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ABSTRACT
We consider the problem of reconstructing an epidemic over
time, or, more general, reconstructing the propagation of
an activity in a network. Our input consists of a temporal
network, which contains information about when two nodes
interacted, and a sample of nodes that have been reported
as infected. The goal is to recover the flow of the spread, in-
cluding discovering the starting nodes, and identifying other
likely-infected nodes that are not reported. The problem we
consider has multiple applications, from public health to so-
cial media and viral marketing purposes.

Previous work explicitly factor-in many unrealistic assump-
tions: it is assumed that (a) the underlying network does not
change; (b) we have access to perfect noise-free data; or (c)
we know the exact propagation model. In contrast, we avoid
these simplifications: we take into account the temporal net-
work, we require only a small sample of reported infections,
and we do not make any restrictive assumptions about the
propagation model.

We develop CulT, a scalable and effective algorithm to
reconstruct epidemics that is also suited for online settings.
CulT works by formulating the problem as that of a tem-
poral Steiner-tree computation, for which we design a fast
algorithm leveraging the specific problem structure. We
demonstrate the efficacy of the proposed approach through
extensive experiments on diverse datasets.

1. INTRODUCTION
Rumours, like infections, spread over time. Consider a

temporal network, which records when two nodes have inter-
acted. Given such a temporal network in which a“virus” has
been propagating, and a small sample of infected nodes over
time, can we reconstruct the flow of the epidemic? That
is, can we automatically identify the starting points of the
epidemic, and reliably tell when every node got infected,
including for those truly infected nodes that were never re-
ported as such? Moreover, can we do so without having to
assume a model for the virus spread? And, can we do this
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efficiently, with approximation guarantees, and in an online
setting? We answer these questions affirmatively.

Reconstructing an epidemic, or a network propagation in
general, has many important applications. These include
studying how real viruses such as the flu or Ebola spread.
This type of analysis is done by the Centre for Disease Con-
trol (CDC) with the goal of better understanding of viruses
for both preventing and controlling outbreaks. Other exam-
ples include the analysis of influence propagation in social
networks, as is done by social scientists and marketeers for
better understanding and leveraging human behaviour.

Although diffusion processes have been widely studied,
the problem of “reverse engineering” network propagations
has received relatively little attention. Moreover, existing
work only considers few and relatively simple settings [7,11,
13,14]. For example, it is generally assumed that the graph
over which the contagion spreads is static, that we know the
model of how the contagion spreads, and that we can obtain
complete noise-free observations of the state of the network.
In this paper we do not make these unrealistic assumptions.

First of all, we explicitly take into account that influence
can only spread when there is an interaction; you have to
read a status update from a friend to possibly be influenced
by it. We therefore consider temporal networks, directed and
weighted graphs that tell when two nodes interact. These
highly dynamic graphs can be considered at different reso-
lutions, from micro-seconds, to hours. Our algorithms work
regardless of the time-resolution of the graph.

Second, we acknowledge that in reality, we can only obtain
a small and noisy sample of the state of the network over
time. For real viruses it is obvious that it is infeasible to
test the entire population (see for example the surveillance
pyramid [17]). Additionally, we face situations in which test
results arrive over time, and they may include false posi-
tives [15]. To address these considerations, we consider a
general setting where over time we receive (possibly noisy)
reports of the state of individual nodes. Our algorithm can
operate both off-line and on-line given a stream of reports
and a stream of network interactions.

Third, we acknowledge that in practice we seldom know
how influence propagates exactly, and, that parametric mod-
els such as Independent Cascade (IC) and Susceptible-Infected
(SI) are strong simplifications of reality. We therefore take
a non-parametric approach that relies on just a single as-
sumption: shorter paths of infection are more likely.

All together, this allows us to define a cost of a descrip-
tion of an epidemic based on interactions. We show that
this formulation is related to the concept of directed Steiner



trees, and that the problem of recovering the flow of an epi-
demic can be efficiently solved with approximation guaran-
tees. Empirical evaluation shows our method reliably recon-
structs epidemics, outperforming meaningful benchmarks,
regardless of whether the epidemic was truly generated by
multiple fundamental models such as the IC, the SI, or the
Forest Fire model.

2. PRELIMINARIES
Let V be a set of nodes. We write (u, v, t) to denote

an interaction that occurs between nodes u and v at time
t ∈ R; so t is a time-stamp. Interactions are directed, so
(u, v, t) starts in u and ends in v, and can be weighted. For
simplicity, however, we consider only unweighted graphs. A
temporal network G = (V,E) consists of a set of interactions
E = {(u, v, t) | u, v ∈ V, t ∈ R} over the set of nodes V .
The number of nodes in the temporal network is denoted by
|V | = n and the number of interactions by |E| = m. We
assume that more than one interaction between two nodes
u and v can appear in E with different time-stamps.

For a temporal network G = (V,E) and a node u ∈ V
we write V(u) to denote the set of all time-stamped copies
of u for which u participates in some interaction of E, i.e.,
V(u) = {(u, t) | (u, v, t) ∈ E or (v, u, t) ∈ E}. We write
V =

⋃
u∈V V(u) for the set of all time-stamped nodes.

Given a node u and a time interval [ts, te] we denote by
V(u, [ts, te]) the subset of nodes of V(u) whose time-stamp
falls in the interval [ts, te]. Additionally, given an arbitrary
set of time-stamped nodes X = {(u, t)} we define V (X ) to
be the set of nodes that appear in X , that is, V (X ) = {u ∈
V | (u, t) ∈ X}.

Next we consider a dynamic propagation process in the
network, such as the spread of a virus in a physical social
network or the adoption of an action/idea in an online social-
media platform. We use the generic term active to refer to
nodes that are activated (infected/adopted-a-product etc.)
during the propagation process.

