Malmi, Eric; Terzi, Evimaria; Gionis, Aristides

Active network alignment: a matching-based approach

Published in:
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management

DOI:
10.1145/3132847.3132983

Published: 01/01/2017

Document Version
Early version, also known as pre-print

Please cite the original version:
Active Network Alignment: A Matching-Based Approach

Eric Malmi
Aalto University
Espoo, Finland
eric.malmi@aalto.fi

Aristides Gionis
Aalto University
Espoo, Finland
aristides.gionis@aalto.fi

Evimaria Terzi
Boston University
Boston, USA
evimaria@cs.bu.edu

ABSTRACT
Network alignment is the problem of matching the nodes of two graphs, maximizing the similarity of the matched nodes and the edges between them. This problem is encountered in a wide array of applications—from biological networks to social networks to ontologies—where multiple networked data sources need to be integrated. Due to the difficulty of the task, an accurate alignment can rarely be found without human assistance. Thus, it is of great practical importance to develop network alignment algorithms that can optimally leverage experts who are able to provide the correct alignment for a small number of nodes. Yet, only a handful of existing works address this active network alignment setting.

The majority of the existing active methods focus on absolute queries (“are nodes a and b the same or not?”), whereas we argue that it is generally easier for a human expert to answer relative queries (“which node in the set \{b_1, \ldots, b_n\} is the most similar to node a?”). This paper introduces two novel relative-query strategies, TopMatchings and GibbsMatchings, which can be applied on top of any network alignment method that constructs and solves a bipartite matching problem. Our methods identify the most informative nodes to query by sampling the matchings of the bipartite graph associated to the network-alignment instance.

We compare the proposed approaches to several commonly-used query strategies and perform experiments on both synthetic and real-world datasets. Our sampling-based strategies yield the highest overall performance, outperforming all the baseline methods by more than 15 percentage points in some cases. In terms of accuracy, TopMatchings and GibbsMatchings perform comparably. However, GibbsMatchings is significantly more scalable, but it also requires hyperparameter tuning for a temperature parameter.

KEYWORDS
network alignment; graph matching; active learning

1 INTRODUCTION
The network-alignment problem, also known as graph matching [40] or graph reconciliation [18], asks to find a matching between the nodes of two graphs so that both (i) node-attribute similarities and (ii) structural similarities between the matched nodes are maximized. This is an ubiquitous problem with application areas ranging from biological networks [8] to social networks [14, 41], ontologies [36], and image matching in computer vision [9]. For instance, in the case of social networks, one might be interested in aligning the friendship graphs of two social-networking services in order to suggest new friends for the users.

Typically, some of the network nodes are easy to align automatically if they, for example, share a unique name. Other nodes can be considerably more ambiguous and thus fully-automatic methods are likely to align them incorrectly. In the active version of the network-alignment problem, such difficult cases are redirected to human experts who act as oracles. In this way, the alignment process is judiciously enhanced by involving humans in the loop.

The idea of algorithms that select which data to be labeled in order to improve accuracy is not new; in fact, this is the main focus of active learning. Research in this area aims to identify effective ways for utilizing access to labeling oracles, such as human experts. Although there is a lot of research in active learning for classification or clustering problems, few studies have tackled the problem of active network alignment.

To the best of our knowledge, active network-alignment methods appear mostly in the domain of ontology matching [16, 32, 35]. These methods ask the human experts to assess whether two given nodes are a match or not, and thus, focus on identifying the most useful pair of nodes to query. The limitation of this approach is that absolute yes/no questions can be very hard to answer for a human if no context about alternative candidate matches is provided.

In this paper, we obtain human feedback, where questions are asked in the following form: “Given node v and a set of candidate matches C, which node in C is the most likely match for v?” To answer such relative questions, an expert needs to make only comparative judgments, which are less challenging for humans [23], despite the fact that the expert needs to consider more nodes at once. Additionally, the expert may be given an opportunity to say that none of the candidate matches is correct. In this scenario, the querying is more similar to the absolute querying scheme, but it may still be easier for the expert since more context is provided to answer the question. Although in certain scenarios the absolute querying scheme may be more appropriate, this work focuses only on comparing different relative approaches.

Given the above relative querying scheme, our framework for active network alignment is based on a novel algorithmic idea for identifying the best questions to ask to the experts. Since access to experts is typically costly, the objective is to maximize the alignment accuracy for a given number of queries.

A well-established approach in active learning is to label the data points for which the current model is least certain as to what the correct output should be [33]. Accordingly, we introduce novel ways of quantifying the uncertainty introduced by each node in the network-alignment process. Using these measures we ask queries that resolve most of the uncertainty, and therefore, only few queries suffice to obtain an alignment of high accuracy.

1 An interesting parallel to the absolute vs. relative querying issue is found in the psychology literature regarding eyewitness identifications. Some experimental studies show that simultaneous lineups, where suspects are shown to an eyewitness simultaneously, result in a higher true positive rate, whereas sequential lineups result in a lower false positive rate [6].
In the classic (non-active) network-alignment problem the input consists of two networks: a source network \(G_s = (V_s, E_s) \) and a target network \(G_t = (V_t, E_t) \). Finding an alignment is often reduced into the problem of finding a matching on a weighted bipartite graph \(H = (V_s, V_t, E_h) \), where the weights incorporate both attribute and structural similarities. Examples of such methods include L-GRAAL [27], NATALIE [12, 17], NETALIGNMP++ [3], and ISORank [37].

