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Abstract
Wecharacterizeminimalmeasurement setups for validating thequantumcoherenceof anunknown
quantumstate.We showthat for ad-level system, theoptimal strategy consistsofmeasuringdorthonormal
bases such that eachmeasuredbasis ismutually unbiasedwith respect to the reference basis, and together
with the referencebasis they forman informationally complete set ofmeasurements.Weprove that, in
general, any strategy capable of validatingquantumcoherence allowsone to evaluate also the exact value of
coherence.We thengive an explicit constructionof theoptimalmeasurements for arbitrary dimensions,
andwederive a reconstruction formula for theoff-diagonal terms.Wealsodemonstrate that the same
measurement setup is optimal for themodified taskof verifying if the coherence is aboveor belowa given
threshold value. Finally,we show that the certificationof entanglementof bipartitemaximally correlated
states is intimately connectedwith the certificationof coherence.

1. Introduction

Quantumcoherence, or the ability to form superpositions of quantum states, is one of the fundamental
distinctions between the quantum and classical worlds. Quantum coherence is notmerely a foundational
curiosity, but it is the key element behind numerous quantum technological applications [1], including
quantumalgorithms [2] and quantum statemerging [3]. This has lead to the identification of quantum
coherence as a true physical resource [1, 4, 5].

Due to the importance of quantum coherence, there have been various approaches and proposals for
detecting or estimating the coherence of an unknown quantum state [6, 7]. In this paper, we address the problem
of detecting coherence from a very fundamental point of view.We determine theminimal number, as well as
characterize the optimal set, ofmeasurements for the following tasks:

(a) Certification of the presence or absence of quantum coherence in an unknown quantum state.

(b) Determination of the exact value of quantum coherence in an unknown quantum state.

While these tasks are clearly defined and provide a foundational basis formore applicative studies, onemaywish
to have amore robust and physicallymotivated goal for comparison. Hencewe also consider the following task:

(a) Verification that an unknownquantum state hasmore coherence than some chosen threshold value.

Mathematically speaking, quantum coherence is always definedwith respect to some reference basis, that is, a
fixed orthonormal basis j j

d
0
1j =

-{ } of a d-level quantum system. A state  represented by a densitymatrix is

incoherent if it is diagonal in the reference basis, i.e., pj j j j j j= å ñá∣ ∣ for some probability distribution p ;j( )
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otherwise it is coherent. Quantumcoherence can be quantified in variousways [8–10]. Task (b) does not depend
on a particular choice of quantification; as ameasure of coherencewe can take any functionwhich depends only
on the off-diagonal elements of the state, and vanishes for all incoherent states and only for them. For task (c), we
need to bemore specific andfix a suitablemeasure. A natural choice is the 1ℓ-normof coherence, given as
C min j k j k1 ,1
   s= - = åsÎ ¹ ( ) ∣ ∣ℓ , where  is the set of all incoherent states and

1
 · ℓ is the 1ℓ matrix

norm [11]. The 1ℓ-normof coherence is a reasonable quantification of coherence since the first formula gives a
physicallymotivated definitionwhile the second formula provides an easyway to calculate it. Further, it is
monotonic under incoherent completely positive and trace preservingmaps [12]. It has been recently shown
that the distillable coherence of a state is bounded by the 1ℓ-normof coherence, and this provides a solid
operational interpretation for itsmeaning [13].

Wewillfirst concentrate on quantummeasurements related to orthonormal bases, so that themeasurement
of a basis k k

d
0
1y =

-{ } on an initial state  gives an outcome kwith probability k ky yá ñ∣ . A collection offinitely
many differentmeasurements is referred to as ameasurement setup. This framework allows us to present a
compact characterization of the optimal setups for tasks (a)–(c).Wewill later explain that consideringmore
generalmeasurements (described by positive operator valuedmeasures (POVM)) does not alter the conclusions
of ourwork.

To put our questions into a proper context, we recall that in order to perform full state tomography, a
measurement setup consisting of d 1+ bases is required; such a setup is called informationally complete [14, 15].
Informationally complete setups exist in all dimensions and are easy to construct as the only criterion is that the
respective projections span the linear space of operators [16, 17]. Themain goal of the present investigation is to
determine howmanymeasurements are needed in tasks (a)–(c), and to characterize the respectiveminimal
measurement setups.

To furthermotivate the stated tasks, we recall that it is known that the certification of purity can be donewith
justfivemeasurements [18], whereas the determination of the exact value of purity requires an informationally
complete setup [19]. Another recent result regarding quantum correlations shows that anymeasurement setup
which is not informationally complete will fail in certifying entanglement aswell as nonclassicality of an
unknown state [20]. It is therefore interesting to see how coherence compares with these other properties of
quantum states.

