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Abstract

We characterize minimal measurement setups for validating the quantum coherence of an unknown
quantum state. We show that for a d-level system, the optimal strategy consists of measuring d orthonormal
bases such that each measured basis is mutually unbiased with respect to the reference basis, and together
with the reference basis they form an informationally complete set of measurements. We prove that, in
general, any strategy capable of validating quantum coherence allows one to evaluate also the exact value of
coherence. We then give an explicit construction of the optimal measurements for arbitrary dimensions,
and we derive a reconstruction formula for the off-diagonal terms. We also demonstrate that the same
measurement setup is optimal for the modified task of verifying if the coherence is above or below a given
threshold value. Finally, we show that the certification of entanglement of bipartite maximally correlated
states is intimately connected with the certification of coherence.

1. Introduction

Quantum coherence, or the ability to form superpositions of quantum states, is one of the fundamental
distinctions between the quantum and classical worlds. Quantum coherence is not merely a foundational
curiosity, but it is the key element behind numerous quantum technological applications [ 1], including
quantum algorithms [2] and quantum state merging [3]. This has lead to the identification of quantum
coherence as a true physical resource [ 1, 4, 5].

Due to the importance of quantum coherence, there have been various approaches and proposals for
detecting or estimating the coherence of an unknown quantum state [6, 7]. In this paper, we address the problem
of detecting coherence from a very fundamental point of view. We determine the minimal number, as well as
characterize the optimal set, of measurements for the following tasks:

(a) Certification of the presence or absence of quantum coherence in an unknown quantum state.

(b) Determination of the exact value of quantum coherence in an unknown quantum state.

While these tasks are clearly defined and provide a foundational basis for more applicative studies, one may wish
to have a more robust and physically motivated goal for comparison. Hence we also consider the following task:

(a) Verification that an unknown quantum state has more coherence than some chosen threshold value.

Mathematically speaking, quantum coherence is always defined with respect to some reference basis, that is, a
fixed orthonormal basis { ¢; }?;01 of ad-level quantum system. A state ¢ represented by a density matrix is

incoherent if it is diagonal in the reference basis, i.e., 0 = 3; pj|g0j> <g0j| for some probability distribution ( p)s
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otherwise it is coherent. Quantum coherence can be quantified in various ways [8—10]. Task (b) does not depend
on a particular choice of quantification; as a measure of coherence we can take any function which depends only
on the off-diagonal elements of the state, and vanishes for all incoherent states and only for them. For task (c), we
need to be more specific and fix a suitable measure. A natural choice is the £4-norm of coherence, given as

CG(9) = minger ||o — olls = 321l 0k, where T is the set of all incoherent states and [I|4 is the 4 matrix
norm [11]. The 4-norm of coherence is a reasonable quantification of coherence since the first formula gives a
physically motivated definition while the second formula provides an easy way to calculate it. Further, it is
monotonic under incoherent completely positive and trace preserving maps [12]. It has been recently shown
that the distillable coherence of a state is bounded by the £ -norm of coherence, and this provides a solid
operational interpretation for its meaning [13].

We will first concentrate on quantum measurements related to orthonormal bases, so that the measurement
of abasis {1/ }{_) on an initial state ¢ gives an outcome k with probability ( 1 | g% ). A collection of finitely
many different measurements is referred to as a measurement setup. This framework allows us to present a
compact characterization of the optimal setups for tasks (a)—(c). We will later explain that considering more
general measurements (described by positive operator valued measures (POVM)) does not alter the conclusions
of our work.

To put our questions into a proper context, we recall that in order to perform full state tomography, a
measurement setup consisting of d + 1 bases is required; such a setup is called informationally complete [14, 15].
Informationally complete setups exist in all dimensions and are easy to construct as the only criterion is that the
respective projections span the linear space of operators [16, 17]. The main goal of the present investigation is to
determine how many measurements are needed in tasks (a)—(c), and to characterize the respective minimal
measurement setups.

To further motivate the stated tasks, we recall that it is known that the certification of purity can be done with
just five measurements [ 18], whereas the determination of the exact value of purity requires an informationally
complete setup [19]. Another recent result regarding quantum correlations shows that any measurement setup
which is not informationally complete will fail in certifying entanglement as well as nonclassicality of an
unknown state [20]. It is therefore interesting to see how coherence compares with these other properties of
quantum states.