We assume that the propagation process is starting ex-
ternally, from a small set of nodes (S), and all other nodes
become active via interactions. In particular, if node u is
active, and an interaction (u, v, t) occurs, then the node v
may become active at time t, or it may not become active;
it depends on the dynamics of the propagation process. Al-
though our approach trivially generalises to multiple states,
e.g., susceptible, infected, recovered, etc., for simplicity of
exposition in the remainder we assume that once a node
becomes active it remains active for the rest of its lifetime.

Apart from the previous very generic assumptions, we do
not assume any particular model of the propagation process.

The activity-propagation flow in the network can be de-
scribed as a set of time-stamped active nodes A = {(u, t)} ⊆
V, where the time-stamp t indicates the first time that node
u becomes active. Then we call V \ A as the set of all po-
tentially susceptible time-stamped nodes.

We consider the set A as the true activity propagation
that occurs in the network, even though it may be non-
observable. Instead we consider that we observe a (relatively
small) set of activity reports R = {(u, t)}. A report (u, t) ∈
R indicates that node u was reported (or observed) to be
active at time t. For a node to be reported it should have
been activated earlier, thus, if there is a report (u, t1) ∈ R
then there should be an activation (u, t0) ∈ A with t0 ≤ t1.
We write tR(u) to refer to the time that a node u is reported

as active in R. If a node u is never reported as active, we
define tR(u) = T , where T is the last time stamp in E.

Finally, we need to define temporal connectivity, as net-
work activity propagates over temporal paths. A temporal
path p between two time-stamped nodes (u, ts) and (v, te) is
a sequence of node-disjoint interactions (u,w1, t1), (w1, w2, t2),
. . . , (wj−1, v, tj), such that ts ≤ t1, tj ≤ te and ti ≤ ti+1 for
all 1 ≤ i ≤ j − 1. Given a time-stamped root node (r, t0)
and a set of terminals T = {(u, t)}, a rooted temporal Steiner
tree is a subgraph of the temporal network G, which con-
tains r with no incoming interactions and unique temporal
paths from (r, t0) to every terminal node (u, t) ∈ T .

Let P = {p1, . . . ,p`} be a set of temporal paths. Denote
by V(P ) the set of time-stamped nodes that appear in any
path in P , and by V (P ) = V (V(P )) the set of non time-
stamped nodes that appear in any path in P . We say that P
spans a set of time-stamped nodes X ⊆ V if every (u, t) ∈ X
comes after (i.e. t ≥ t′) corresponding (u, t′) ∈ V(P ).

Finally, given a set of temporal paths P , a node u is called
a seed if u ∈ V (P ) and there is no interaction (v, u, t) ∈ pi
for any pi ∈ P . The set of seed nodes induced by a set of
temporal paths P is denoted by S(P ).

3. PROBLEM FORMULATION
Given a temporal network and a (partial) report log of ac-

tive nodes, our goal is to discover a sequence of time-stamped
node activations (which nodes and when) that explains best
the observed report log, given the set of interactions in the
temporal network. In general, the problem is as follows.

Problem 1. We are given a temporal network G = (V,E),
where E is a set of interactions over a set of nodes V . We
are also given a report log R = {(u, t)} of time-stamped ac-
tivated nodes, a set of candidate seeds C, and an integer k.
The goal is to find a set of temporal paths P in order to
minimize a cost function cost(P | R) subject to:

(i) P spans R;

(ii) S(P ) ⊆ C; and

(iii) |S(P )| ≤ k.

To make Problem 1 concrete we need to define the cost
function cost(P | R). Our approach is to introduce a weight
function w : E → R on the network interactions E, which
depends on the temporal network G and the report log R.

The weight function that is used in all the experiments
of this paper is discussed in Section 5. We note, however,
that there are many possible weighting schemes that can be
explored and tested in practice. Our problem formulation is
also meaningful for uniform weights, in which case we want
to explain the activity-propagation history with as few in-
teractions as possible. In any case, our theoretical results
do not depend on the particular definition of w and are ap-
plicable for any weight function.

Given a weight function, we then assume that the cost of
a path is the sum of the weights of the interactions on the
path. Then it is natural to model the total cost of the set
of paths P , as total cost of all interactions that are included
in P , i.e.,

cost(P | R) =
∑
e∈P

w(e). (1)

Problem 2. (TempSteinerTree) Solve Problem 1 with
cost function cost(P | R) given by Equation (1).



Regarding the complexity of the TempSteinerTree prob-
lem, we can show the following.

Proposition 1. Problem TempSteinerTree is NP-hard.

A proof of Proposition 1 can be obtained in a similar man-
ner as in the work of Huang et al. [6].

4. FINDING TEMPORAL STEINER TREES
To solve the Steiner-tree problem on temporal networks,

as defined in the previous section, we map it to the stan-
dard Steiner-tree problem on static (not temporal) directed
graphs. The latter problem is defined as follows.

Problem 3. (MinDirSteinerTree) We are given a di-
rected static graph H = (U,F ) with edge weights w : F → R,
a root node r ∈ U and a set of terminal nodes R ⊆ U . We
want to find a directed tree T , rooted in r and containing
directed paths from r to every node in R such that total tree
cost

∑
e∈F (T ) w(e) is minimized.

We first show that for k = 1 the TempSteinerTree prob-
lem can be mapped to MinDirSteinerTree.

Proposition 2. For k = 1 the TempSteinerTree prob-
lem can be solved by |C| calls to MinDirSteinerTree.

Proof. Let us consider an instance of the TempSteiner-
Tree problem: a temporal network G = (V,E), a report
log R = {(u, t)}, and a set of candidate seeds C. Given
this problem instance, we construct a directed static graph
H = (U,F ) as follows. We first define U to be the set of
time-stamped nodes V. For each node u ∈ V of the tem-
poral network G we order its time-stamped copies {(u, t)}
in V in ascending time order, and we connect every two
consequent copies (u, ti) and (u, ti+1) by a directed edge
e((u, ti), (u, ti+1)), which is added in the set of static edges F
with zero weight. Additionally, for each interaction (u, v, t) ∈
E we create a directed edge e((u, t), (v, t)), which is added
in F with weight w((u, t), (v, t)) = w(u, v, t).