Ourmain result shows that anymeasurement setupwhich can complete either task (a) or (c) is also capable
of completing themore difficult task (b). In otherwords, the three tasks are equally demanding.Wewill prove
that theminimalmeasurement setup for all tasks (a)–(c) consists of d bases. The essential property that any
measurement setup of this kindmust satisfy is that each basis ismutually unbiasedwith respect to the reference
basis.We recall that themutual unbiasedness of two bases k k

d
0
1y =

-{ } and d
0
1f =

-{ }ℓ ℓ means that the number

ky fá ñ∣ ∣ ∣ℓ is independent of the indices k and ℓ, and it then follows that d1ky fá ñ =∣ ∣ ∣ℓ .
It is known that if the dimension d is a prime power, then one can construct a complete set ofmutually

unbiased bases (MUB), i.e., d 1+ bases that are all pairwiselymutually unbiased [21, 22]. In prime power
dimension one could therefore pick a complete set ofMUB, transform all of themwith a suitable unitary
operator so that one of the bases becomes the reference basis, and then drop out the reference basis. However, as
the existence of a complete set ofMUB in other dimensions still remains an open question [23], this does not give
a general solution. The criterion for aminimalmeasurement setup does not require all pairs of bases to be
mutually unbiasedwith respect to each other, hence a positive answer to theMUB existence question is not a
prerequisite to our result. In fact, we provide an explicit construction of theminimalmeasurement setup in
arbitrary dimensions, and an explicit formula for the reconstruction of the off-diagonal elements of the density
matrix in terms of suchmeasurements.

Finally, based on the parametrization of the set ofmaximally correlated states given in [24], we show that
there is an intimate connection between the entanglement of bipartitemaximally correlated states and
coherence.

2. Perturbation operators and the equivalence of tasks (a) and (b)

2.1.Warmup: coherence in a qubit system
As awarmup, we consider tasks (a) and (b) for a qubit system. For a qubit state  wehave C 21 0,1 =( ) ∣ ∣,
where 0,1 is the off-diagonalmatrix element in the chosen reference basis. Assuming that this basis is the
eigenbasis of zs , we see that from the numbers tr xs[ ]and tr ys[ ]we can calculate the off-diagonal elements and
hence the value of C1 ( ). Therefore, task (b) can be accomplished bymeasuring just two bases, namely, the
eigenbases of xs and ys .More generally, the eigenbases of aa ss = · and bb ss = · suffice for task (b)
whenever a and b are nonparallel unit vectors in the xy-plane.

2
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A single basis is not enough even for task (a), since themeasurement of, say, xs gives the same outcome
probabilities for the coherent state y

1

2
 s+( ) and the incoherent state 1

2
 . It is easy to extend this argument and

see that for any basis, there is a coherent state and an incoherent state that give the samemeasurement outcome
distribution.

Let us now look at the possible choices for the twomeasurements. To this end, let a and b be two nonparallel
unit vectors in the Bloch ball, and assume that at least one of them is not orthogonal to the unit vector k (z-
direction).We can set c a b a b= ´ ´ to obtain another unit vector which is not parallel to k . The state

c c
1

2
 s= +( ), with cc ss = · , is then coherent, but since c is orthogonal to a and b wehave

tr trc a a
1

2
 s s=[ ] [ ]and tr trc b b

1

2
 s s=[ ] [ ], whichmeans that the eigenbases of as and bs cannot distinguish

the states c and 1

2
 . Aswe have seen, this kind of ambivalence does not occur if both a and b are orthogonal to

k; see figure 1.We conclude that the respective orthonormal basesmust bemutually unbiasedwith respect to the
reference basis.

2.2. Coherence in a d-level system
In order to deal with task (a) in the case of a d-level system,we resort to a geometric framework, similar to that
used in [19, 20]. The key concept is that of a perturbation operator, by whichwemean any traceless selfadjoint
operator. The nonzero perturbation operatorsΔ are precisely those operators that can bewritten, up to a scaling
factor, as differences of distinct quantum states  dD = ¢ - (see, for example, [25]).

The relevance of perturbation operators in the present context stems from the fact that, if we consider a
measurement setup consisting ofm bases k k

d1
0
1y =

-{ }( ) ,¼, k
m

k
d

0
1y =

-{ }( ) , then the condition

k d mtr 0 for all 0, , 1 and 1, , , 1k k k ky y y yá D ñ = ñá D = = ¼ - = ¼ℓ∣ [∣ ∣ ] ( )ℓ ℓ ℓ ℓ( ) ( ) ( ) ( )

implies the equality of the probability distributions:

tr tr 2k k k k y y y yñá = ¢ ñá[ ∣ ∣] [ ∣ ∣] ( )ℓ ℓ ℓ ℓ( ) ( ) ( ) ( )

and hence the impossibility to distinguish between ñ and  ¢ from themeasurement statistics. Therefore,
perturbation operators provide a convenient way to analysewhich pairs of states a givenmeasurement can
distinguish. In otherwords, as the name ‘perturbation operator’ suggests, we see that we are in fact studying if the
state  can be distinguished from its perturbed version  d+ D.

We say that a perturbation operatorΔ is detected by ameasurement setup if for any state  , the two states 
and  d+ D give differentmeasurement data whenever the scaling parameter δ is such that the latter operator is
a valid state; otherwiseΔ is undetected. It depends on the geometry of the property that we are considering which
perturbation operatorsmust be detected andwhich are allowed to be undetected; see figure 2.