Our main result shows that any measurement setup which can complete either task (a) or (c) is also capable
of completing the more difficult task (b). In other words, the three tasks are equally demanding. We will prove
that the minimal measurement setup for all tasks (a)—(c) consists of d bases. The essential property that any
measurement setup of this kind must satisfy is that each basis is mutually unbiased with respect to the reference
basis. We recall that the mutual unbiasedness of two bases {1y }z;é and {¢, }?;%, means that the number
[{ ¢x | ¢, )|isindependent of the indices k and ¢, and it then follows that | ( ¢ | ¢, )| = 1/ Jd.

Itis known that if the dimension d is a prime power, then one can construct a complete set of mutually
unbiased bases (MUB), i.e., d + 1bases that are all pairwisely mutually unbiased [21, 22]. In prime power
dimension one could therefore pick a complete set of MUB, transform all of them with a suitable unitary
operator so that one of the bases becomes the reference basis, and then drop out the reference basis. However, as
the existence of a complete set of MUB in other dimensions still remains an open question [23], this does not give
a general solution. The criterion for a minimal measurement setup does not require all pairs of bases to be
mutually unbiased with respect to each other, hence a positive answer to the MUB existence question isnot a
prerequisite to our result. In fact, we provide an explicit construction of the minimal measurement setup in
arbitrary dimensions, and an explicit formula for the reconstruction of the off-diagonal elements of the density
matrix in terms of such measurements.

Finally, based on the parametrization of the set of maximally correlated states given in [24], we show that
there is an intimate connection between the entanglement of bipartite maximally correlated states and
coherence.

2. Perturbation operators and the equivalence of tasks (a) and (b)

2.1. Warm up: coherence in a qubit system

As awarm up, we consider tasks (a) and (b) for a qubit system. For a qubit state ¢ we have C;(0) = 2|00.1)>
where ¢ 1 is the off-diagonal matrix element in the chosen reference basis. Assuming that this basis is the
eigenbasis of 0, we see that from the numbers tr[ oo, ] and tr[ go,] we can calculate the off-diagonal elements and
hence the value of C;(¢). Therefore, task (b) can be accomplished by measuring just two bases, namely, the
eigenbases of o, and o,. More generally, the eigenbases of 0, = a - o and o, = b - o suffice for task (b)
whenever a and b are nonparallel unit vectors in the xy-plane.
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Figure 1. In the Bloch ball any choice of two nonparallel vectors in the plane 7 orthogonal to z determines two measurements that are
mutually unbiased with respect to o, and allows to certify coherence. Any other choice of a plane 7’ non orthogonal to z cannot certify
coherence.

A single basis is not enough even for task (a), since the measurement of, say, oy gives the same outcome
probabilities for the coherent state %(l + 0,) and the incoherent state %]l. Itis easy to extend this argument and
see that for any basis, there is a coherent state and an incoherent state that give the same measurement outcome
distribution.

Let us now look at the possible choices for the two measurements. To this end, let a and b be two nonparallel
unit vectors in the Bloch ball, and assume that at least one of them is not orthogonal to the unit vector k (z-
direction). Wecanset c = a X b/||a x bl|to obtain another unit vector which is not parallel to k. The state
Oc = %(Jl + o), with o, = ¢ - o, isthen coherent, but since ¢ is orthogonal to a and b we have

trlocon] = tr[%]laa] and tr[o.op] = tr[%]lob], which means that the eigenbases of 0, and o}, cannot distinguish

the states g. and %Jl. As we have seen, this kind of ambivalence does not occur if both a and b are orthogonal to
k; see figure 1. We conclude that the respective orthonormal bases must be mutually unbiased with respect to the
reference basis.

2.2. Coherence in a d-level system
In order to deal with task (a) in the case of a d-level system, we resort to a geometric framework, similar to that
usedin [19, 20]. The key concept is that of a perturbation operator, by which we mean any traceless selfadjoint
operator. The nonzero perturbation operators A are precisely those operators that can be written, up to a scaling
factor, as differences of distinct quantum states SA = o’ — o (see, for example, [25]).