From the construction it follows that there is a bijection
between the set of all temporal paths in G and the set of all
directed paths in H.

Next, for every candidate seed node u ∈ C we create a
dummy node z(u). The set of all dummy nodes is z(C) and it
is also added to the set of static nodes U . For each candidate
seed node u ∈ C we define t0(u) = arg min{t | (u, t) ∈ V},
that is, the earliest possible start of a temporal path for
that seed node. An edge connecting z(u) with (u, t0(u)) is
created and it is added to F with zero weight.

Finally, we need to specify the set of terminals R for Min-
DirSteinerTree. For each report (u, t) ∈ R we find the
latest time t∗(u, t) that node u participated in an interaction
that took place before t, that is, t∗(u, t) = arg max{t′ |
(u, t′) ∈ V and t′ ≤ t}, and we add (u, t∗(u, t)) in the set of
terminals R.

It is easy to see that there is a bijection between the set
of directed Steiner trees of H rooted in z(C) and the set of
temporal Steiner trees in G rooted in C. Furthermore, the
corresponding trees have the same cost. Also if a terminal is
connected in a directed Steiner tree then the corresponding
report is covered in the corresponding temporal Steiner tree.
It follows that the TempSteinerTree problem in G can be
solved by |C| calls to the MinDirSteinerTree problem in
H, one for each root z(u), for seed u ∈ C.

The next step is to consider the TempSteinerTree prob-
lem for k > 1. The straightforward generalization of the con-
struction presented in Proposition 2 is to create a dummy
node for each k-size subset of C, and make a call to MinDir-
SteinerTree for each such dummy node. This approach,
however, is not scalable as it requires

(|C|
k

)
calls to MinDir-

SteinerTree.
To avoid such a combinatorial explosion we follow a dif-

ferent approach. We introduce a Lagrange-type parameter
α and we modify the objective by adding a term represent-
ing the number of temporal Steiner trees, weighted by α. A
target value for k can be found by varying α. The α-version
of TempSteinerTree is defined below.

Problem 4. (α-TempSteinerTree) We are given a tem-
poral network G = (V,E), reports R, a set of seed candi-
dates C, and a number α. We want to find a set of temporal
Steiner trees T , which spans all nodes in R and the total cost
costα(T ) = α|T | +

∑
T∈T

∑
e∈T w(e) is minimized, where

|T | denotes the number of temporal Steiner trees in T .

It is easy to see, by setting α appropriately large so that
the optimal solution contains only one tree, that Problem 4
remains an NP-hard.

Proposition 3. Problem α-TempSteinerTree is NP-
hard.

We can now show that for a given value of α, α-Temp-
SteinerTree can be reduced to an instance of the Temp-
SteinerTree problem with k = 1. The mapping follows the
proof of Proposition 2 and constructs a static graph H. In
addition, a new dummy node z0 is added, and it is connected
via a directed edges of weight α to other dummy nodes z(u)
(as before there is one dummy node z(u) for each candidate
seed u ∈ C). Then, given a minimum Steiner tree T ∗ on
H rooted at z0, the optimal set of Steiner trees for the α-
TempSteinerTree problem can be obtained as the level-1
branches of T ∗. Thus, we obtain the following proposition.

Proposition 4. For a given value of α, the problem α-
TempSteinerTree can be solved with one call to the Min-
DirSteinerTree problem.

For a z0-rooted Steiner tree T ∗ returned as a solution to
the MinDirSteinerTree problem, we denote the degree of
z0 in T ∗ by d(z0 | T ∗). Note that for a large α the degree of
z0 will be small, while for α = 0 the degree of z0 can be as
large as the number of candidate seeds in C.

As our goal is to find a target number k of temporal
Steiner trees by varying α, and as the number of returned
Steiner trees is given by d(z0 | T ∗) in the solution of Min-
DirSteinerTree, we would like to show that d(z0 | T ∗) is
a monotone function of α.

Proposition 5. Let α1 < α2 and consider the optimal
Steiner trees T ∗α1

and T ∗α2
obtained by the mapping to Min-

DirSteinerTree. Then d(z0 | T ∗α1
) ≥ d(z0 | T ∗α2

).

Proof. Let c1 and c2 be total costs of the branches of z0

in the optimal trees T ∗α1
and T ∗α2

, respectively. By the opti-
mality of the two solutions in their corresponding problem
instances we have

α1d(z0 | T ∗α1
) + c1 ≤ α1d(z0 | T ∗α2

) + c2



and

α2d(z0 | T ∗α2
) + c2 ≤ α2d(z0 | T ∗α1

) + c1.

It follows that

α1 (d(z0 | T ∗α1
)− d(z0 | T ∗α2

)) ≤ α2 (d(z0 | T ∗α1
)− d(z0 | T ∗α2

))

and thus,

(α1 − α2) (d(z0 | T ∗α1
)− d(z0 | T ∗α2

)) ≤ 0.

Hence, d(z0 | T ∗α1
) ≥ d(z0 | T ∗α2

).

As the number of branches of z0 in T ∗ is a non-increasing
function of α we can use binary search on α to obtain a
feasible solution for the TempSteinerTree problem, for a
given k. The lower boundary for the binary search is set to
α` = 0, while the upper boundary αu must be selected so
as to ensure that d(z0 | T ∗αu

) ≤ k, or asserting that it is not
possible to find a tree with less than k branches from z0.
The following proposition provides such a value for α.

Proposition 6. Let L be the weighted length of the longest
shortest path from a node in the candidate seed set C to a
node in the reports set R. Then the value αu = L|R| pro-
vides a Steiner tree T ∗αu

for which d(z0 | T ∗αu
) is the small-

est possible degree for z0 among all Steiner trees that can be
found as a solution to the MinDirSteinerTree problem,
for any α.