For certifying coherence (task (a)), a suitablemeasurement setupmust be able to detect differences between
coherent and incoherent states. Quite naturally, thismeans that all perturbation operators with at least some
nonzero off-diagonal elementsmust be detected. To see this, note that for any perturbationΔ, there exists a
sufficiently small 0d > such that

d

1
h d= + D is a valid state. Clearly η is coherent if and only ifΔ has nonzero

Figure 1. In the Bloch ball any choice of two nonparallel vectors in the planeπ orthogonal to zdetermines twomeasurements that are
mutually unbiasedwith respect toσz and allows to certify coherence. Any other choice of a plane p¢ non orthogonal to z cannot certify
coherence.

3

New J. Phys. 20 (2018) 063038 CCarmeli et al



off-diagonal elements, and since
d

1
 is incoherent, suchΔʼsmust be detected. Since diagonal perturbation

operators can never bewritten as differences of coherent and incoherent states, their detection is irrelevant to us.
This allows us to summarize the above discussion in the following statement.

Proposition 1.Ameasurement setup consisting ofm bases completes task (a) if and only if all the undetected
perturbation operators are diagonal in the reference basis.

This result gives a lower bound for theminimal numberm. First of all, we observe that the undetected
perturbations form a subspace of traceless selfadjoint operators. The dimension of this subspace cannot exceed
d 1- , since this is the dimension of the subspace of all diagonal perturbation operators. The defining
equation (1) for undetected perturbation operatorsmeans that the undetected perturbationsΔ are the
orthogonal complement of the projections k ky yñá∣ ∣ℓ ℓ( ) ( ) in theHilbert–Schmidt inner product. Since the
dimension of the real vector space of all selfadjoint operators is d2, the requiredmeasurement setupmust span a
subspace of at least dimension d d 12 - + . Sincem bases give atmost d m d1 1+ - -( )( ) linearly
independent operators, thismeans that task (a) cannot be solvedwith less than d orthonormal bases.

The next theorem is themain result of this section.

Theorem1.Anymeasurement setup that completes task (a) also completes task (b).

Proof.Assume that we have ameasurement setup k k
d1

0
1y =

-{ }( ) ,¼, k
m

k
d

0
1y =

-{ }( ) that completes task (a). By
proposition 1, any undetected perturbation operatorΔmust be diagonal, and hence in the linear span of the
operators D ,j j j j j1 1j j j j= ñá - ñá- -∣ ∣ ∣ ∣ where j d1 1  - . For all indices j k d0 1 < - , we further

denote Aj k j k k j,
1

2
j j j j= ñá + ñá+ (∣ ∣ ∣ ∣) and Aj k

i
j k k j, 2

j j j j= ñá - ñá- (∣ ∣ ∣ ∣). Since the selfadjoint operators Aj k,
+

and Aj k,
- are orthogonal to allDiʼs, they are also orthogonal to all the undetected perturbationsΔ. Hence Aj k,

+

and Aj k,
- must be in the linear span of the projections k ky yñá∣ ∣ℓ ℓ( ) ( ) , and the expectations Atr j k, +[ ], Atr j k, -[ ] can

be evaluated from the probabilities k ky yá ñ∣ℓ ℓ( ) ( ) .We observe that for any j k< , we have

A i Atr tr . 3j k j k j k, , ,  = ++ -[ ] [ ] ( )

Therefore, we can calculate the off-diagonal elements of  from themeasurement data and hence calculate
C1 ( ) or any othermeasure of coherence. ,

3.Minimalmeasurement setups

3.1.Minimality impliesmutual unbiasedness
Wehave concluded in section 2.2 that task (a) cannot be completedwith less than d orthonormal bases.
Althoughwe have not yet shown that a suitable set of d bases exists, wewill next seewhat implications this would
have. To this end, suppose that there is a set of d bases k k

d1
0
1y =

-{ }( ) ,¼, k
d

k
d

0
1y =

-{ }( ) which completes task (a). By
direct counting, the dimension of the corresponding subspace of undetected perturbation operators needs to be

Figure 2.The subset of states sharing a property  (e.g. coherence) is represented with the green colour. Anymeasurement
distinguishing property  needs to detect the perturbation operatorΔ2, as the direction ofΔ2 crosses the boundary of  . This does
not happen for the perturbation operatorΔ1, which therefore needs not to be detected.

4

New J. Phys. 20 (2018) 063038 CCarmeli et al



at least d 1- , hencewe see that (1)must holdwheneverΔ is a diagonal perturbation operator. In other words,
there is no room to detect any perturbations that are not relevant for the task at hand.

