonics

with spatial frequencies higher than the inverse period of the

wire medium.

The optimization of the filling fraction within the inter-

val 0:1 < fv < 0:4 keeping the host medium permittivity

within the interval 1:7e0 < eh < 10e0 keeps the same order

for real and imaginary parts of these components of the per-

mittivity tensor as in (11) and (12), respectively. The interval

1:7e0 < eh < 10e0 corresponds to available solid media with

negligible losses in the vicinity of k0, namely within

0:7 lm < k0 < 1:3 lm. The condition fv < 0:4 corresponds

to applicability of the effective-medium model, and fv > 0:1
corresponds to the regime of HMM <½ek� < 0; <½e?� > 0 for

the wire medium in such host within the considered interval

of wavelengths. The relative freedom in eh and fv allows us

to optimize EUR in terms of j<½ek�j=<½e?� as it was done

above. Indeed, at frequency x0, the formulas (8) and (9)

allow realistic values for fv and eh for any ratio j<½ek�j=<½e?�
laying within the interval 1 < j<½ek�j=<½e?� < 5 which is

sufficient for optimization.

In this 3D case, we followed an inverse optimization

approach compared to the 2D case. First, we fixed e?
¼ ð3:1� j0:009Þe0 and ek ¼ ð�6:8� j0:6Þe0 and for pre-

selected geometric parameters G ¼ 8k0; s ¼ L ¼ 0; d
¼ 0:5k0 studied the trend of EUR versus g=k0 (Fig. 10(a)),

based on the assumption that the optimal permittivities

would be not far from the initial choice. It should be pointed

out that there is no reason for Fig. 10(a) to be similar to the

curve of the two circular notches of Fig. 11(b) since the latter

one is referred to a two-dimensional configuration with no

PEC backing and with different dimensions and materials. It

is clear that resonances hold only for g < 1:6k0, oscillation

versus g are small and their averaged value corresponds to

g ¼ 2k0. For this case, we show the color map of the field in-

tensity in Fig. 10(b). On this map, one can clearly see two

rays corresponding to the radiation cones below the spherical

notch which issymmetric with respect to the z axis. These

rays, reflected by the mirror, experience partial internal

reflection at the interface of HMM, which happens simulta-

neously with a strong transmission of waves from the meta-

material to free space. Thus, the groove diameter g ¼ 2k0 is

not a relevant parameter, and our expectations based on the

geometrical optics are fully justified. In a sense, we have

FIG. 10. (a) The trend for EUR when the groove diameter g increases.

Plot parameters: <½e?� ¼ 3:1e0; <½ek� ¼ �6:8e0; d ¼ 0:5k0; G ¼ 8k0;
s ¼ L ¼ 0. (b) The field distribution over the vertical cross section of the

HMM sample shows the absence of resonance and confirms the adequacy of

geometric optics for g ¼ 2k0.
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“optimized” the distance g in order not to coincide with a

local resonance. The same EUR is expected for macroscopic

values g	 k0 if the groove is hemispheric.

The permittivity ratio j<½ek�j=<½e?� has been also opti-

mized. The dependence of EUR on this ratio is shown in

Fig. 12(a), where the optimum corresponds to

<½ejj� ¼ �10:5; <½e?� ¼ 3:1; that implies the metal fraction

fv ¼ 0:27 and the host medium permittivity eh ¼ 1:7. For

these parameters, we optimized the minimal thickness of

HMM d=2. We have checked three values of the minimal

thickness d=2 ¼ 0:05k0; 0:25k0 and 0:5k0; the best choice is

g=2 ¼ 0:25k0. With the aforementioned selection of d=2 and

the <½�k�;<½�?�, we optimized the shape of the spherical seg-

ment, varying the parameter s (Fig. 12(a)); the best result

corresponds to the hemisphere when s¼ 0. However, for

s > 2k0 another possibility to achieve a rather high value of

EUR (namely EUR ¼ 7) is emerging. To exploit it, we have

to fix the groove depth g ¼ 2k0 and prepare its shape as a

thin spherical segment with an arbitrary macroscopic radius.

Such sample is easier to fabricate than the structure with a

hemispheric notch, but the enhancing effect is less

substantial.