Proof. Let c1 be the minimum total cost along the bran-
ches of the Steiner tree that has the smallest possible number
of branches kmin from z0. Let c2 be the minimum total cost
along the branches of any feasible Steiner tree with more
than kmin branches from z0.

We want a value of α for which solution tree T ∗α has at
most kmin branches from z0. Thus, we require αkmin + c1 ≤
α(kmin + 1) + c2, which gives α ≥ c1 − c2. Upper bounding
c1 by L|R| and lower bounding c2 by 0 proves the claim.

Note that the value of α given by Proposition 6 guarantees
that d(z0 | T ∗α) = 1, if there exists a directed Steiner tree
rooted in one of the nodes of the candidate seeds C and
spanning all nodes in the reports set R.

4.1 Solving the directed Steiner-tree problem
The best approximation algorithm for the directed Steiner-

tree problem is given by Charikar et al. [1]. The algorithm
is based on the recursive construction of ρ-level trees by
concatenating subtrees with the lowest marginal normalized
length. The approximation guarantee of this algorithm is
ρ(ρ−1)s1/ρ, where ρ is a depth of the recursion and s is the
number of terminals. Note that ρ is a user-controled param-
eter that offers a quality–efficiency trade-off. Increasing ρ
improves the approximation guarantee of the algorithm at
the cost of running time. Huang et al. [6] proposed a time-
efficient modification of this algorithm with running time
O(nρsρ), where n is the number of nodes in the graph. How-
ever, the algorithm is still not practical for large networks.

In this section we show how to further improve the run-
ning time of the Steiner-tree algorithm so that it becomes
scalable to large networks. Our algorithm leverages the spe-
cial structure of the problem, that is, the fact that the static
directed graph is derived from a temporal network. We show
that it is sufficient to keep track only on a small number of
paths, which we call global shortest temporal paths.

Algorithm 1: Ai(j, r,X) : i-level directed Steiner tree
(Charikar et al. [1])

Input: Directed graph H = (U,F ), set of uncovered
terminals X ⊆ U , root r ∈ U , number of
terminals to be covered j, level i.

Output: Steiner tree T rooted at r that covers at least
j nodes of the set of terminals X.

1 if there are not j terminals in X reachable from r then
2 return ∅
3 T = ∅;
4 while j > 0 do
5 T ∗ = ∅;
6 foreach r′ ∈ U and j′ : 1 ≤ j′ ≤ j do
7 T ′ = Ai−1(j′, r′, X) ∪ {(r, r′)};
8 if len(T ∗) > len(T ′) then
9 T ∗ = T ′;

10 T = T ∪ T ∗;
11 j = j − |X ∩ U(T ∗)|;
12 X = X − U(T ∗);

13 return T

Additionally, our algorithm can be executed in an online
fashion, as new interactions and/or new reports arrive.

The basic approximation algorithm. We start by de-
scribing the basic algorithm of Charikar et al. [1], which is
also presented as Algorithm 1. Let H = (U,F ) be the di-
rected graph defined in the proof of Propositions 2 and 4.
For any pair of nodes (u, v) ∈ U × U we define `(u, v) to be
the length of the shortest path from u to v in H. If no such
path exists, then `(u, v) =∞.

The algorithm uses the variable Ai(j, r,X) to denote a
Steiner tree rooted at node r and covering at least j nodes
from a set of terminals X ⊆ U . The zero-level tree Steiner
tree A0(j, r,X) consists of the root r itself. The Steiner tree
A1(j, r,X) is constructed by connecting the root r with the
j closest terminals in X. For i > 1 the algorithm recursively
finds the best subroot r′, and the best number of terminals j′

so as to minimize the normalized length of the subtree T ′ =
Ai−1(j′, r′, X) ∪ {(r, r′)}, defined as total edge length per
terminal covered. The best choice for T ′ is used as a subtree
in the current level of recursion, the terminals reachable by
T ′ are declared covered, and the algorithm continues to cover
the remaining j − j′ terminals required. As mentioned, the
normalized length of a tree T is defined as its total length
divided by the number of covered terminals, that is,

len(T ) =

∑
e∈F (T ) `(e)

|X ∩ U(T )| .

Algorithm 1 provides an approximation guarantee for the
MinDirSteinerTree but is quite inefficient. In order to
avoid re-computing shortest paths multiple times, we can
pre-compute all shortest-path distances `(u, v) for all pairs
of nodes (u, v) ∈ U×U , but such a pre-computation requires
O(|U |2) space and O(|U |ω) time.1 In terms of the temporal-
network input size, it is |U | = O(|V|) = O(|E|), where E is
the set of interactions in the network. When space require-
ments are limited we can execute the algorithm without pre-

1O(nω) refers to the fastest algorithm for matrix multipli-
cation. The current value of the exponent is ω ≈ 2.373.



computing all-pairs shortest paths, but then running-time
cost is higher. Clearly such a space and running-time com-
plexity is prohibitive for large networks.