The relevance of perturbation operators in the present context stems from the fact that, if we consider a
measurement setup consisting of m bases {1/{"} .. {™) 9-1 then the condition

(PO1 AP Y = te[[9) (W] Al =0 forallk=0,...,d - landZ =1,...,m, (1)

implies the equality of the probability distributions:
tlold”) (W11 = ulo10”) (w11 €)

and hence the impossibility to distinguish between gand g’ from the measurement statistics. Therefore,
perturbation operators provide a convenient way to analyse which pairs of states a given measurement can
distinguish. In other words, as the name ‘perturbation operator’ suggests, we see that we are in fact studying if the
state ¢ can be distinguished from its perturbed version ¢ + 6 A.

We say that a perturbation operator A is detected by a measurement setup if for any state o, the two states o
and g + OA give different measurement data whenever the scaling parameter 6 is such that the latter operator is
avalid state; otherwise A is undetected. It depends on the geometry of the property that we are considering which
perturbation operators must be detected and which are allowed to be undetected; see figure 2.

For certifying coherence (task (a)), a suitable measurement setup must be able to detect differences between
coherent and incoherent states. Quite naturally, this means that all perturbation operators with at least some
nonzero off-diagonal elements must be detected. To see this, note that for any perturbation A, there exists a
sufficiently small 6 > O suchthatn = é]l + 0Aisavalid state. Clearly nis coherent if and only if A has nonzero

3
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Figure 2. The subset of states sharing a property P (e.g. coherence) is represented with the green colour. Any measurement
distinguishing property P needs to detect the perturbation operator A,, as the direction of A, crosses the boundary of P. This does
not happen for the perturbation operator A, which therefore needs not to be detected.

off-diagonal elements, and since %l is incoherent, such A’s must be detected. Since diagonal perturbation
operators can never be written as differences of coherent and incoherent states, their detection is irrelevant to us.
This allows us to summarize the above discussion in the following statement.

Proposition 1. A measurement setup consisting of m bases completes task (a) if and only if all the undetected
perturbation operators are diagonal in the reference basis.

This result gives a lower bound for the minimal number . First of all, we observe that the undetected
perturbations form a subspace of traceless selfadjoint operators. The dimension of this subspace cannot exceed
d — 1, since this is the dimension of the subspace of all diagonal perturbation operators. The defining
equation (1) for undetected perturbation operators means that the undetected perturbations A are the
orthogonal complement of the projections |¢§f ) <¢§f )| in the Hilbert-Schmidt inner product. Since the
dimension of the real vector space of all selfadjoint operators is @, the required measurement setup must span a
subspace of at least dimension d> — d + 1. Since mbases giveatmostd + (m — 1)(d — 1) linearly
independent operators, this means that task (a) cannot be solved with less than d orthonormal bases.

The next theorem is the main result of this section.

Theorem 1. Any measurement setup that completes task (a) also completes task (b).

Proof. Assume that we have a measurement setup {1} =4, -+, {1} {Z} that completes task (a). By
proposition 1, any undetected perturbation operator A must be diagonal, and hence in the linear span of the
operators D; = |¢) (] — lg;_1) (¢, |, wherel < j < d — 1.Forallindices 0 < j < k < d — 1, wefurther
denote Ay = %(ls%) (e + 1w (ghand A = (@) (@il — o) (). Since the selfadjoint operators A
and A; are orthogonal to all D;’s, they are also orthogonal to all the undetected perturbations A. Hence AjJ,r k
and A;; mustbe in the linear span of the projections [ (147, and the expectations tr [gAjJ,r k) tr[oA; ] can
be evaluated from the probabilities { 1) | gi{” ). We observe that forany j < k, we have

ojx = trloAf}] + i tr[oAf;]. 3)

Therefore, we can calculate the off-diagonal elements of ¢ from the measurement data and hence calculate
Ci (o) or any other measure of coherence. O

3. Minimal measurement setups

3.1. Minimality implies mutual unbiasedness

We have concluded in section 2.2 that task (a) cannot be completed with less than d orthonormal bases.
Although we have not yet shown that a suitable set of d bases exists, we will next see what implications this would
have. To this end, suppose that there is a set of d bases {1/{"} =3, -+, {/\?} 4~} which completes task (a). By
direct counting, the dimension of the corresponding subspace of undetected perturbation operators needs to be

4
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atleast d — 1, hence we see that (1) must hold whenever A is a diagonal perturbation operator. In other words,
there is no room to detect any perturbations that are not relevant for the task at hand.

