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Abstract. PageRank is one of the most popular measures for ranking
the nodes of a network according to their importance. However, Page-
Rank is defined as a steady state of a random walk, which implies that
the underlying network needs to be fixed and static. Thus, to extend
PageRank to networks with a temporal dimension, the available tempo-
ral information has to be judiciously incorporated into the model.
Although numerous recent works study the problem of computing Page-
Rank on dynamic graphs, most of them consider the case of updating
static PageRank under node/edge insertions/deletions. In other words,
PageRank is always defined as the static PageRank of the current in-
stance of the graph.
In this paper we introduce temporal PageRank, a generalization of Page-
Rank for temporal networks, where activity is represented as a sequence
of time-stamped edges. Our model uses the random-walk interpretation
of static PageRank, generalized by the concept of temporal random walk.
By highlighting the actual information flow in the network, temporal
PageRank captures more accurately the network dynamics.
A main feature of temporal PageRank is that it adapts to concept drifts:
the importance of nodes may change during the lifetime of the network,
according to changes in the distribution of edges. On the other hand, if
the distribution of edges remains constant, temporal PageRank is equiv-
alent to static PageRank.
We present temporal PageRank along with an efficient algorithm, suit-
able for online streaming scenarios. We conduct experiments on various
real and semi-real datasets, and provide empirical evidence that tempo-
ral PageRank is a flexible measure that adjusts to changes in the network
dynamics.

Keywords: PageRank, graph mining, social-network analysis, dynamic
graphs, time-evolving networks, interaction networks

1 Introduction

PageRank is a classic algorithm for estimating the importance of nodes in a
network. It has been considered a success story on applying link analysis infor-
mation seeking and ranking, and has been listed as one of the ten most influential
data-mining algorithms [24]. PageRank has been applied to numerous settings
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Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two different temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank efficiently under network updates [12, 19], or on computing
PageRank efficiently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e1, . . . , ek
(such as edge additions or deletions), resulting on a modified network G′. A
typical question is how to compute the PageRank of G′ efficiently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G′ is defined as a steady-state distribution and as
the network G′ would “freeze” at that time instance.

Our goal in this paper is to extend PageRank so as to incorporate temporal
information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main difference with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)



and (c) show two temporal networks; the number next to each edge denotes the
time-stamp that the edge arrives. In Figure 1(b) the in-coming edges of nodes a
and e are arriving in an interleaving manner, so we expect that the importance
of a and e will be stable over time, and that their temporal PageRank scores will
be approximately equal to their static PageRank scores. On the other hand, in
Figure 1(c) we are witnessing a concept drift: node a receives its in-coming edges
in the initial phase, while node e receives its in-coming edges later on. Due to
this change, node e becomes more important than a as time goes by. Accordingly
the scores of temporal PageRank for a and e are changing over time reflecting
the change in the network dynamics.

Note also that a dynamic algorithm for computing PageRank is required
to report the same output (the static PageRank of the graph in Figure 1(a))
independently of whether it receives its input as in Figure 1(b) or (c).

As illustrated in the previous example, temporal PageRank is defined for
temporal networks [9,18], i.e., networks with time-stamped edges. We generalize
the random-walk interpretation of static PageRank by using temporal random
walks, i.e., time-respecting random walks on the temporal network.

We provide a simple update algorithm for computing temporal PageRank.
Our algorithm processes the graph edges in order of arrival and it is proven to
converge to the correct temporal PageRank scores. We also prove that if the
edge distribution remains constant, temporal PageRank converges to the static
PageRank of the underlying graph that the edge distribution is drawn.

We conduct extensive experimental evaluation on various real and semi-real
datasets, which support our theoretical results and provide empirical evidence
that temporal PageRank is a flexible measure that adjusts to changes in the
network dynamics.