Improving the running time. We can improve the run-
ning time of the algorithm significantly by exploiting the
special structure of our problem, namely, the fact that the
directed graph H = (U,F ) has been constructed in a specific
manner from the input temporal network. Recall that the
set of nodes of H consists of time-stamped copies of nodes
{(u, t)} =

⋃
u∈V V(u) and dummy nodes

⋃
u∈C{z(u)}∪{z0},

where z(u) is a dummy node for a candidate seed u ∈ C.
Our main observation is that it suffices to compute short-

est paths only between dummy nodes z(u) and a single time-
stamped node (v, t), for each candidate seed u ∈ C and each
v ∈ V . The time-stamp of (v, t), for which the shortest path
is kept, is the report time tR(v) (recall that if a node v is
not in the reports set, then tR(v) is defined to be the last
time stamp in E). We refer to these paths as global shortest
temporal paths. More specifically, the global shortest tem-
poral path between candidate seed u ∈ C and node v ∈ V
is defined to be

q(u, v) = arg min
p

 min
(v,tj)∈V(v)

tj≤tR(v)

`(p(z(u), (v, tj)))

 ,

where p is a temporal path. We also write L(u, v) = `(q(u, v))
to denote the length of a global shortest temporal path
q(u, v). It is easy to see that we can compute and store
global shortest temporal paths using O(|C||V |) space and
O(|C||E|) time. Furthermore, global shortest temporal paths
can be updated for all candidate seeds in O(|C|) time, when
a new interaction arrives in the temporal network. Thus,
global shortest temporal paths not only yield significant per-
formance improvement but they also make the algorithm
suitable to be executed in a streaming fashion.

If we consider a 2-level Steiner tree, we can notice that
it essentially consists of a dummy root z0 with branches,
rooted in dummy candidate seeds z(u). Each branch is a
1-level Steiner tree, thus it is simply a set of shortest paths
from z(u) to terminals. By definition, a global shortest tem-
poral path is no longer than any other path to a terminal.
Thus, each branch can be viewed as a set of global shortest
temporal paths from z(u) to terminals. In addition, for a
2-level Steiner tree we can avoid trying all possible subsets
of terminals to be covered: we can simply consider terminals
in order of increasing global shortest path length.

We can now show that while keeping only global short-
est temporal paths we can still calculate the minimum-cost
Steiner tree on H with the same guarantee as Algorithm 1.

Proposition 7. Consider the transformed directed graph
H = (U,F ), and assume a set of candidate seeds C = U .
Assume that we want to find a Steiner tree rooted at z0 and
spanning a set of terminals X, with |X| = s. Then, by
executing Algorithm 1 for depth ρ = 2 and using only global
shortest temporal paths we can calculate the minimum-cost
Steiner tree with approximation guarantee ρ(ρ− 1)s1/ρ.

Proof. First note that the global shortest temporal paths
prune away only information about non-optimal paths from
a dummy node z(u) to a node (v, t) ∈ U , while preserving
the shortest one. To see this, consider a global shortest tem-
poral path q(u, v) from z(u) to (v, ti). For all shortest paths

Algorithm 2: Temporal Steiner forest construction

Input: Temporal network G = (V,E), set of candidate
seeds C, and reports R.

Output: Temporal Steiner forest T ⊆ G, rooted at
seed candidates C and spanning reports R.

1 foreach u ∈ C and v ∈ V do
2 obtain global shortest temporal path L(z(u), v);

3 T = ∅;
4 X = V (R);
5 while X 6= ∅ do
6 T ′1 = ∅;
7 foreach z(u) ∈ C do
8 T1 = ∅; cost = α; profit = 0;
9 for v ∈ X ordered by increasing L(z(u), x) do

10 T1 = T1 ∪ q(z(u), v);
11 cost + = L(z(u), v);
12 profit + = 1;

13 if len(T ′1) > cost
profit

then

14 T ′1 = T1; len(T ′1) = cost
profit

;

15 T = T ∪ T ′1;
16 X = X \ V (T ′1);

17 return T ;

p′ in H between z(u) and a time-stamped node (v, tj) with
tj ≥ ti we have `(p′) = L(u, v).

Next, we show that for any best tree selected in the for-
loop of Algorithm 1, there is always a tree, which has at most
the same normalized length and it is rooted in a dummy node
z(u), for some u ∈ C.

Indeed, assume that Algorithm 1 picks a 1-level tree T ′,
which is rooted at a node (u, t′) and covers a subset of ter-
minals X ′ = {(v1, t1), . . . , (vj , tj)} ⊆ V. Notice that since
X ′ is reachable from (u, t′), it is also reachable from any
(u, t), with t ≤ t′, and also from z(u). Let T be the tree
rooted in z(u) that covers the same set of terminals X ′. We
claim that T is less expensive than T ′. To see this note that
the cost of tree T ′ is

∑
x∈X′ `((u, t

′), x) and the cost of tree
T is

∑
x∈X′ `(z(u), x), while by the definition of the global

shortest temporal path `((u, t′), x) ≥ `(z(u), x).

Proposition 7 requires that the set of candidate seeds C is
equal to U . Note that in many applications we do not have a
reason to exclude any candidate seeds, so this is a perfectly
reasonable assumption. In cases that the set of candidate
seeds is a subset of the whole node set we can still use the
algorithm and obtain improved running time, however, the
approximation guarantee does not hold.

The resulting algorithm is presented in detail as Algo-
rithm 2. The input is the temporal network G = (V,E),
a set of candidate seeds C, and a report log R. For every
candidate v ∈ C (and corresponding dummy node z(v)) we
compute the global shortest temporal path to every node in
V and sort these paths in ascending length order. While
not all terminals are covered, the algorithm computes the
cost of all possible 1-level trees composed of global shortest
temporal paths, finds the one with the smallest normalized
density, and adds it to the solution. The ordering the global
shortest temporal paths allows to test all possible trees in
linear time. The algorithm returns a set of trees T , which
reconstructs the observed activity propagation.



Algorithm 3: Global shortest temporal paths

Input: Time series of interactions E, set of seed
candidates C and reports R.

Output: global shortest temporal path from each seed
candidates to each node in R.