Since the operators |¢;) (¢ — l¢;) (¢l with i = j span the subspace of diagonal perturbation operators, we
find that (1) is equivalent to

1 Lo ) =1 | @) (4)

But this is nothing else than the mutual unbiasedness condition for the reference basis and each measurement
basis. Therefore, if a collection of d bases completes task (a), then each basis must be mutually unbiased with
respect to the reference basis.

There is an additional property that we can infer from the assumed minimal set of d bases. The reference
basis detects all diagonal perturbations. Hence, if we measure the reference basis together with the assumed set of
dbases, we can detect all perturbations. We summarize this discussion in the following theorem.

Theorem 2. A minimal measurement setup consisting of d bases completes task (a) (equivalently (b)) ifand only if

(i) each basis is mutually unbiased with respect to the reference basis; and

(ii) together with the reference basis they form an informationally complete set.

Wesstill need to show that d orthonormal bases with these two required properties can be constructed in all
dimensions.

3.2. Construction of a minimal setup
From theorem 2, it follows that, in the prime power dimensions, the construction of a minimal measurement
setup is straightforward: we pick a complete set of d + 1 MUB, apply a unitary transformation which
transforms one of the bases into the reference basis, and then drop out the reference basis. Since any complete set
of MUB is informationally complete [21], it is an immediate consequence of theorem 2 that the remaining set of
d MUB completes tasks (a) and (b). For other dimensions we need to seek a different construction. However, one
can expect this to be possible since the condition (i) in theorem 2 is a seemingly weaker condition than havinga
complete set of MUB.

First, let us recall a simple way to write a MUB with respect to a given one [26]. We denote w = ¢>™/4, For
eachj=0,...,d — 1,wefixacomplex number Bjwith || = 1. Then, foreachk = 0, ..., d — 1,wedefinea
unit vector

k \/— Z ﬁ]w 90] (5)

It is straightforward to check that {1/} }{_} is an orthonormal basis and that it is unbiased with respect to the
reference basis { };'»l;&. Since the choice of the phases ; is arbitrary, we can construct arbitrarily many
orthonormal bases that are mutually unbiased with respect to the reference basis. However, this is not enough as
we also need to satisfy the condition (ii) in theorem 2. We thus need to choose the phases 3; in a specific way.

For the construction of the bases having the required property, we need some additional notation. We
denote by Z, the ring of integers {0, 1, ..., d — 1}, where the addition and multiplication is understood
modulo d. For clarity, we denote by + the addition modulo d. Unless d is prime, Z; has zero divisors, i.e.,
nonzero elements that give 0 when multiplied with some other nonzero element (e.g. in Z¢wehave2 - 3 = 0
modulo 6). This is the underlying fact why there are relatively easy constructions of complete set of MUB in
prime dimensions but similar constructions do not work if the dimension is a composite number. For this
reason, we defineamap s: Z; — Z that maps x € Z;into x € Z. The purpose of the map sis that we can use
the modular arithmetic of Z; when needed, but then perform calculations in Z when that is more convenient as
7Z has no zero divisors. Using this map we can now choose orthonormal bases in the following way:

Theorem 3. Let & be an irrational number. Foreach ¢ = 1, ..., d, define an orthonormal basis 1\’ by
PO = \/_ Z Dy k=0,...,d— 1. (6)

Theset {\V} 424, -+, {\D} () is a minimal measurement setup consisting of d bases which accomplishes task (a).