In this paper we propose a new approach for active network alignment, which can be employed on top of any matching-based (non-active) network-alignment method. The main idea is to sample a set of matchings \(M_t \), use the resulting distribution to quantify the certainty of each node, and identify which node to query based on this certainty. We study and experiment with two alternative methods for obtaining a set of sampled matchings, GibbsMATCHINGS, where Gibbs sampling is employed to sample matchings according to their score, and TopMATCHINGS, where the top-\(\ell \) matchings are taken in the sample. We also experiment with different methods for estimating node certainty, using entropy, the expected certainty of the unlabeled nodes, as well as a consensus-based criterion.

Our experiments show that our proposed methods perform consistently well and in some cases they outperform our baseline methods by more than 15% in accuracy. The baseline methods include three previously proposed query strategies as well as random querying. When comparing the two proposed methods, GibbsMATCHINGS and TopMATCHINGS, we obtain a robustness-scalability trade-off: GibbsMATCHINGS is significantly more scalable but it is also sensitive to the choice of a temperature parameter \(\beta \).

Our main contributions are summarized as follows.

- We formalize a relative-judgment framework for active network alignment.
- We develop an active-querying framework, which can be employed on top of any network-alignment method that finds an alignment using maximum-weight bipartite matching. Indeed, several state-of-the-art network-alignment methods follow this approach. We also explore two algorithms that instantiate this framework: GibbsMATCHINGS and TopMATCHINGS.
- We conduct experiments with real and synthetic datasets, demonstrating the superiority of our algorithms compared to several previously proposed baseline methods. We also show that our algorithms can be parallelized without significantly compromising the accuracy of the methods.
- The code and the data used in the experiments are publicly available at: https://github.com/ekQ/active-network-alignment

Roadmap: The paper is organized as follows. In Section 2 we review the related work. Our problem formulation is provided in Section 3 and our algorithm in Section 4. Section 5 presents the experimental evaluation of our method and a comparison with baselines. We conclude in Section 6.

2 RELATED WORK

Numerous methods have been developed for the non-active network-alignment problem. The problem has drawn particular attention in the bioinformatics domain [12, 15, 17, 21, 24, 27, 37], due to the interest in the task of matching protein-protein interaction networks; a recent survey in the area is provided by Elmsallati et al. [13]. Non-active network alignment methods are classified according to how the matching cost is defined and how they algorithmically proceed to finding a solution. For example, ISORank [37] and ISO-RankNN [24], which are among the earliest-developed methods, utilize a PageRank-type computation to recursively compute node similarity via the similarity of the nodes’ neighbors. NATALIE [12, 17] formulates the alignment task as a quadratic assignment problem, which it then solves using Lagrangian relaxation combined with a subgradient optimization; more details are given in Section 4.2. L-GRAAL [21, 22, 27] family of alignment methods enhance the matching scoring function with topological similarity features, such as graphlet degree signatures [30]. L-GRAAL [27] is a recent algorithm in the GRAAL family, which incorporates the Lagrangian-relaxation framework of NATALIE, and is shown to outperform several other state-of-the-art methods.

In addition to bioinformatics, the non-active network-alignment problem has been studied in different application areas, such as ontology matching [1, 11] and social-network matching [18].

As discussed earlier, our active network-alignment framework can be employed on top of any non-active method that maps the alignment problem into a weighted bipartite graph-matching problem. Many of the methods discussed above fall in this category, e.g., L-GRAAL [27], NATALIE [12, 17], NETALIGNMP++ [3], and ISORank [37]. In our experimental evaluation we use NATALIE and NETALIGNMP++, which are state-of-the-art methods that have been shown to have a robust performance in several independent studies [3, 8, 12, 27].

The problem of active network alignment has been previously studied by Cortés and Serratos [10]. Compared to our work, they focus on a more limited class of network-alignment methods that return a probability matrix for different matches, making the quantification of uncertainty more straightforward. However, some of their query strategies are also applicable to our setting and thus, in our experiments, we adopt two baseline strategies from their work, namely lcc1 and margin. Another closely-related line of work is active ontology matching. Shvaiko and Euzenat [36] list it as one of the important areas for future work in their recent survey on ontology matching. Existing work on active ontology matching focuses on absolute queries [16, 32, 35], and thus, not directly comparable with our approach.

Active-learning approaches have been developed also for other related problems. Charlin et al. [7] develop an active-learning method for many-to-many matching problems encountered in recommender systems, comparing different absolute-querying strategies. Another area where active learning has been studied and where data is in a network format is the inference problem for Gaussian fields [25, 42]. Mackssasy [25] finds an empirical risk minimization (ERM) to be the best method to find the next instance to query but due to the high computational complexity of ERM, he proposes to use the betweenness centrality as a filter to select a subset of nodes for which ERM is applied to. Finally, Bilgic et al. [4] introduce an active learning method for collectively classifying networked data.
Network alignment: In the standard network-alignment problem we consider two input graphs $G_s = (V_s, E_s)$ and $G_t = (V_t, E_t)$, the source and the target graph. The adjacency matrices of the two graphs are denoted by A_s and A_t, respectively. Throughout we assume that the smaller graph is aligned to the larger one, that is, $|V_s| \leq |V_t|$. In addition, we consider that a similarity function $\sigma : V_s \times V_t \rightarrow \mathbb{R}$ is available, which measures the similarity between pairs of nodes $i \in V_s$ and $j \in V_t$. The similarity function σ depends on the application at hand.