Since the operators i i j jj j j jñá - ñá∣ ∣ ∣ ∣with i j¹ span the subspace of diagonal perturbation operators, we
find that (1) is equivalent to

. 4k i k jy j y já ñ = á ñ∣ ∣ ∣ ∣ ∣ ∣ ( )ℓ ℓ( ) ( )

But this is nothing else than themutual unbiasedness condition for the reference basis and eachmeasurement
basis. Therefore, if a collection of d bases completes task (a), then each basismust bemutually unbiasedwith
respect to the reference basis.

There is an additional property that we can infer from the assumedminimal set of d bases. The reference
basis detects all diagonal perturbations. Hence, if wemeasure the reference basis togetherwith the assumed set of
d bases, we can detect all perturbations.We summarize this discussion in the following theorem.

Theorem2.Aminimalmeasurement setup consisting of d bases completes task (a) (equivalently (b)) if and only if

(i) each basis is mutually unbiased with respect to the reference basis; and

(ii) together with the reference basis they form an informationally complete set.

We still need to show that d orthonormal bases with these two required properties can be constructed in all
dimensions.

3.2. Construction of aminimal setup
From theorem2, it follows that, in the prime power dimensions, the construction of aminimalmeasurement
setup is straightforward: we pick a complete set of d 1+ MUB, apply a unitary transformationwhich
transforms one of the bases into the reference basis, and then drop out the reference basis. Since any complete set
ofMUB is informationally complete [21], it is an immediate consequence of theorem 2 that the remaining set of
dMUBcompletes tasks (a) and (b). For other dimensions we need to seek a different construction.However, one
can expect this to be possible since the condition (i) in theorem 2 is a seemingly weaker condition than having a
complete set ofMUB.

First, let us recall a simple way towrite aMUBwith respect to a given one [26].We denote e d2 iw = p . For
each j d0, , 1= ¼ - , wefix a complex number jb with 1jb =∣ ∣ . Then, for each k d0, , 1= ¼ - , we define a
unit vector

d

1
. 5k

j

d

j
jk

j
0

1

åy b w j=
=

-

( )

It is straightforward to check that k k
d

0
1y =

-{ } is an orthonormal basis and that it is unbiasedwith respect to the
reference basis j j

d
0
1j =

-{ } . Since the choice of the phases jb is arbitrary, we can construct arbitrarilymany
orthonormal bases that aremutually unbiasedwith respect to the reference basis. However, this is not enough as
we also need to satisfy the condition (ii) in theorem2.We thus need to choose the phases jb in a specific way.

For the construction of the bases having the required property, we need some additional notation.We
denote by d the ring of integers d0, 1, , 1¼ -{ }, where the addition andmultiplication is understood
modulo d. For clarity, we denote by the additionmodulo d. Unless d is prime, d has zero divisors, i.e.,
nonzero elements that give 0whenmultipliedwith some other nonzero element (e.g. in 6 wehave 2 3 0=·
modulo 6). This is the underlying fact why there are relatively easy constructions of complete set ofMUB in
prime dimensions but similar constructions do notwork if the dimension is a composite number. For this
reason, we define amap s: d  thatmaps x dÎ into x Î . The purpose of themap s is that we can use
themodular arithmetic of d when needed, but then perform calculations in when that ismore convenient as
 has no zero divisors. Using thismapwe can now choose orthonormal bases in the followingway:

Theorem3. Let a be an irrational number. For each d1, ,= ¼ℓ , define an orthonormal basis ky ℓ( ) by

d
k d

1
e 0, , 1. 6k

j

d
s j jk

j
0

1
i 1 2åy w j= = ¼ -ap

=

-
- ( )ℓ ℓ( ) ( ) ( )

The set k k
d1

0
1y =

-{ }( ) ,¼, k
d

k
d

0
1y =

-{ }( ) is aminimalmeasurement setup consisting of d bases which accomplishes task (a).

Proof.By proposition 1, we need to verify that any undetected perturbation operator for thismeasurement setup
is diagonal. To do this, wewrite a perturbation operator as i j i j i j, ,n j jD = å ñá∣ ∣. Taking the discrete Fourier
transformof (1)with respect to index k, we obtain

5

New J. Phys. 20 (2018) 063038 CCarmeli et al



e 0, 7
k

d
xk

k k
j

d
s j x s j

j j x
0

1

0

1
i 1

,
2 2

å åw y y ná D ñ = ºap

=

-
-

=

-
- -∣ ( )ℓ ℓ ℓ( ) ( ) ( )[ ( ) ( ) ]

which is required to hold for all x dÎ and d1, ,= ¼ℓ . Sincewe need to confirm that 0j j x, n = for any
x 0¹ , wefix x 0¹ and consider (7) for d1, ,= ¼ℓ as a systemof linear equations. It is then found that the
correspondingmatrix is invertible (a detailedmathematical calculation is given in the appendix), whichmeans
that 0j j x, n º is the only solution. Therefore, themeasurement setup consisting of the d orthonormal bases
written in (6) completes tasks (a) and (b). ,

3.3. Reconstruction formula for off-diagonal elements
Having at disposal the explicit formof aminimalmeasurement setup for the determination of quantum
coherence, one canwrite a reconstruction formula for the off-diagonal elements using only themeasurement
outcome probabilities of these bases. To do this, we denote

p k k d0, , 1, 8k ky y= á ñ = ¼ -( ) ∣ ( )ℓ ℓ ℓ( ) ( ) ( )

where ky ℓ( ) are given in (6). Then, the reconstruction formula reads as follows.