Proof. By proposition 1, we need to verify that any undetected perturbation operator for this measurement setup
is diagonal. To do this, we write a perturbation operatoras A = 37, .vj jl¢;) (;l. Taking the discrete Fourier
transform of (1) with respect to index k, we obtain
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d—1 d—1
2 : - 4 4 (- S )2 o(7)2 o

w xk< w;{ ) | Adji ) > — E :eam(f DIs(j + x)*—s(j) ]Vj,ﬂ—x =0, (7)
k=0 j=0

which is required to hold forall x € Zgand # = 1, ..., d. Since we need to confirm that v ; { , = 0 forany

x = 0,wefix x = 0and consider (7)for £ = 1, ..., d asasystem of linear equations. It is then found that the
corresponding matrix is invertible (a detailed mathematical calculation is given in the appendix), which means
that ;1. = 01is the only solution. Therefore, the measurement setup consisting of the d orthonormal bases
written in (6) completes tasks (a) and (b). O

3.3. Reconstruction formula for off-diagonal elements

Having at disposal the explicit form of a minimal measurement setup for the determination of quantum
coherence, one can write a reconstruction formula for the off-diagonal elements using only the measurement
outcome probabilities of these bases. To do this, we denote

PO Kk = (O] ap) k=0,...,d—1, (8)
where wf) are given in (6). Then, the reconstruction formula reads as follows.
Theorem 4. With the notations above

S (DT

onniz={opl o) = Y, m—————— 0q_ja 1PV (k). 9
o TT G —xp)
i=h
where xj, = eomilsth+2? =M g5 Uﬁd,l is the sum of all products of r of the numbers Xy, ..., Xp_1, Xjs 1> «+> Xd_1

without permutations or repetitions ( aﬁ) i1 = .
Proof. Accordingto (7),
d—1 d—1
Yo w Oy =" Ve wonniz (10)
k=0 h=0
where (V} 1)ih—o, ..., i—11s the Vandermonde matrix
Vin=x] with  x; = eomilsthFa)y’—s®)?] (11)
Itsinverseis [27]

xp (=D,

(V= madﬁ‘,dq- (12)
h— Xi
i=h
Therefore,
d—1 d—1 d—j —ke
. xn(—1 Jw .
Ohhtz = ; (Vﬁl)h,j Wikzp(]ﬂ)(k) = ; %Ug_j,d_lp(]ﬂ)(k). (13)
J>k=0 jk=0 i
i=h

O

4. Completion of task (c)

In order to make task (c) more precise, we need to use a specific measure of coherence. We will use the #-norm
of coherence, defined as

G(0) = Y _lojul. (14)

j=k

This measure clearly vanishes exactly for incoherent states, and the maximal value of C; is d — 1[12]. As we did
earlier in the case of tasks (a) and (b), we aim to determine the minimal requirement for a measurement setup to
be capable of deciding, for any state g, whether C; (o) is greater than a fixed threshold value r (d — 1) with
0 < r < 1,ornot. In the following we show that this task requires exactly the same measurement settings as the
previously considered tasks.

Theorem 5. A measurement setup consisting of m bases completes task (c) (with respect to C;) if and only if it
completes task (a) (or (b)).

Proof. By proposition 1 it is enough to show that a measurement setup completes task (c) if and only if it detects
all the perturbation operators that are not diagonal in the reference basis. Indeed, if C;(¢) < r(d — 1) and
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Ci(9") > r(d — 1),itis clear that the difference A = p’ — p isanon-diagonal perturbation operator; hence,
detecting all non-diagonal perturbations is a sufficient condition for completing task (c). To prove the reverse
implication, it is enough to show that for any non-diagonal perturbation operator A, there exist states ¢ and
o' = o0+ 6AwithC(o) < r(d — 1)and G (0") > r(d — 1).

To prove this statement, we fix a family of maximally coherent states [¢) = %Ziil el%|k), parametrized

byanarray of phases ¢ = (¢, ..., ;) € [0, 27)%. The convex mixture
P 1
g(/} = (1 - r)g + V|¢>¢<1/J|¢>a 0<r<il, (15)

is then a full-rank state with Gy (¢;,) = r(d — 1). Itfollows that the operator gy, + (6r/d) A isstill a valid state
forall || < (1 — r)/(r||A]]), independently of the array of phases ¢.

Let f,(6) = Gi(oy + (6r / d)A), where A is any non-diagonal perturbation operator. In the following we
show that the function f% (6) has anonzero derivative at the point § = 0 for some set of parameters ¢,. Possibly
replacing é with — ¢, this then yields f5,(0) > £, (0) for some 6 = 0, which is what we want to show.