The objective of the network-alignment problem is to find a matching between the nodes of the two networks. More specifically, we want to align the nodes of the source graph V_s to the nodes of the target graph V_t. Formally, we want to find $M = \{(i, j)\} \subseteq V_s \times V_t$ so that each node of V_s and V_t appears at most one time in M. A high-quality alignment should satisfy the following properties: (i) nodes in V_s should match to similar nodes in V_t, according to σ, and (ii) the endpoints of each edge in E_s should match to nodes in V_t that are connected by edges in E_t.

For each node $v \in V_s$ we consider a set of candidate matching nodes $C_v \subseteq V_t$. Those are the only nodes in V_t that v can be matched to. In this paper we assume that the sets C_v are given. In practice, the sets C_v can be computed by a simple heuristic, e.g., considering all nodes in V_t whose feature-based similarity to $v \in V_s$ exceeds a certain threshold. When the candidate sets are small compared to V_t, the problem is sometimes called sparse network alignment.

Global network-alignment methods formulate an objective function that captures the above properties, and then devise algorithms for optimizing this objective.

In some applications, it is desirable to leave nodes unmatched if no suitable match is found. This can be achieved without having to change the problem formulation by adding a special "gap" node to the target graph for each node in the source graph. The gap nodes are isolated and the user has to define a similarity value (which can also be negative) between the source nodes and the gap nodes, which controls the cost of leaving a source node unmatched. An example of the network-alignment problem is shown in Figure 1. We use letters and colors to indicate sets of matching nodes. Indicatively, in an application of aligning social networks, one can think of $A = \text{Andres}$, $A_1 = \text{Andre}$, $A_2 = \text{Andrew}$, $A_3 = \text{Andreas}$, while $B = \text{Brendon}$, $B_1 = \text{Brenden}$, $B_2 = \text{Brendan}$, etc.

Active network alignment: Assume now that we have access to an oracle, for example, a human expert, with whom we can interact in the form of queries and obtain partial information about the correct alignment of the two networks G_s and G_t.

As already discussed, we focus on interaction with the oracle that takes the form of the following queries:

Given a node v in the source network G_s, and a set of candidate matches C_v in the target network G_t, which node from C_v should be matched to v?

The oracle returns an answer $u \in C_v$ and the algorithm proceeds to aligning G_s with G_t given that $v \in V_s$ is matched with $u \in V_t$. Depending on the application, one of the candidate matches C_v may be the gap node of v.

The problem of active network alignment is to select the most informative node $v \in V_s$ for which to ask the oracle to reveal the correct matched node $u \in V_t$. More specifically, we aim to solve the following problem.

Problem 1 (ActiveNetworkAlignment). Given a source network $G_s = (V_s, E_s)$ and a target network $G_t = (V_t, E_t)$, select the node $v \in V_s$ for which to ask an oracle to reveal the correct matched node $u \in V_t$ so that the alignment accuracy for the remaining nodes in V_s is maximized.

The alignment accuracy in Problem 1 is computed by fixing the assignment of v to u, then aligning the remaining nodes using a standard (non-active) network alignment method, and finally by computing the fraction of correctly aligned unqueried nodes in V_s.

A natural way to approach Problem 1 is to design a function $\text{Cert}(v \mid G_s, G_t)$ that quantifies the certainty associated with each $v \in V_s$ with respect to its match in V_t. Nodes with low certainty scores are good candidates for being the query node, since these nodes would otherwise be more likely to decrease the alignment accuracy. The active-learning framework provides general principles for designing such a function. We deploy these ideas in order to design and experiment our Cert function. More details on this are given in Sections 4 and 5.

In the example of Figure 1, we see that A in G_s is most similar to A_1, A_2, and A_3 in G_t. If A is matched to A_1 or A_2, then B should be uniquely matched to B_1. If A is matched to A_3, then B should be uniquely matched to B_2 and C to C_2. Thus, matching node A first, to a large extent, determines the rest of the alignment. On the other hand, matching B or C first does not determine the rest of the alignment with the same level of certainty. We conclude that, in this example, it is a good strategy to ask the oracle to provide us with the correct alignment for node A.
Algorithm 1 The general active network alignment framework.

Input: \(G_s = (V_s, E_s), G_t = (V_t, E_t) \), candidate matches \(C \), and query budget \(k \).

Output: An alignment between \(V_s \) and \(V_t \).

1: for \(i = 1, \ldots, k \) do
2: \(H = \text{NetworkAlignment}(G_s, G_t \mid C) \)
3: \(\hat{v} = \arg \min_{v \in V_s} \text{Cert}(v \mid H, G_s, G_t) \)
4: \(\hat{u} = \text{OracleQuery}(\hat{v}, C_\hat{v}) \), with \(\hat{u} \in C_\hat{v} \)
5: \(C_\hat{v} = \hat{C} \) \(\triangleright \) Update candidate matches.
6: for \(v \in V_s \setminus \{\hat{v}\} \) do
7: \(C_v = C_v \setminus \{\hat{u}\} \)
8: \(H = \text{NetworkAlignment}(G_s, G_t \mid C) \)
9: return \text{BipartiteMatching}(H)

The main idea is as follows: instead of solving the alignment problem to find only a single matching (the optimal network alignment), we sample a number of high-quality matchings (near-optimal network alignments), and then, compute the certainty of each node by considering the distribution of its matched nodes on the sampled matchings.