Theorem4.With the notations above

x

x x
p k

1
. 9h h z h h z

j k

d
h

d j kz

i h
h i

d j d
h j

,
, 0

1

, 1
1  å 

j j
w

s= =
-

-
+ +

=

- - -

¹

- -
+⟨ ∣ ⟩ ( )

( )
( ) ( )˙ ˙

( )

where x eh
s h z s hi 2 2= ap + -[ ( ˙ ) ( ) ], and r d

h
, 1s - is the sum of all products of r of the numbers x x x x, , , , ,h h d1 1 1 1¼ ¼- + -

without permutations or repetitions ( 1d
h
0, 1s º- ).

Proof.According to (7),

p k V , 10
k

d
kz

h

d

h h h z
0

1

0

1

1, ,å åw =
=

-
-

=

-

- +( ) ( )ℓ
ℓ

( ) ˙

where Vj h j h d, , 0, , 1= ¼ -( ) is theVandermondematrix

V x xwith e . 11j h h
j

h
s h z s h

,
i 2 2= = ap + - ( )[ ( ˙ ) ( ) ]

Its inverse is [27]

V
x

x x

1
. 12h j

h
d j

i h
h i

d j d
h1

, , 1
s=

-
-

-
-

¹

- -( ) ( )
( )

( )

Therefore,

V p k
x

x x
p k

1
. 13h h z

j k

d

h j
kz j

j k

d
h

d j kz

i h
h i

d j d
h j

,
, 0

1
1

,
1

, 0

1

, 1
1 å å 

w
w

s= =
-

-
+

=

-
- - +

=

- - -

¹

- -
+( ) ( ) ( )

( )
( ) ( )˙ ( ) ( )

,

4. Completion of task (c)

In order tomake task (c)more precise, we need to use a specificmeasure of coherence.Wewill use the 1ℓ-norm
of coherence, defined as

C . 14
j k

j k1 , å=
¹

( ) ∣ ∣ ( )

Thismeasure clearly vanishes exactly for incoherent states, and themaximal value ofC1 is d 1- [12]. Aswe did
earlier in the case of tasks (a) and (b), we aim to determine theminimal requirement for ameasurement setup to
be capable of deciding, for any state ñ, whether C1 ( ) is greater than a fixed threshold value r d 1-( )with

r0 1< < , or not. In the followingwe show that this task requires exactly the samemeasurement settings as the
previously considered tasks.

Theorem5.Ameasurement setup consisting ofm bases completes task (c) (with respect to C1) if and only if it
completes task (a) (or (b)).

Proof.By proposition 1 it is enough to show that ameasurement setup completes task (c) if and only if it detects
all the perturbation operators that are not diagonal in the reference basis. Indeed, if C r d 11   -( ) ( ) and

6
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C r d 11  ¢ > -( ) ( ), it is clear that the difference  D = ¢ - is a non-diagonal perturbation operator; hence,
detecting all non-diagonal perturbations is a sufficient condition for completing task (c). To prove the reverse
implication, it is enough to show that for any non-diagonal perturbation operatorΔ, there exist states  and
  d¢ = + Dwith C r d 11   -( ) ( ) and C r d 11  ¢ > -( ) ( ).

To prove this statement, we fix a family ofmaximally coherent states ke
d k

d1
1

i kyñ = å ñf
f

=∣ ∣ , parametrized

by an array of phases , , 0, 2d
d

1f f f p= ¼ Î( ) [ ) . The convexmixture

r
d

r r1 , 0 1, 15r 
 y y= - + ñ á < <f f f( ) ∣ ∣ ( )

is then a full-rank state with C r d 1r
1  = -f( ) ( ). It follows that the operator r dr d+ Df ( ) is still a valid state

for all r r1d < - D ∣ ∣ ( ) ( ), independently of the array of phases f.
Let f C r dr

1 d d= + Df f( ) ( ( ) ), whereΔ is any non-diagonal perturbation operator. In the followingwe

show that the function f
0
df ( ) has a nonzero derivative at the point 0d = for some set of parameters 0f . Possibly

replacing δwith d- , this then yields f f 0
0 0
d >f f( ) ( ) for some 0d ¹ , which is what wewant to show.

Let A BiD = + be the decomposition ofΔ into its real symmetric and antisymmetric parts. A
straightforward computation gives

f C
r

d

r

d
A Bcos sin . 16r

p q
p q p q p q p q1 ,

2
,

2 1
2 åd d f f d f f d= + D = - + + - +f f

¹

⎜ ⎟⎛
⎝

⎞
⎠( ) [( ( ) ) ( ( ) ) ] ( )

Therefore,

g f
r

d
A B

2
cos sin . 17

p q
p q p q p q p q0 , ,åf d f f f f= ¢ = - + -f d=

>

( ) ( )∣ [ ( ) ( )] ( )

Wecannowuse the freedom in the choice of f to obtain the result. Indeed, if r s> we have

g
r

d
A

g
r

d
B

cos d d
2

,

sin d d
2

.