We have checked that for G ¼ 6k0 the results did not

change compared to those obtained for G ¼ 8k0; thus, we

really have found the macroscopic trend. The stability of the

effect with respect to the frequency deviation is illustrated

by Fig. 13(a). One readily observes that at least one order of

magnitude enhancement corresponds to the interval

0:7 x0 < k0 < 1:3 x0. For the optimal structure (EUR ¼ 30)

we have checked that EUR keeps larger than 15 for

L 
 g=25, i.e., 80 nm. More importantly, within the interval

L ¼ 6g=57 (that in the present case implies L¼ 35 nm),

EUR keeps stable and practically equals 30. In Fig. 13(b),

we show the radiation pattern for the case L¼ 35 nm. The

deformation of this pattern due to an asymmetric location of

the source can be better estimated in comparison with the

pattern for L¼ 0 of Fig. 13(c). The absence of zenithal radia-

tion results from the vertical orientation of the dipole. The

radiation to the lower half-space is small due to the presence

of the mirror, but it is nonzero due to a finite value of G. We

can see that the presence of the HMM sample makes the

(a)

(b)

FIG. 12. The optimization graphs for the 3D structure. (a) EUR versus

j<½ek�j=<½e?�. Fixed plot parameters: <½e?� ¼ 3:1e0; d ¼ 0:5k0; G ¼ 8k0,

L¼ 0, g ¼ 2k0; x ¼ x0 ¼ 600p Trad/s. (b) EUR versus the parameter s=k0

for <½e?� ¼ 3:1e0; <½ek� ¼ �10:5e0; d ¼ 0:5k0; G ¼ 8k0; g ¼ 2k0.

(a)

(b)

FIG. 11. Search of the macroscopic trend for EUR versus: (a) the overall

size G and (b) the cut size g. The optimal designs from Fig. 6, denoted by

black triangles are tested. Triangle-triangle design (Fig. 5(a)) blue curves

with circular dots, circle-triangle design (Fig. 5(b)) green curves with square

dots, circle-circle design (Fig. 5(c)) red curves with triangular dots. The

selected optimized cases are denoted by black triangles.
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far-field radiation of the dipole quite directional. This direc-

tionality is not destroyed by reasonably small displacements

of the source, which is another evidence that the radiation

enhancement is only weakly sensitive to the source

positioning.

In summary, we have confirmed that a hemispherical

macroscopic groove prepared in a layer of HMM allows very

strong (1-2 orders of magnitude) enhancement of useful

emission for dipole sources located close to the bottom of

the groove. The emission enhancement keeps high in a broad

frequency range and for noticeable (though much smaller

than the groove diameter) displacements of the source from

the groove center. This enhanced power in radiated into a

tight beam forming a cone in free space for sources distrib-

uted symmetrically in the vicinity on the bottom point. A sig-

nificant enhancement can be achieved also with a groove

shaped as a thin spherical segment with an optically large

diameter. It is important that the effect is achievable in a

practically feasible variant of HMM, which can be per-

formed as an array of gold nanowires in a porous matrix.

IV. CONCLUSIONS

In this paper, we have shown that macroscopic samples

of hyperbolic metamaterials can be shaped so that they con-

stitute effective antennas, transforming evanescent fields

(produced by nanoemitters) into traveling waves in free

space. These antennas effectively enhance radiation of small

sources and, in addition, they are capable of creating direc-

tive beams radiating into vacuum. Here we utilize the phe-

nomenon of conical radiating beams which are excited by

small sources inside a hyperbolic medium samples or close

to interfaces with such media. Understanding the orientation

of the cones and using the knowledge on the isofrequency

contours, we have found the appropriate shapes of the hyper-

bolic material sample as well as the orientation of the optical

axis, which ensure that most of the power propagating in/

across the cones is eventually radiated into free space. In

contrast to earlier works on enhancement of point-source

radiation using hyperbolic media, where the enhanced radi-

ated power could not leave the volume of the hyperbolic

media sample, the structures introduced here function as

broadband antennas creating directive beams in free space.

Furthermore, the enhancement of radiated power weakly

depends on the position of nanosources, which is important

for detection of emission from solutions or otherwise arbitra-

rily positioned objects. The shape and direction of the

radiated beam, on the other hand, depends on the source

position, which can be used for nano-precision position

detection of a number of moving particles in real time.
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