We study two different methods for sampling matchings: GibbsMatchings, where matchings are sampled according to their score (so better matchings have higher probability of being included in the sample), and TopMatchings, where the top-\(\ell \) matchings are considered. We also consider different alternatives for computing node certainty based on the sampled matchings.

We now discuss our approach in more detail. We start by describing our strategy at a high level, and then proceed to the description of each of its components and different alternatives.

4.1 Overview

The general active network alignment approach, in which nodes are queried iteratively, can be summarized as follows: In every iteration pick a node \(\hat{v} \in V_s \). The node \(\hat{v} \) together with its set of candidate matching nodes \(C_\hat{v} \subseteq V_t \) is shown to the (human) oracle, and the oracle selects a node \(\hat{u} \in C_\hat{v} \) as the best match for \(\hat{v} \). Assert that \(\hat{u} \) is the best matching for \(\hat{v} \) by updating the candidate node sets so that \(C_\hat{v} = \{\hat{u}\} \), and removing \(\hat{u} \) from all other sets of candidate nodes. When the budget of oracle queries is exhausted, solve the remaining network alignment problem to align the unqueried nodes.

Pseudocode for this approach is shown in Algorithm 1 (different steps of the algorithm are explained later in this section).

Our main contribution is the methodology for quantifying the certainty of the candidate nodes to be queried at every iteration of Algorithm 1. Our approach consists of the following steps.

Step 1. Construct a weighted bipartite graph \(H = (V_s, V_t, E_h) \) that forms the basis for the matching-based network-alignment algorithm.

Step 2. Sample a set \(M_\ell \) of \(\ell \) high-quality matchings in \(H \).

Step 3. For each node \(v \in V_s \), estimate the certainty we have about the correct match for \(v \). These certainty values, \(\text{Cert}(v) \), are computed using the information in the set of sampled matchings \(M_\ell \).

Step 4. Identify the node \(\hat{v} \in V_s \) with the least certainty, and query the oracle for selecting the best match of \(\hat{v} \) among the set of candidate matching nodes \(C_\hat{v} \subseteq V_t \).

For sampling a set of matchings \(M_\ell \) we consider two alternatives: GibbsMatchings (sample matchings according to their score) and TopMatchings (take the top-\(\ell \) matchings); those are discussed in Section 4.3. We also consider three different ways of estimating node certainty (Step 3) presented in Section 4.4. First we discuss how to construct the weighted bipartite graph \(H = (V_s, V_t, E_h) \) on which the set of sampled matchings \(M_\ell \) is obtained.

4.2 Constructing the bipartite graph \(H \)

Our strategy is applicable to any NetworkAlignment algorithm that is based on solving a bipartite-matching problem. In our experiments, we use NATALIE [12] and NETALIGNMPP++ [3], two state-of-the-art algorithms. Both methods aim to solve the following quadratic integer program, adopting, however, different approaches.

Integer-programming formulation: The IP formulation of NATALIE and NETALIGNMPP++ introduces a variable \(x_{ij} \) for each pair of nodes \(i \in V_s \) and \(j \in V_t \). The variable \(x_{ij} \) is set to 1 if \(i \) is matched to \(j \), while it is set to 0 otherwise. We also use \(\Delta(v) \), for \(v \in V_s \cup V_t \), to denote the set of all pairs \(\{(i, j)\} \) for which \(v = i \) or \(v = j \). Let \(A_{ijk} \) denote whether there is an edge between nodes \(i \) and \(k \) in the source (target) graph.

\[
\max x \sum \sigma(i,j) x_{ij} + g \sum_{(i,j) \in \Delta(v)} \sum_{k \in V_t} A_{ijk} x_{ij} x_{k}.
\]

In the above integer program, each pair of matched nodes \(i \) and \(j \) contributes a reward of value \(\sigma(i,j) \), while an additional reward of value \(g \) is given if an edge in \(E_s \) is matched to an edge in \(E_t \). The user-defined parameter \(g \) quantifies the relative importance between correctly-matched nodes and correctly-matched edges, and it is typically set based on prior knowledge or cross-validation.

The inequality constraint ensures that the solution is a matching.

Solution via Lagrangian relaxation: NATALIE, originally proposed by Klaue [17], solves the quadratic integer program by first linearizing it and then employing a Lagrangian relaxation technique. Klaue shows that the original integer program is NP-hard, but remarkably, by relaxing a symmetry constraint for the linearized quadratic terms, the problem becomes solvable in polynomial time via multiple maximum-weight bipartite matchings.

NATALIE iteratively updates the Lagrangian multipliers \(\lambda \) for the relaxed constraints using subgradient optimization. The solutions of the relaxed problem provide upper bounds for the original problem, whereas the feasible solutions, which can be directly extracted from the relaxed solutions, provide lower bounds.

The best feasible solution found provides the bipartite graph \(H \) for our active strategy.

Solution via message passing: The NETALIGNMPP++ algorithm, proposed by Bayati et al. [3], solves the same optimization problem.
using a belief propagation (BP) approach. This approach makes local, greedy updates by passing messages between the neighboring nodes. To obtain an integral solution, \textsc{NetAlignMP++} constructs and solves a maximum-weight matching problem based on the BP messages at every iteration of the algorithm.