18
r s r s p q

r s r s p q

0,2

2

,

0,2

2

,

2

2

f f f f f
p

f f f f f
p

- =

- =

p

p

∬

∬

( ) ( ) ( )

( ) ( ) ( )
( )

[ )

[ )

Hence, if g 0f =( ) for every 0, 2 df pÎ [ ) , then A B 0p q p q, ,= = for every p q¹ , andΔ is diagonal, against
our assumption. ,

5.Generalmeasurement setups

Onemaywonder if the proven equivalence of the tasks (a)–(c) is due to the fact that we consider only
measurement setups that are related to orthonormal bases. Amore general concept of a quantummeasurement
is that of a POVM.Using the perturbation operatormethod analogously aswe have done earlier, one can show
that the tasks (a)–(c) are equivalent alsowhenwe consider POVMmeasurements. Further, theminimal number
of elements of a single POVM that can solve these tasks is found to be d d 12 - + . Since anymeasurement setup
of d bases yields a single POVMwith d d 12 - + elements which detects exactly the same perturbation
operators, the optimalmeasurement setup constructed earlier then provides an optimal POVMmeasurement.
In the followingwe explain the details of these statements.

Instead of ameasurement setup consisting ofm orthonormal bases , ,k k
d

k
m

k
d1

0
1

0
1y y¼=

-
=
-{ } { }( ) ( ) , a single

POVM Ek k
r

0
1

=
-{ } or even a collection ofmPOVMs E E, ,k k

r
k

m
k
r1

0
1

0
1m1 ¼=

-
=
-{ } { }( ) ( ) may be used for tasks (a)–(c). Here,

rℓ is the number of outcomes of the ℓth POVM.Then, the perturbation operatorsΔ that are undetected by the
POVMs at hand are those that satisfy the following analogue of (1):

E k r mtr 0 for all 0, , 1 and 1, , .kD = = ¼ - = ¼ℓ[ ]ℓ
ℓ

( )

By replacing each occurrence of the basis projections k ky yñá∣ ∣ℓ ℓ( ) ( ) with the positive operators Ek
ℓ( ), the same

considerations leading to proposition 1 and theorems 1 and 5 yield the next conclusions.

Theorem6. For a collection ofmPOVMs E E, ,k k
r

k
m

k
r1

0
1

0
1m1 ¼=

-
=
-{ } { }( ) ( ) , the following facts hold:

1. tasks (a)–(c) are equivalent;

2. the collection completes the three equivalent tasks (a)–(c) if and only if all the undetected perturbation operators
are diagonal in the reference basis.

7
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As in them bases case, theorem 6 gives a lower bound for the number of outcomes ofmPOVMs completing
tasks (a)–(c): the POVMoperators E k r m: 1, , , 1, ,k = ¼ = ¼ℓ{ }ℓ

ℓ
( ) must span a subspace of at least

dimension d d 12 - + inside the real vector space of all selfadjoint operators; since themPOVMs give atmost

r r r m1 1 19
m m

1
2 1

å å+ - = - +
= =

( ) ( )
ℓ

ℓ
ℓ

ℓ

linearly independent operators, this summust be greater than or equal to d d 12 - + .
Now, onemay be interested in using a single POVM Ek k

r
0
1

=
-{ } in order to complete one of the equivalent tasks

(a)–(c). In this case, the amount of needed quantum resources is the number r of the requiredmeasurement
outcomes. By the discussion above, itmust be r d d 1;2 - + the next result shows that such a lower bound is
actually attained.

Theorem7. For a single POVM, theminimal number of outcomes needed to complete one of the three equivalent
tasks (a)–(c) is r d d 12= - +

Proof.The POVM E E d k d, : 1, , , 1, , 1k0 , = ¼ = ¼ -ℓ{ }ℓ , with

E
d d d

E
d d

d k d

1

1

1
,

1
1, , , 1, , 1

20

d

k k k

0 2
1

0 0

, 2





å y y

y y

=
-

-
-

ñá

=
-

- ñá = ¼ = ¼ -

=

ℓ

∣ ∣

( ∣ ∣)
( )ℓ

ℓ ℓ

ℓ
ℓ ℓ

( ) ( )

( ) ( )

is a d d 12 - +( )-outcome POVMdetecting the same perturbation operators as those detected by the d
orthogonal bases , ,k k

d
k
d

k
d1

0
1

0
1y y¼=

-
=
-{ } { }( ) ( ) . Indeed,

d d E d

d d E

2

.