1 L = ∅; L∗ = ∅;
2 foreach e = (u, v, t) ∈ E do
3 foreach x ∈ C with t ≥ t0(x) do
4 if u = x then
5 L(x, x) = 0;
6 q(x, x) = (t, x, x);
7 if u ∈ V (R) and t ≥ tR(x) and

L∗(x, x) = NaN then
8 L∗(x, x) = L(x, x); q∗(x, x) = q(x, x)

9 if L(x, u) 6= NaN then
10 cost = L(x, u) + w(e);
11 if L(x, v) > cost then
12 L(x, v) = cost;
13 q(x, v) = q(x, u) ∪ {(u, v, t)}
14 if v ∈ V (R) and t ≥ tR(v) and

L∗(x, v) = NaN then
15 L∗(x, v) = L(x, v); q∗(x, v) = q(x, v)

16 foreach (x, x) ∈ L do
17 if L∗(x, x) = NaN then
18 L∗(x, x) = L(x, x)

19 return L∗ and q∗;

Note that the performance of Algorithm 2 can be further
improved by incorporating the pruning techniques described
in the recent paper by Huang et al. [6]. Details on this
improvement are omitted for lack of space.

4.2 Computing global shortest temporal paths
We now describe the last piece of our algorithm, how to

compute global shortest temporal paths. The main obser-
vation for computing temporal shortest paths from a set of
time-stamped nodes V(u), for a candidate seed u ∈ C, it
sufficies to consider only the shortest paths from the corre-
sponding dummy node z(u). We can then compute global
shortest temporal paths by processing the interactions in as-
cending time order and updating the current shortest paths
from each dummy node z(u) to all nodes in V .

The algorithm is shown in detail in Algorithm 3. For
each candidate seed u ∈ C and node v ∈ V we keep the
temporal shortest path p(z(u), v) and its length `(z(u), v).
For each new interaction (w1, w2, t) processed (in ascending
time order) we check if the current shortest temporal path
p(z(u), v) can be improved by using (w1, w2, t). Once we
process an interaction for which t ≥ tR(v), we fix the current
p(z(u), v) to be the global shortest temporal path from z(u)
to v. However, we keep updating p(z(u), v), as it may be
used by other shortest paths.

4.3 Putting everything together
We summarize our main algorithm, as presented in the

previous sections. Starting with the temporal network G a
set of reports R, and a target number of candidate seeds k,
we solve the α-TempSteinerTree problem using the trans-

formation presented in Proposition 4 and Algorithm 2. Us-
ing binary search, a value of α is found, for which the root
(z0) of the returned Steiner tree has degree equal to k.

5. EXPERIMENTS
In this section we empirically evaluate CulT. The imple-

mentation of all algorithms and scripts used for the experi-
mental evaluation are publicly available.2

5.1 Setup
Datasets. We consider both synthetic and real temporal
networks, and both synthetic and real activity propagations.

For Synthetic dataset, we start by generating a static
background network of n = 100 nodes with a powerlaw de-
gree distribution. Uniformly at random we choose k seed
nodes, from which we start the activation propagation pro-
cess using some model. Keeping track of the sequence of
successful activations, we add δ = 100 random interactions
between each pair of consecutive activating interactions.

We also consider real networks with simulated activity
propagations. We consider Facebook, Tumblr, Students,
and Enron. We use subgraphs of these networks with n =
100 nodes, obtained by BFS starting from a random node.

Facebook is a 3-month subset of Facebook activity in a
New Orleans community [16]. The dataset contains anony-
mized list of wall posts (interactions). Tumblr is subset of
the Memetracker dataset,3 which contains quoting between
Tumblr users. Students4 is an activity log of a student online
community at the University of California, Irvine. Nodes
represent students and edges represent messages, where the
message direction is suppressed. Finally, Enron5 is a well-
known dataset of email communication. For experiments
with real-world infection cascades we considered emails, con-
taining word California, as infected.

To generate the infection paths, we consider four differ-
ent propagation models. In particular, we experiment with
susceptible-infected (SI), shortest path (SP), independent
cascade (IC), and forest fire (FF). For each we simulate a
propagation until at least half of the nodes are activated.
For SI we use infection probability 0.1, threshold number of
active neighbors for FF is 1, activation probability for IC
is set to inverse of the largest eigenvalue of an adjacency
matrix (related to the so-called ‘epidemic threshold’ [10]).

Finally, to create the reports R, we use two different
schemes. In the first (refer as RS), for each interaction every
activated node has a probability β to be reported. In the
second (FR), nodes at the frontier of the activation are re-
ported after a θ interactions. By combining the two schemes
we can evaluate how strongly the methods rely on frontier
and on intermediate reports.

Our last dataset is Flixster6: A dataset from movie ratings
social network. Given a friendship network and data on
which user has rated which movie and when, we create an
interaction (u, v, tj) in E, if user v has rated movie f at tj ,
his friend user u has rated f at ti and tj − ti ≤ 7 days.

2https://github.com/polinapolina/
reconstructing-an-epidemic-over-time
3snap.stanford.edu/data/memetracker9.html
4toreopsahl.com/datasets/#online social network
5www.cs.cmu.edu/˜./enron/
6www.cs.ubc.ca/˜jamalim/datasets



For Flixster we took a movie f (ID=54053), which was
rated by 10 K users, constructed a history of interactions
E, and defined the first 10 users who rated f before their
friends to be seeds. We consider all interactions, induced by
movie f and propagated from these seeds. Then we sample
reports among frontier nodes with probability 0.5 and delay
θ = 1000 interactions.

Baselines. As no other methods exist to reconstruct an
epidemic in a temporal network, we compare CulT to two
sensible baselines. The first is straightforward, we simply ac-
count for the given reports R (Reports). Somewhat more
refined, the second baseline (Baseline) returns the one-hop-
cascade from the given reports. That is, given a reported
activation (u, t) Baseline assumes that every future inter-
action (u, v, t) leads to a successful activation. The acti-
vation is not propagated further than one-hop-neighbors of
a reported node, however, as that unduly harms precision.
Although none of the two baselines returns a collection of k
temporal Steiner trees, we can still evaluate their accuracy
against a ground-truth set of activated nodes. For instance,
note that Reports has precision 1.0.