Again, we set \(H \) to correspond to the matching problem that gives the best solution.

Due to space constraints, we do not discuss in detail how the weights of the edges of the bipartite graphs are set. Note, however, that the weights aim at capturing both the feature-based and structural similarities of the matching nodes, and the higher the weight the more similar the nodes are. For more details we refer the reader to the original papers [3, 12].

4.3 Sampling matchings

Next we present two approaches for sampling matchings: \textsc{GibbsMatchings}, which first defines a probability distribution over the space of matchings and then employs Gibbs sampling to draw samples from this space, and \textsc{TopMatchings}, which computes the top-\(\ell \) matchings.

Gibbs sampling for matchings: Markov chain Monte Carlo techniques are popular for drawing samples from complex multi-dimensional distributions [5]. In order to apply these methods to sample matchings \(M \), we need to define a probability distribution over the space of matchings induced by the bipartite graph \(H \). Similar to Volkovs and Zemel [38], we use the standard Gibbs form

\[
P(M \mid H) = \frac{1}{Z(M, \beta)} \exp \left(-\beta E(M, H) \right)
\]

where \(M(u) \) denotes the node to which \(u \) is matched to in \(M \). \(Z(M, \beta) \) is the partition function that normalizes the distribution, and \(\beta \) is a “temperature” constant that defines the smoothness of the distribution. The value of \(\beta \) is optimized using a training dataset, as discussed in Section 5.3.

We sample \(\ell \) matchings \(M_\ell = \{ M_1, \ldots, M_\ell \} \) from this distribution as follows: we initialize \(M \) with the maximum-weight matching. Then at each iteration \(i \), we go through the nodes in \(V_s \) in a random order and for each node \(v \in V_s \), we pick one of the candidate matching nodes \(u \in C_v \) uniformly at random. Next we consider re-assigning \(v \) to \(u \) and \(u' \) to \(M(v) \) where \(u' \) is the node currently matched to \(u \) if any. If \(M(u) \) is not among the candidate matches of \(u' \), we pick another node \(u \) uniformly at random among the remaining candidates of \(v \) until a possible re-assignment has been found (\(v \) can always be re-assigned to its current match \(M(v) \)). The new matching \(M' \), which would result from the re-assignment, is realized and the update \(M \leftarrow M' \) performed with probability

\[
P(M' \mid M, H) = \begin{cases}
\exp \left(-\frac{1}{\beta} E(M', H) \right) & \text{if } M' = M \\
\exp \left(-\frac{1}{\beta} E(M', H) \right) + \exp \left(-\frac{1}{\beta} E(M', H) \right) & \text{if } M' \neq M
\end{cases}
\]

Once each node has been processed, we let \(i \)-th sample be \(M_i \leftarrow M \). Then, we generate a new random permutation of the nodes \(V_s \) and repeat the process until \(\ell \) samples have been drawn. We call this method \textsc{GibbsMatchings}.

Volkovs and Zemel [38] note that Gibbs sampling is often found to mix slowly and get trapped in local modes. In our case, such slow mixing implies that we will end up exploring only the areas around the maximum weight matching, which is the starting point of the sampling. However, even if this happens, we do not expect it to be a problem as we indeed are interested in sampling high-quality matchings close to the optimal solution.

Top-\(\ell \) maximum-weight matchings: To compute the top-\(\ell \) maximum-weight matchings \(M_\ell \), we use an algorithm invented by Murty [29] in 1968. This algorithm first computes the best maximum-weight matching in \(H \), then splits the problem into \(O(n) \) smaller matching problems and reconstructs the second best matching based on the solutions of the smaller problems. The process is repeated until \(\ell \) matchings have been discovered, and in total, the algorithm has a running time of \(O(n\ell^2) \), where \(n \) is the total number of nodes in the graph, i.e., in our case \(n = \max(|V_s|, |V_I|) \). Using a modification by Miller et al. [28], the algorithm runs in time \(O(n^2) \).

4.4 Quantifying certainty and identifying the node to query

Using uncertainty to determine which data points should be labeled is a standard active-learning strategy [33]. The idea is to select for labeling the data points for which we are the least certain as to what the correct output should be.

A natural approach for quantifying the uncertainty of a match \(M(v) \) of node \(v \in V_s \) is to consider the marginal distribution

\[
P(M(v) = u \mid H),
\]

given the set of sampled matchings \(M_\ell \), the marginal distribution can be obtained simply by computing the fraction of samples for which node \(v \) is matched to \(u \). We then define the certainty of node \(v \) as

\[
\text{Cert}(v) = \max_{u \in C_v} P(M(v) = u \mid H).
\]

The intuition for Equation (3) is that when a node \(v \) is matched to the same node \(u \) in most of the matchings in \(M_\ell \), then there is little uncertainty; based on the evidence in the set of sampled matchings \(M_\ell \), \(u \) is a good match for \(v \) and no extra information will be gained by querying \(v \). On the other hand, if the evidence in \(M_\ell \) is inconclusive with respect to the best match for \(v \), then \(v \) should be queried. Accordingly, the proposed strategy is to query the node \(\hat{v} \) with the least certainty, i.e.,

\[
\hat{v} = \arg\min_{v \in V_s} \text{Cert}(v).
\]

To obtain further intuition for the proposed method, consider again the example in Figure 1. The bipartite graph \(H \) for this example is shown on the left in Figure 2.