21k

d

k

k k k

0 0
2

1

1

,

2
,





åy y

y y

ñá = - - -

ñá = - -
=

-

∣ ∣ ( ) ( )

∣ ∣ ( )
( )

ℓ ℓ
ℓ

ℓ ℓ
ℓ

( ) ( )

( ) ( )

Then, by choosing d baseswhich complete the tasks, e.g., those given by formula (6), we obtain a POVMwith the
same property. ,

6. Certification of entanglement ofmaximally correlated states

We show that the certification of entanglement of bipartitemaximally correlated states is intimately connected
with the certification of coherence. This result is based on [24]. Here, we give a brief account of that paper in a
form that ismore suited to our framework and discuss some direct consequences of the previous sections.

We let d be theHilbert space of our quantum system, and in it we choose the computational basis
jj j

d
0
1j = ñ =

-{ ∣ } as the reference basis.We recall that a bipartite state on d d Ä is calledmaximally correlated if
it is of the form

i j i j . 22
i j

d

i j
, 0

1

, å= ñá Ä ñá
=

-

˜ ∣ ∣ ∣ ∣ ( )

Wedefine a unitarymapU : d d d d   Ä  Ä as

U i i i j j , 23
i j

d

, 0

1

å= ñá Ä ñá
=

-

∣ ∣ ∣ ∣ ( )

whereas usual is the additionmodulo d.We then denote the corresponding unitary channel asΛ, i.e.,
U U* L =( ˜ ) ˜ . Note that SA 1L = L -( ) , where SAL is the incoherent operation defined in [24, equation (10)] for

the particular case when the dimension of the ancilla equals that of the system.
If ̃ is as in (22), it is easily checked that

i j0 0 where . 24
i j

i j
,

,   åL = Ä ñá = ñá( ˜ ) ∣ ∣ ∣ ∣ ( )

Hence, the channelΛ establishes a bijective correspondence betweenmaximally correlated bipartite states on
d d Ä and all states on d . Evenmore is true; indeed as it is shown in [24], we have the following fact.

Proposition 2.Themaximally correlated state ̃ of (22) is entangled if and only if the state  of (24) is coherent.

Proof.The result follows from the following three facts:
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1. a stateσ on d d Ä is entangled if and only if

E 0r s >( )

where Er is the relative entropy of entanglement (see [28, equation (7)]);

2. a state  on d is coherent if and only if

C 0r  >( )

whereCr is the relative entropy of coherence (see [12, equation (8)]);

3. with the notations above, we have

C E i j i jr r
i j

i j
,

, å= ñá Ä ñá
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ∣ ∣ ∣ ∣

(see [24, equations (8), (10)]).

,

Hence, if we have anymaximally correlated state ̃ andwewant to determinewhether it is entangled or not,
we can first apply the channelΛ, then trace away the second systemwhich is always in the fixed state 0 0ñá∣ ∣, and
finally perform ameasurement on thefirst system. The initialmaximally correlated state ̃ being entangled is
now equivalent to thefinal state tr2 = L[ ( ˜ )]being coherent. Certifying entanglement of ̃ is thus equivalent
to task (a) for thefinal state ñ; in particular, such a task requires a POVMwith least d d 12 - + outcomes in the
bipartite system.

Combining proposition 2with theorem 3,we easily obtain also the following result.

Theorem8.The vectors j k j k
d

, , 0
1x =

-{˜ } , with

d
x y

1
e , 25j k

x y

d
js x x k j yj

,
, 0

1
i 2åx w= ñ Ä ñap

=

-
- +˜ ∣ ∣ ( )( ) ( )

constitute an orthonormal basis of d d Ä , which accomplishes the task of certifying the presence or absence of
entanglement in an unknownmaximally correlated state.

Proof. Let k k
d1

0
1y =

-{ }( ) ,¼, k
d

k
d

0
1y =

-{ }( ) be themeasurement setup given by (6). Note that k
j

j j k
d1 1
, 0

1y yÄ+
=

-{ }( ) ( ) is an

orthonormal basis of d d Ä , and Uj k k
j

j,
1 1x y y= Ä+˜ ( )( ) ( ) , whereU is the unitary operator (23). Hence, the

set j k j k
d

, , 0
1x =

-{˜ } is an orthonormal basis of d d Ä . If the states ̃ , ñ are as in (22), (24), then

d

U U

1
0 0

.

k k k k

k k

k k

1
1

1
1

1
1

1
1

1, 1,

*

 





y y y y y y

y y y y

x x

á ñ = á Ä Ä ñá Ä ñ

= á Ä Ä ñ

= á ñ

- -

- -

- -

∣ ∣ ( ∣ ∣)( )

∣ ˜ ( )
˜ ∣ ˜ ˜

ℓ ℓ ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ ℓ

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Since themeasurement setup k k
d1

0
1y =

-{ }( ) ,¼, k
d

k
d

0
1y =

-{ }( ) accomplishes the task of certifying coherence of ñ by
theorem3, the basis j k j k

d
, , 0

1x =
-{˜ } certifies entanglement of ̃ by proposition 2. ,

This result should be comparedwith the fact that, for certifying the presence or absence of entanglement in
an arbitrary bipartite state, at least d 12 + orthonormal bases of d d Ä are needed [20].