Weighing scheme. As pointed out in Section 3, our ap-
proach relies on a weighing scheme to identify which paths
are to have participated in the activity-propagation process.
In particular, for a node u that is reported to be active at
time tR(u) we assume that an interaction (u, v, t) is more
likely to have contributed in the activation of u if the time
of the interaction t is close to the report time tR(u). Thus,
we set the weight of an interaction to be the average time dif-
ference between the interaction time-stamp and the report
times of the two interaction end-points. In other words, we
set w(u, v, t) = 1

2
(|t− tR(u)|+ |t− tR(v)|).

Measures. To evaluate the quality of a set of temporal
Steiner trees T , we compare the set of nodes in the Steiner
trees with a ground-truth set of activated nodes. To measure
the quality we use Matthews correlation coefficient (MCC ):

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
,

where TP = |V (A) ∩ V (T )|, TN = |V \ (V (A) ∪ V (T ))|,
FP = |V (T ) \ V (A)|, and FN = |V (A) \ V (T )|.

We also evaluate how well we recover the temporal order of
activations, comparing the activation order in the discovered
Steiner trees with the ground-truth order. As the activation
order is captured by a set of interactions, we measure agree-
ment with the ground truth in precision and recall.

We ignore the exact time of the activation and we consider
the sets of pairs of nodes (u, v) so that u activated v. We
again compare the set of pairs of nodes discovered by our
method against the ground-truth set. We refer to these sets
of node pairs as static order of activation, and we report
precision and recall.

All reported values are averaged over 100 runs.

5.2 Effect of binary search
We start by evaluating the effect of binary search. The

question we want to address is the following: can we find a
value for α to obtain a target value of seeds k? The relation
of α vs. k is shown in Figure 1. We use the Facebook dataset
with parameters: SI, reporting scheme FR(θ = 100), and
δ = 100. The target number of seed is set to k = 5.

To obtain Figure 1 we solve α-TempSteinerTree for a

0.00 0.01 0.02 0.03 0.04 0.05

alpha

2

4

6

8

10

12

14

16

18

20

5

k

2 4 6 8 10 12 14 16 18 205

k

0.000

0.005

0.010

0.015

0.020

tr
e

e
 c

o
st

Figure 1: α is (easily) optimizable. True K = 5.
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Figure 2: MCC for Synthetic powerlaw graphs of
varying γ. We indicate the best-fitting values of γ
for each of the real world datasets we consider.

range of values of α. All reported values are averaged over
100 of runs. The left-most plot shows how α influences the
number of seeds found. This result is noteworthy, as in
Proposition 5 we assume that we can solve α-TempSteiner-
Tree optimally, while in practice we can only solve it ap-
proximately. Since the dependence of α vs. k is monotonic
also in practice, we can conclude that the binary-search ap-
proach is effective. The right-most plot shows the solution
cost as a function of k. Although in this paper we do not
address the problem of discovering the optimal value of k,
note the “elbow” near the ground-truth value of k = 5.

5.3 Accuracy on powerlaw graphs
The degree distribution of many real-world graphs closely

follows a power-law with γ between 2 and 3. Hence, it is in-
teresting to evaluate how well CulT performs on such data.
We run CulT on synthetic networks generated for differ-
ent values of γ. MCC scores are shown in Figure 2. We
observe that CulT is particularly accurate in the range of
γ = [1.5, 3.5], which corresponds to the range in which most
real networks fall. To corroborate, we also indicate the val-
ues for γ that best fit the real networks used in this paper.

5.4 Noise level and different infection models
Next, we investigate how well CulT can reconstruct prop-

agations for a range of different settings.
First, we simulate the SI model on our four real-world

datasets, and inject different numbers of noise interactions.
MCC scores are reported in Figure 3. We observe that the
performance of CulT slightly declines as the fraction of rel-
evant interactions decreases. That is, even if only very few
interactions are related to the activity propagation, we are
still able to recover the ground-truth propagation.
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Figure 3: Effect of the fraction of interactions in interaction history E that are relevant to the propagation.
Quality of reconstruction measured in MCC for four datasets, with the SI model used to simulate propagations.
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Figure 4: Effect of the fraction of interactions in the interaction history E that are relevant to the propagation.
Reconstruction quality measured by MCC on the Facebook dataset, for different infection models.

Second, we evaluate how well we can reconstruct propaga-
tions generated by different models. We simulate cascades
on the Facebook network using all four models: SI , SP, IC,
and FF. We again vary the number of relevant interactions.
The results are shown in Figure 4. CulT performs very
consistently, regardless of the generating model.

Last, we check how the delay between a node activation
and its reporting affects performance. We simulate the SI
model on the four real datasets, and vary the delay between 0
and 5000 time steps. Results are provided in Figure 5. CulT
is almost not affected at all by delays in reports, whereas the
performance of Baseline deteriorates quickly.

5.5 Order of infection
Next, we evaluate how well we can reconstruct the order

of infections in our temporal network. We use the fron-
tier (FR) reporting scheme, while varying the fraction of
reported frontier nodes. Figure 6 shows that the precision
for both temporal order and static order is quite robust. In
both cases the fraction of reported frontier nodes affects only
the recall. When the number of the frontier nodes in the re-
ports is low, CulT ignores many activated “leaves,” which
are neither in the reports, nor on the path to any other re-
ported node. Thus, the number of false negative increases.

Naturally, the accuracy for static order is higher than for
temporal order: an interaction between the same two nodes
can occur at several time moments and it is difficult to select
the correct one into a reconstructed propagation path.

5.6 Real cascades
Next we present our results on the Flixster dataset. The

sequence of interactions E is divided into epochs (t0, t1, . . . , T ).
At the end of each epoch ti we consider a snapshot of the
network and compare the set of discovered activated nodes

with the set of ground-truth activated nodes in V (A[t0, ti]).
Results shown in Figure 7 indicate that CulT gives high
quality solution during the whole time interval, while the
performance of Baseline degrades significantly with time.