\(^2\)A limitation of this swap-based approach is that if the problem at hand has nodes with partially overlapping sets of candidate matches, there will be some states that are unreachable by the Markov chain (i.e. the chain is non-ergodic).

\(^3\)We also tested the sequential matching sampler proposed by Volkovs and Zemel [38] which outperformed a Gibbs sampler in their experiments. However, in our case, this approach suffered from extremely low acceptance rates, even after adjusting parameter \(p \) [38]. This might be related to the distribution of the weights in \(H \) or to the small sizes of the graphs studied in [38].
4.5 Batch querying

Instead of finding the best query to ask at every iteration of Algorithm 1 we can adopt a “batch” approach, where in each iteration we identify a batch of queries to ask — the ones that correspond to the nodes with the smallest Cert values. When considering batches of size $k' < k$, where k is the total number of queries to be made, we can achieve a speedup of the order $\frac{k}{k'}$.

We can readily employ all the query strategies studied in this paper to query in batches. However, these strategies might yield nodes that strongly depend on each other (that is, if we knew the alignment for one node, we could easily align another node). Thus, developing more sophisticated methods for batch querying remains an interesting avenue for future research.

5 EXPERIMENTAL EVALUATION

We evaluate a number of different network-alignment query strategies on networks where the correct alignment is known. Our methodology is as follows: First, we solve the network-alignment problem with a non-active alignment method and report the alignment accuracy, that is, the fraction of correctly aligned nodes. Then we start simulating the oracle queries by fixing the nodes to their correct matches. After each query we solve the network-alignment problem given the current correct matches and report the alignment accuracy on the unqueried nodes. This process is repeated for each query strategy separately with the same initial graphs. A good strategy should use as few queries as possible to reach the desired alignment accuracy.

As mentioned earlier, the query strategies discussed in this paper can be applied on top of any (non-active) network-alignment method that results in solving a bipartite-matching problem. In the experiments, we employ the query strategies on top of two state-of-the-art alignment methods, NATALIE [12, 17] and NETALIGNMP++ [3] (see Section 4.2 for a brief discussion). The query strategies as well as the non-active network alignment methods used in the experiments support leaving nodes unmatched, but in our experiments, there is always a match for each node of the source graph.

Next we describe our datasets and present an empirical comparison between GibbsMatchings, TopMatchings, and four baseline query strategies.

5.1 Datasets

We use three types of datasets. In all datasets, there is a sufficient degree of ambiguity in the node attributes so that for each node in one graph there are several candidate matches in the other graph. Furthermore, the edges of the graphs may have been corrupted.

Figure 2: The instance of the network-alignment problem in Figure 1 is transformed to an instance of a maximum-weight matching problem. Computing the set M_k of $\ell = 5$ matchings helps to quantify the uncertainty of a node in network alignment.

Now assume that we draw a sample of ℓ matchings in this bipartite graph. A sample of five matchings is shown in Figure 2. For each node $v \in V_s$ we can compute the distribution of the nodes in V_t that v is matched to in these five matchings. A node with high uncertainty is a node that is matched to many different nodes in V_t and the distribution of matches is well-balanced. In the example of Figure 2, the distribution of matchings for nodes A, B, and C is $\{A_1: 40\%$, $A_2: 40\%$, $A_3: 20\%\}$, $\{B_1: 80\%$, $B_2: 20\%\}$, and $\{C_1: 40\%$, $C_2: 60\%\}$, respectively. From these distributions one can argue that node A has the highest uncertainty.

An alternative measure for the certainty of a node would be to study entropy, which is commonly used in active learning [31, 34]. However, in our experiments we found that Equation (3) consistently outperformed a method which defined certainty as the negative entropy of the marginal distribution. Thus we do not report experimental results using the entropy-based method.

A limitation of Equation (3) is that it measures certainty only locally and thus it does not capture the effect that knowing the matching for a given node v would have on the remaining alignment. Therefore, we consider also another alternative query strategy which queries the node \hat{v} such that once \hat{v} is queried and its match is known, the expected certainty of the remaining nodes is maximized. That is,

$$\hat{v} = \arg \max_{v \in V_s} \sum_{u \in C_v} \frac{P(M(v) = u | H)}{\sum_{v' \in V \setminus V_s} \text{Cert}(v')}.$$

This approach is inspired by previous works in sensor placement [19, 20] and active learning [25]. As pointed out by the previous works, a limitation of this approach is its high computational complexity, which in our case is given by $O(c^2|V_s|^2|V_t|^2)$, assuming that each node has c candidate matches. In our initial experiments, it performed similarly to the simpler query strategy given in Equation (4), which is why we only consider the latter hereafter.

4.5 Batch querying

Instead of finding the best query to ask at every iteration of Algorithm 1 we can adopt a “batch” approach, where in each iteration we identify a batch of queries to ask — the ones that correspond to the nodes with the smallest Cert values. When considering batches of size $k' < k$, where k is the total number of queries to be made, we can achieve a speedup of the order $\frac{k}{k'}$. We can readily employ all the query strategies studied in this paper to query in batches. However, these strategies might yield nodes that strongly depend on each other (that is, if we knew the alignment for one node, we could easily align another node). Thus, developing more sophisticated methods for batch querying remains an interesting avenue for future research.
Preferential-attachment graphs: We generate a network using the preferential-attachment model [2], which captures some of the key characteristics of social networks and has been previously used to study network-alignment methods [18]. The network consists of 1,000 nodes and 2 edges per new node. For each node, we sample a label from a set of 33 unique labels and treat the labels as attributes so that the similarity between two nodes is set to 1 if their labels are the same and 0 otherwise. Only the nodes with the same label are considered candidate matches, resulting in 30 candidate matches per node on average.