Let A = A + iB be the decomposition of A into its real symmetric and antisymmetric parts. A
straightforward computation gives

£, = cl(g:,, + %A) = L lcos(6, — 6 + 84 + Gin(d, = 6) + OBp T (19
p=q
Therefore,
HOBTHO= % S [Apg cos(@, — 6,) + Bpgsin(@, — 6,1 (17)
p>q

We can now use the freedom in the choice of ¢ to obtain the result. Indeed, if r > s we have

Qm)?r

‘/‘/[-0,27()2 g(¢)COS(¢r - ¢S)d¢rd¢s - d Ap,q)
(18)
. 2 2
//[0,27r)2 g(@)sin(¢, — ¢)dg,do, = ( 7;) er,q.

Hence, if g(¢) = 0 forevery ¢ € [0, 2m)%,then A,, = B, , = 0 forevery p = g,and A is diagonal, against
our assumption. O

5. General measurement setups

One may wonder if the proven equivalence of the tasks (a)—(c) is due to the fact that we consider only
measurement setups that are related to orthonormal bases. A more general concept of a quantum measurement
is that of a POVM. Using the perturbation operator method analogously as we have done earlier, one can show
that the tasks (a)—(c) are equivalent also when we consider POVM measurements. Further, the minimal number
of elements of a single POVM that can solve these tasks is found to be d> — d + 1. Since any measurement setup
of dbases yields a single POVM with d?> — d + 1 elements which detects exactly the same perturbation
operators, the optimal measurement setup constructed earlier then provides an optimal POVM measurement.
In the following we explain the details of these statements.

Instead of a measurement setup consisting of n orthonormal bases {1/{"} ¢}, ..., {¢/{™} =1 asingle
POVM {E.};_ or even a collection of m POVMs {E,El)} AN {Elg’“)} 7~ may be used for tasks (a)—(c). Here,

1 is the number of outcomes of the #th POVM. Then, the perturbation operators A that are undetected by the
POVMs at hand are those that satisfy the following analogue of (1):

tr[AE,Ef)] =0 foralk=0,..,7,—land?=1,...,m.

By replacing each occurrence of the basis projections |w§f)) Wg) | with the positive operators E,Ef), the same
considerations leading to proposition 1 and theorems 1 and 5 yield the next conclusions.

Theorem 6. For a collection of m POVMs {E(V} 2L . {E(™) i, the following facts hold:

1. tasks (a)—(c) are equivalent;

2. the collection completes the three equivalent tasks (a)—(c) if and only if all the undetected perturbation operators
are diagonal in the reference basis.
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As in the m bases case, theorem 6 gives a lower bound for the number of outcomes of m POVMs completing
tasks (a)—(c): the POVM operators {E,E"ﬁ): k=1,...,1, £ =1, ..., m} must span a subspace of at least
dimension d> — d + 1inside the real vector space of all selfadjoint operators; since the m POVMs give at most

m m
rl—i—Z(rf—l):er—m—i—l (19)
£=2 £=1
linearly independent operators, this sum must be greater than or equal to d*> — d + 1.

Now, one may be interested in using a single POVM { E;};_{ in order to complete one of the equivalent tasks
(a)—(c). In this case, the amount of needed quantum resources is the number r of the required measurement
outcomes. By the discussion above, it mustbe r > d? — d + 1; the next result shows that such alower bound is
actually attained.

Theorem 7. For a single POVM, the minimal number of outcomes needed to complete one of the three equivalent
tasks (a)—(c)isr =d*> —d + 1

Proof. The POVM{Ey, Esj: ¢ = 1, ...,d, k=1, ..., d — 1}, with

1 1 &
Ey = - —— > 1) (W1
d—1  d*—d;2 (20)
1
Eer = 7@~ WD =1, dk=1.,d—1

isa(d®> — d + 1)-outcome POVM detecting the same perturbation operators as those detected by the d
orthogonal bases {y/{"} =0, ..., {4} 4=} Indeed,

d—1
W) (] = (d>— d)Y Ee — (d — 2)1
k=1

[ (W] = 1 — (d> — d)Epp

Then, by choosing d bases which complete the tasks, e.g., those given by formula (6), we obtain a POVM with the
same property. O

(2]

6. Certification of entanglement of maximally correlated states

We show that the certification of entanglement of bipartite maximally correlated states is intimately connected
with the certification of coherence. This result is based on [24]. Here, we give a brief account of that paperin a
form that is more suited to our framework and discuss some direct consequences of the previous sections.