5.7 Scalability
Last, but not least, we evaluate the scalability of CulT.

We conducted these experiments on a 3.30GHz Intel Xeon
machine with 16GB of memory.

First, we consider running time with respect to the num-
ber of interactions E in the temporal network. We construct
a set E of a required length by increasing δ on the Facebook
dataset. We show the results in the left-most plot of Fig-
ure 8. As the plot shows, CulT scales well with |E|.

In the center plot of Figure 8 we show the running time
on the Facebook dataset, where we vary the number of acti-
vated nodes up till all nodes in the network are included. We
see again a graceful increase in running time, almost linear.

Third, we investigate the applicability of CulT in a stream-
ing scenario: we therefore report the running time per up-
date, as the number of newly-arrived interactions increases.
To this end we use the Facebook data, and vary the δ param-
eter to create a sequence of 3 000 interactions. We run CulT
on the first 1000 interactions, and use the rest to test the
update times. The total update time consists of two com-
ponents, 1) the time needed to update the global shortest
paths, and 2) the time needed for performing binary search.
As can be seen in the right-most plot of Figure 8, the time
for binary search remains constant regardless of the size of
the batch of new interactions. On the other hand, as ex-
pected, the time needed for path updates increases with the
batch size. Note, however, that even for larger batch sizes
the total update time is less than a second.
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Figure 5: Effect of delay θ, between actual moment of infection and reporting, on the quality of reconstruction.
Quality as measured by MCC for four datasets, with the SI model used to simulate the propagation.
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Figure 6: Precision/recall of reconstructed temporal and static infection orders per fraction of frontier nodes.
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Figure 7: MCC on Flixster (left) and Enron (right).

6. RELATED WORK
Although diffusion processes have been widely studied in

general, the problem of ‘reverse engineering’ an epidemic has
received relatively little attention. Shah and Zaman [14] for-
malized the notion of rumor-centrality to identify the single
source node of an epidemic under the SI model, and gave
an optimal algorithm for d-regular trees, whereas Chen et
al. [2] give a cubic-time approach. Prakash et al. [11] stud-
ied recovering multiple seed nodes under the SI model by
MDL, while Lappas et al. [7] study the problem of identi-
fying k seed nodes, or effectors of a partially activated net-
work, which is assumed to be in steady-state under the IC
(Independent-Cascade) model. Feizi et al. [4] and Sefer et
al. [13] do the same for multiple snapshots, where the former
consider SI, and the latter do so for the SEIRS model. All
assume complete graphs and noise-free snapshots.

Correcting for the effects of missing data in cascades has
not seen much attention. Sadikov et al. [12] aim to cor-
rect for sampling in broad statistical terms (like recovering
the average size and depth of cascades) assuming a modi-
fied cascade model (k-trees). Farajtabar et al. [3] consider

identifying a single seed given multiple partially observed
cascades, assuming the SI model.

Closest to our work are Sundareisan et al. [15], who simul-
taneously find the starting points of the epidemic and miss-
ing infections given one sampled snapshot, assuming the SI
model. In contrast, our paper addresses the general prob-
lem of finding missing nodes, given several noisy snapshots
(possibly at different times), without assuming any model.

The term “dynamic graphs” is typically used to refer to
the model where edges are added or deleted in a graph. In
the dynamic-graph setting, once an edge is inserted in the
graph it stays “alive” until the current time or until it is
deleted. For example, this setting is used to model individ-
uals establishing friendship connections in social networks.

Our model, on the contrary, intends to capture the contin-
uous interaction between individuals. In this model, which
we refer to as “temporal network,” each edge has an associ-
ated time-stamp recording an interaction at that point. The
temporal-network model is more recent than the dynamic-
graph model. Two extensive surveys are provided by Holme
and Saramäki [5] and Michail [9].

We refer the reader to the paper of Masuda and Holme [8]
for a thorough survey on existing work related to epidemics
in temporal networks. To the best of our knowledge the
problem of reconstructing activity propagation and tracing
back contagions has not been studied before in this context.
From the methodology point-of-view, most related to our
work is [6] where they use the directed Steiner-tree algorithm
of Charikar et al. [1] in order to find the minimum spanning
tree of a temporal network.

7. DISCUSSION
As should be clear by our discussion so far, CulT is de-

signed to reconstruct an epidemic, or an activity propaga-
tion, as it is likely to have happened in the past. That is, it
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Figure 8: Running time

is not trying to make any predictions about the future. This
is an important point that can help to put in better perspec-
tive the performance of CulT, as reported by MCC scores,
in several of the experiments presented in the previous sec-
tion. In particular, note that the ground-truth infected set
may contain several nodes that are downstream from nodes
in the reports set R (here we call a node downstream if
there is no temporal path from it to any node in R). Ac-
cordingly, CulT has no incentive to generate trees that will
cover downstream nodes, as such trees will have additional
cost and will not contribute in covering any node in R.

For the sake of simplicity we have not removed down-
stream nodes from our ground-truth sets, and thus, the
MCC performance of CulT is conservative. However, we
would like to point out that detecting infected downstream
nodes is a prediction task, not a reconstruction task. More-
over, it is a task that may require assuming a propagation
model, and thus, a problem that we do not address here.

8. CONCLUSION
We consider the problem of reconstructing an epidemic

over time. The novelty of our approach relies on the fact
that we explicitly take into account the exact time that
nodes interact, which leads to more accurate reconstruc-
tions. Additionally, our method requires only a small sample
of nodes reported as infected, and it does not make any as-
sumption regarding the underlying propagation model. We
show how to map the reconstruction task into the classic
directed Steiner-tree problem, and apply known approxima-
tion algorithms. We also present a new technique that sig-
nificantly improves the running time of the approximation
algorithm, and makes it applicable to online settings. We
demonstrate the efficacy of CulT through multiple experi-
ments on diverse datasets.
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