We make two copies of the network and in each copy we independently corrupt the edges to further complicate the alignment task. We first discard 60% of the graph edges chosen at random and then add 50% more edges again selected at random.

Social networks: We use the the multiplex dataset from Aarhus University [26], which contains five networks between the employees of the Department of Computer Science. We select two of these layers, the Facebook and the lunch networks, and try to align the former to the latter. Since the dataset only contains anonymized user identifiers, we again sample a label for each node so that on average there are three people with the same label. The lunch network contains 60 people, whereas the Facebook network covers only a subset of 32 of them. While this dataset is small, it makes an interesting case study since it contains two very different types of real-world networks and the correct alignment is known.

Family trees: Aligning family trees is an important problem encountered in various online genealogy services where different people provide family tree fragments, which then, ideally, get merged into a single large family tree. We have obtained a family tree containing 64,208 people constructed by an individual genealogical researcher. We sample a subgraph of this network by randomly picking a seed person and doing a random walk until 1,000 distinct people have been discovered.

For each person we only consider the first name, last name, and birth year. Birth year is corrupted by rounding it to the nearest ten. Some of the first and last names are randomly replaced by their alternative spellings based on a list of common name variations. For example, the name Felix Ahlrooth might get replaced by Feeliks Alroot. Such name variations are frequently encountered in historical documents used in genealogical research. From both graphs independently, we discard 50% of the edges at random.

The task is to align the subgraph into the larger graph. When selecting candidate entities for each individual in the subgraph, we find people from the larger graph born in the same decade and select four of them with the most similar names in addition to the groundtruth match. Name similarity is computed as the average Jaro-Winkler similarity [39] between the first names and between the last names.\(^5\)

5.2 Baseline query strategies

We compare the performance of the sampling-based query strategies to four baseline strategies.

\(^5\)Note that in the graph-theoretic sense family trees are not trees since they contain cycles such as Mother–FirstChild–Father–SecondChild–Mother.

\(^6\)The Jaro-Winkler similarity is a popular choice for de-duplicating name records.

Margin: Querying data samples with a small score difference \((\text{margin})\) between the two most probable labels is a common approach in active learning [33]. In the context of active network alignment, this method has been previously used by Cortès and Serratosa [10].

Thus, given the bipartite graph \(H\), Margin computes \(\text{Cert}(v)\) for every \(v \in V_h\) by first finding the two edges incident to \(v\) with the largest weights \(w_1(v)\) and \(w_2(v)\) in \(H\). Then the node is scored according to

\[
\text{Cert}(v) = w_1(v) - w_2(v).
\]

Intuitively, the larger the difference between \(w_1(v)\) and \(w_2(v)\), the less uncertainty there is with respect to the best match for node \(v\).

LCCL: The Least Confident given the Current Labelling query strategy ranks nodes according to

\[
\text{Cert}(v) = \text{Cert}(v)_{M(v)}(v),
\]

where \(M\) is the current matching (the maximum-weight matching in \(H\)) and \(\text{Cert}(v)_{M(v)}(v)\) is the weight between node \(v\) and its current match. This method was reported to yield the highest precision of the four uncertainty sampling based methods studied by Cortès and Serratosa [10].

Betweenness: This method queries a previously unqueried node with the highest betweenness centrality in \(G_s\). The method has been previously used by Macskassy [25].

Random: This method queries nodes from \(V_s\) in a random order.

5.3 Query strategy comparison

Here we perform an empirical comparison of the different query strategies. For each dataset, we run a minimum of 30 random initializations of the input graphs and average the results; for the preferential-attachment graphs, we generate a new pair of input graphs at each initialization, for social networks, we sample new node labelings and for family trees a new subgraph at each initialization.

Adjusting hyperparameters: The number of matchings \(\ell\) in Top-Matchings is set to 30. We also tried larger values up to 3,000 but this did not seem to have a significant effect on the results. In GibbsMatchings, we set the number of samples \(\ell\) to 3,000. Additionally, we have to choose the value of the temperature parameter \(\beta\). If the value is set too high, the distribution becomes close to a uniform distribution, whereas if it is set too low, the distribution becomes very concentrated and the swaps to a lower energy state will always fail. Therefore, we first normalize the bipartite graph \(H\) by dividing its values with the difference of the average minimum and maximum value of the different rows of \(H\). Then we optimize \(\beta\) using a separate training dataset. This dataset is generated using the preferential-attachment model, as described in Section 5.1 but with only 50 nodes per graph and 5 unique labels. Among the values we tried, \((0.001, 0.01, 0.1, 1)\), we found \(\beta = 0.1\) to produce the most accurate predictions for the training data, and thus we fix this value for the rest of the experiments.