We let C? be the Hilbert space of our quantum system, and in it we choose the computational basis
{g =10} ?;3 as the reference basis. We recall that a bipartite state on C* @ C is called maximally correlated if
itis of the form

-1
2= 3 el {jl @ i) (jl (22)
i,j=0
We define a unitarymap U: C? ® C? — C? @ C?as
-1
U=l @i+ (23)
ij=0

whereas usual + is the addition modulo d. We then denote the corresponding unitary channel as A, i.e.,
A(2) = U*pU.Notethat A = (A*)~!, where A% is the incoherent operation defined in [24, equation (10)] for
the particular case when the dimension of the ancilla equals that of the system.

If 2 isasin (22), itis easily checked that

A@)=0®10)(0]  where o=} oijli)(jl- (29)
ij

Hence, the channel A establishes a bijective correspondence between maximally correlated bipartite states on
C? @ C4andall states on C¢. Even more is true; indeed as it is shown in [24], we have the following fact.

Proposition 2. The maximally correlated state p of (22) is entangled if and only if the state o of (24) is coherent.

Proof. The result follows from the following three facts:

8
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l.astate con C? @ C9isentangled ifand only if
E.(0) >0
where E, is the relative entropy of entanglement (see [28, equation (7)]);
2.astate g on C?is coherent if and only if
Cr(0) >0

where C, is the relative entropy of coherence (see [ 12, equation (8)]);

3. with the notations above, we have

Crlo) = Er[z oijli) (jl ® |i><j|)

irj
(see [24, equations (8), (10)]).

O

Hence, if we have any maximally correlated state o and we want to determine whether it is entangled or not,
we can first apply the channel A, then trace away the second system which is always in the fixed state |0) (0|, and
finally perform a measurement on the first system. The initial maximally correlated state 2 being entangled is
now equivalent to the final state ¢ = t[A(2)] being coherent. Certifying entanglement of 2 is thus equivalent
to task (a) for the final state g; in particular, such a task requires a POVM with least d> — d + 1 outcomes in the
bipartite system.

Combining proposition 2 with theorem 3, we easily obtain also the following result.

Theorem 8. The vectors {5]., k}i;lo, with

d—1
1 Z eorrl]s(x)2 x(k— ])+7]|X> |y>’ (25)
d

x,y=0

§j,k =

constitute an orthonormal basis of C* ® C?, which accomplishes the task of certifying the presence or absence of
entanglement in an unknown maximally correlated state.

Proof. Let {1/)(1)} A A {¢(d)} ¢~ be the measurement setup given by (6). Note that { “) ® w(l)} k olsan
orthonormal basis of C? @ C%, and f = U(w(] RS ¢(1)), where U'is the unitary operator (23). Hence, the
set {fj, k}j, v~ is an orthonormal basis of C? @ C. Ifthe states 2, pareasin (22), (24), then

<w“> o) = (¢ @ Y% | (0@ 10) (0D (Y @ v )
(PO @D | UU@ @ vP )
:<Ef—1k | & %qu ).

Since the measurement setup {24, -, (9P} {25 accomplishes the task of certifying coherence of o by
theorem 3, the basis {fj, k}]’ - certifies entanglement of o by proposition 2. 0

This result should be compared with the fact that, for certifying the presence or absence of entanglement in
an arbitrary bipartite state, at least > + 1orthonormal bases of C? ® C are needed [20].

7. Discussion

The development of quantum technologies will bring us applications capable of outperforming any of their
classical counterparts. The superiority of these applications rests on the ability to take advantage of properties of
physical systems which are genuinely quantum. For this reason, it is essential to be able to verify that a given
source produces systems which have such a property. Here we have investigated optimal measurement strategies
for verifying the presence of quantum coherence. We have shown that this simple verification task is actually as
difficult as determining the exact value of quantum coherence. We have both characterized the optimal setups in
terms of a mutual unbiasedness condition, as well as constructed explicit examples in arbitrary dimensions.