7.Discussion

The development of quantum technologies will bring us applications capable of outperforming any of their
classical counterparts. The superiority of these applications rests on the ability to take advantage of properties of
physical systemswhich are genuinely quantum. For this reason, it is essential to be able to verify that a given
source produces systemswhich have such a property. Herewe have investigated optimalmeasurement strategies
for verifying the presence of quantum coherence.We have shown that this simple verification task is actually as
difficult as determining the exact value of quantum coherence.We have both characterized the optimal setups in
terms of amutual unbiasedness condition, as well as constructed explicit examples in arbitrary dimensions.

One of the core assumptions behind our results is that there is no prior information available regarding the
initial state of the system at hand. Inmany practical situations thismay not be the case, and by exploiting the
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available prior information itmay be possible to further optimize the setup. As a simple example, suppose that
we know the system to be in a pure state. Then quantum coherence can be verified by simplymeasuring the
reference basis, as the incoherent states are exactly the eigenstates of this observable. The geometric framework
exploited in this work isflexible enough to be used also in questions with prior information.

It has been recently shown that there are connections between the theories of coherence and
entanglement [24]. This allows us to find direct applications of our results in the context of entanglement
detection. Indeed, the problem of detecting the entanglement of an unknownmaximally correlated state can
be translated into the coherence detection problem. In particular, we found that theminimal number of
POVMelements needed for detecting the entanglement of amaximally correlated state is d d 12 - + , and
that ameasurement setupmade up of only one orthonormal basis is enough for such a task; these should be
compared with the respective numbers d4 and d 12 + , which are needed for general bipartite states [20]. This
drastic reduction serves as amotivation for further studies regarding the exploitation of this connection
within our framework.
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Appendix. Proof that 0j j x, n = for any x 0¹ .

In themain text we have obtained the equation

e 0, 26
j

d
s j x s j

j j x
0

1
i 1

,
2 2

å n =ap

=

-
- - ( )ℓ( )[ ( ) ( ) ]

required to hold for all x dÎ and d1, ,= ¼ℓ .We need to confirm that 0j j x, n = for any x 0¹ , and for this
purposewe fix x 0¹ and consider (26) for d1, ,= ¼ℓ as a systemof linear equations.We denote

u j e ,x
s j x s ji 2 2= ap -( ) [ ( ) ( ) ]

and observe that thematrix of the linear system (26) is a Vandermondematrix generated by the numbers
u jx j

d
0
1

=
-( ( )) . Hence, its determinant equals to

u j u i . 27
i j d

x x
0 1 

 -
< -

( ( ) ( )) ( )

The last effort is to verify that all the factors in this product are nonzero. Sinceα is irrational, we see that
u j u ix x=( ) ( ) if and only if

s j x s j s i x s i . 282 2 2 2 - = -( ) ( ) ( ) ( ) ( )

We thus need to prove that the only solution to (28) is i j= as the expression (27) contains only terms
with i j¹ .

We recall that the function s is defined as s: d  , s x x=( ) . For two elements x y, dÎ , we have

s x y
s x s y s x s y

s x s y d s x s y

if ,

if ,
29


- =

-
- + <

⎧⎨⎩( ˙ )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

where -̇denotes the subtractionmodulo d.
The following result is the last step needed in the construction of the d bases.

Proposition 3. Let x i j, , dÎ and x 0¹ . Then, the only solution to (28) is i j= .

Proof.One can prove the claim by considering the different possible cases separately, i.e., s j x s j ( ) ( ) and
s j x s j <( ) ( ).We go through thefirst case, the latter being similar.

Assume s j x s j ( ) ( ). Then by (28)we also have s i x s i ( ) ( ). Using (29)we can thuswrite
s j x s j s x - =( ) ( ) ( ) and s i x s i s x - =( ) ( ) ( ), and (28) becomes

s x s j x s j s x s i x s i . 30 + = +( )( ( ) ( )) ( )( ( ) ( )) ( )
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As s x 0¹( ) , we further get

s j x s j s i x s i . 31 + = +( ) ( ) ( ) ( ) ( )

We then split the proof further into two cases.

(a) Assume s j s i( ) ( ). From (31), it follows that s i x s j x ( ) ( ). Using (29) and (31), we obtain

s j i s i j , 32- = -( ˙ ) ( ˙ ) ( )

and further

j i d2 0 modulo 33- =( ) ( )

due to the injectivity of s. If d is odd, then (33) immediately implies i j= . If d is even, then either i j= or
s j i d 2- =( ˙ ) . Since s j s i( ) ( ) and s i x s j x ( ) ( ), by (29) the latter option can be realized only if
s j d 2( ) , s i d 2<( ) and s i x d 2 ( ) , s j x d 2 <( ) . But this is not consistent with assumed
condition s j x s j ( ) ( ).We thus conclude that i j= .

(b) Assume s j s i<( ) ( ). From (31) it follows that s i x s j x <( ) ( ). Using (29) and (31), we obtain (32) and
(33) as in the previous case. Then, the rest of the proof is similar.
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