Results: The alignment accuracies are shown in Figure 3. On the \(x\)-axis, we have the number of queried nodes and on the \(y\)-axis, the alignment accuracy for the unqueried nodes, that is, the fraction of correctly aligned unqueried nodes. In the top row of Figure 3, we see that by querying the 400 best nodes according to GibbsMatchings, TopMatchings, or LCCL, the
Figure 3: Alignment accuracy of the unqueried nodes for three datasets: preferential attachment graphs (top), social networks (middle), and family trees (bottom). In most cases, the proposed methods (GibbsMatchings and TopMatchings) achieve a high accuracy with fewer queries than the four baseline methods. Furthermore, the proposed active-querying strategies clearly improve the initial solution obtained by a non-active alignment method.
remaining 600 nodes get correctly aligned when using NATALIE, whereas the other query strategies require at least 800 queries for obtaining a perfect alignment. For social networks (Figure 3; middle) MARGIN clearly outperforms LCCL, while GIBBSMATCHINGS and TOPMATCHINGS outperform both of them except for when querying 26 nodes or more and using TOPMATCHINGS with NETALIGNMP++. Finally, in family trees (Figure 3; bottom), GIBBSMATCHINGS and TOPMATCHINGS consistently outperform the other methods when using NATALIE. With NETALIGNMP++, LCCL and MARGIN outperform the sampling methods after querying half of the nodes, and in contrast to the other experiments, GIBBSMATCHINGS performs clearly worse than TOPMATCHINGS within the first half of the queries. To understand this difference better, we ran GIBBSMATCHINGS with different temperatures and noticed that with $\beta = 0.001$, GIBBSMATCHINGS obtains a comparable performance with TOPMATCHINGS. This suggests that the optimal β value is sometimes problem dependent.

A surprising observation is that in most cases BETWEENNESS is outperformed even by random querying. This is probably explained by the fact that BETWEENNESS queries central nodes that have many neighbors and are thus less uncertain since the neighbors help infer their correct alignment.

We conclude that the best overall performance is obtained using the GIBBSMATCHINGS and TOPMATCHINGS methods; LCCL and MARGIN are both competitive baselines but in some cases they yield more than 15 percentage point lower accuracies, whereas the sampling methods perform consistently well.

5.4 Batch querying and scalability

When aligning large networks with the help of human experts, getting the responses from the humans easily becomes the bottleneck of the algorithm. To circumvent this problem, we can query batches of nodes as discussed in Section 4.5. To study the effect of batch querying on GIBBSMATCHINGS, we run an experiment on the preferential-attachment graphs and vary the batch size. Figure 4 shows the effect of the batch size on the alignment accuracy. With a batch size of 10, the accuracy is hardly affected, and even when batch size is increased to 100 nodes, the accuracy decreases by no more than 3.5%. This shows that we can obtain accurate network alignments even when querying the experts in parallel.

Another potential bottleneck is computing the nodes to query. Table 1 lists the running times for computing a query node using TOPMATCHINGS and GIBBSMATCHINGS combined with NATALIE, when aligning two preferential-attachment graphs with a varying number of nodes. The number of matchings is set to $\ell = 30$ with both methods (note that in the main experiments, we used 3 000 samples with GIBBSMATCHINGS). With networks of up to 1 000 nodes, TOPMATCHINGS is not yet a significant bottleneck but when the number of nodes becomes 10 000, TOPMATCHINGS takes already 2.6 hours.\(^6\) GIBBSMATCHINGS, on the other hand, scales well so that and even for graphs with 100 000 nodes it only takes 10 minutes to sample 30 matchings. Furthermore, GIBBSMATCHINGS can be parallelized in a straightforward manner by running multiple independent Markov chains simultaneously.

\(^6\)We use the original algorithm proposed by Murty [29] for TOPMATCHINGS instead of the optimization by Miller et al. [28]. However, instead of the standard Hungarian algorithm, we employ a bipartite matching solver optimized for sparse graphs, available at: https://www.cs.purdue.edu/homes/dgleich/codes/netalign/
two proposed methods are shown to outperform several previously-proposed baseline methods, while offering a robustness-scalability trade-off.

This study opens many possibilities for future work. First, samples of matchings could be used for not only relative but also for absolute queries. It would be interesting to perform an experimental comparison between the two query strategies (absolute vs. relative) but in order to quantitatively compare their effectiveness, we would need to develop a model to compare the cognitive load induced by the different type of human expert queries. Second, in this work we assume the oracle to always provide the correct alignment for a node but it would be useful to study how the results change given an imperfect oracle. Third, it would be useful to develop methods for tuning the temperature parameter β in GIBBSMATCHINGS so that GIBBSMATCHINGS would generalize better to different types of networks. One possibility would be to compute the maximum likelihood estimate for β based on the results of the previous oracle queries and adaptively update the estimate when new oracle results are received.

ACKNOWLEDGMENTS

We would like to thank Pekka Valta and the Genealogical Society of Finland for providing the data for the family-tree experiment, as well as the anonymous reviewers for constructive comments and suggestions. Eric Malmi and Aristides Gionis were supported by the Academy of Finland project “Nestor” (286211) and the EC H2020 RIA project “SoBigData” (654024). Evimaria Terzi was supported by a Nokia Visiting Professor Fellowship and NSF grants: IIS 1320542, IIS 1421759, and CAREER 1253393.

REFERENCES

[10] Xavier Cortés and Francesc Serratosa. 2013. Active-learning query strategies applied to select a graph node given a graph labelling. In Graph-Based Representations in Pattern Recognition.

[41] Jiawei Zhang and Philip S. Yu. 2015. Multiple Anonymized Social Networks Alignment. In KDD.