One of the core assumptions behind our results is that there is no prior information available regarding the
initial state of the system at hand. In many practical situations this may not be the case, and by exploiting the

9
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available prior information it may be possible to further optimize the setup. As a simple example, suppose that
we know the system to be in a pure state. Then quantum coherence can be verified by simply measuring the
reference basis, as the incoherent states are exactly the eigenstates of this observable. The geometric framework
exploited in this work is flexible enough to be used also in questions with prior information.

It has been recently shown that there are connections between the theories of coherence and
entanglement [24]. This allows us to find direct applications of our results in the context of entanglement
detection. Indeed, the problem of detecting the entanglement of an unknown maximally correlated state can
be translated into the coherence detection problem. In particular, we found that the minimal number of
POVM elements needed for detecting the entanglement of a maximally correlated state is d*> — d + 1,and
thata measurement setup made up of only one orthonormal basis is enough for such a task; these should be
compared with the respective numbers d* and d2 + 1, which are needed for general bipartite states [20]. This
drastic reduction serves as a motivation for further studies regarding the exploitation of this connection
within our framework.
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Appendix. Proofthatv; ;. = 0 forany x = 0.

In the main text we have obtained the equation

d—1
Z eami(@=DIs(j + x> =s(j)’] Vijix =0, (26)
=0
required to hold forall x € Zyand # = 1, ..., d. We need to confirm that ; ;. = 0 forany x = 0, and for this
purpose we fix x = 0 and consider (26) for £ = 1, ..., d asasystem of linear equations. We denote

uy(j) = eamils(i+x)=s(j)],

and observe that the matrix of the linear system (26) is a Vandermonde matrix generated by the numbers
(1 ( j));’-l;&. Hence, its determinant equals to

[T () — u(i). (27)

0<i<j<d—1

The last effort is to verify that all the factors in this product are nonzero. Since « is irrational, we see that
u,(j) = uy(i)ifand onlyif

s(GH+x)? —s(j)? =sG +x)? — s(i)> (28)
We thus need to prove that the only solution to (28) is i = j as the expression (27) contains only terms
with i = j.
Werecall that the function sis defined as s: Zy; — 7Z, s(x) = x. For two elements x, y € Z,, we have

(29)

N {s<x> — s if s(x) > s(y),
s(x = y) =

s(x) —s(y) +d ifs(x) < s(y),

where ~ denotes the subtraction modulo d.
The following result is the last step needed in the construction of the d bases.

Proposition 3. Let x, i, j € Zgand x = 0. Then, the only solutionto (28)isi = j.

Proof. One can prove the claim by considering the different possible cases separately, i.e., s(j + x) > s(j) and
s(j + x) < s(j). We go through the first case, the latter being similar.

Assume s(j + x) > s(j). Thenby (28) wealso have s(i + x) > s(i). Using (29) we can thus write
s(j+x) — s(j) =s(x)and s(i + x) — s(i) = s(x),and (28) becomes

sCGG 4% + s() = s@) (G +x) + s(@). (30)

10
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As s(x) = 0, we further get
s(G+x) +s() =50 +x) + s@). (31)

We then split the proof further into two cases.

(a) Assume s(j) > s(i). From (31), it follows that s (i + x) > s(j + x). Using (29) and (31), we obtain
s(j = 1) =s@ =), (32)
and further
2(j — i) = 0 modulo 4 (33)

due to the injectivity of s. If d is odd, then (33) immediately implies i = j. If dis even, then either i = jor
s(j = i) = d/2.Since s(j) > s(i)and s(i + x) > s(j + x), by (29) thelatter option can be realized only if
s(j) =2 d/2,s(1)) < d/2ands(i + x) > d/2,s(j + x) < d/2.Butthis is not consistent with assumed
condition s(j 4 x) > s(j). We thus conclude that i = j.

(b) Assume s(j) < s(i). From (31) it follows that s (i + x) < s(j + x). Using (29) and (31), we obtain (32) and
(33) asin the previous case. Then, the rest of the proof is similar.
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