2 Models

2.1 Static PageRank

Consider a static weighted directed graph Gs =(V , Es, w) with n nodes. Let P
be the adjacency matrix of Gs, such that each row is normalized to unit sum.
To avoid dangling nodes it is typically assumed that the all-zero rows of P are
substituted by rows of 1/n.

Given adjacency matrix P ∈ Rn×n and a unit-normalized personalization
row vector h ∈ Rn, we consider a random walk that visits the nodes of the
graph Gs at discrete steps i = 1, 2, . . . . At step i = 1 the random walk starts
at a node u ∈ V with probability h(u). Given that at step i the random walk
has visited a node u, at step i + 1 it visits a node v selected as follows: with
probability 1−α the node v is chosen according to the distribution h, while with
probability α the node v is chosen according to the distribution specified by the
u-th row of P .

Consider now a Markov chain with nodes V as its state space and transition
matrix

P ′ = αP + (1− α)1h,



where 1 is a unit column vector. This Markov chain models the random walk
defined above. Assuming that the matrix P ′ is stochastic, aperiodic, and irre-
ducible, by the Perron–Frobenius theorem there exists a unique row vector π,
such that πP ′ = π and π1 = 1. The vector π is the stationary distribution of the
Markov chain, and it is also known as the PageRank vector. The u-th coordinate
of π is the PageRank score of node u.

A closed-form expression for π can be derived as

π = (1− α)h(I − αP )−1 = (1− α)h

∞∑
k=0

αkP k,

and the PageRank score of a node u can be written as

π(u) =
∑
v∈V

h(v)

∞∑
k=0

(1− α)αk
∑

z∈Z(v,u)
|z|=k

∏
(i,j)∈z

P (i, j)

=
∑
v∈V

∞∑
k=0

(1− α)αk
∑

z∈Z(v,u)
|z|=k

h(v)Pr [z | v]

=
∑
v∈V

∞∑
k=0

(1− α)αk
∑

z∈Z(v,u)
|z|=k

Pr [z] , (1)

where Z(v, u) is a set of all walks from v to u, and (i, j) is used to denote two
consecutive nodes of a certain walk z ∈ Z(v, u). The product

∏
(i,j)∈z P (i, j) =

Pr [z | v] = Pr [z] /h(v) expresses the probability that a random walk reaches
node u, provided that it starts at node v and it follows only graph edges.

In the definition of PageRank, it is assumed that the transition probability
matrix P ′ is given in advance, and it does not change. A number of works address
the problem of computing PageRank incrementally, when nodes and edges are
added or removed. However, PageRank is still defined by its static version, as
the stationary distribution of the graph that contains all nodes and edges that
are currently active [4, 5, 12, 19]. Here we propose another view of PageRank,
where temporal information and network dynamics are explicitly incorporated
in the underlying random walk that defines the PageRank distribution.

2.2 Temporal PageRank

Temporal PageRank extends static PageRank by incorporating temporal infor-
mation into the random-walk model. Our model uses temporal networks [9, 13,
18,21]. A temporal network G = (V,E) consists of a set of n nodes V and a set
of m timestamped edges (or interactions) E between pairs of nodes

E = {(ui, vi, ti)} , with i = 1, . . . ,m, such that ui, vi ∈ V and ti ∈ R,

where ti represents the timestamp when an interaction between ui and vi is
taking place. For generality we assume that the edges of the temporal graph



are directed. We also assume more than one different edge may exist between a
given pair of nodes, with different timestamps, representing multiple interactions
in time between a pair of nodes.

Following previous studies on temporal networks [9, 18], given a temporal
network G, we define a temporal walk on G, or a time-respecting walk, to be a
sequence of edges (u1, u2, t1), (u2, u3, t2), . . . , (uj , uj+1, tj), such that ti ≤ ti+1

for all 1 ≤ i ≤ j − 1.
Our extension of static PageRank to temporal PageRank is based on modi-

fying the PageRank definition of Equation (1) so that only temporal walks are
considered instead of all possible walks.

The intuition behind the idea can be illustrated by the example shown in
Figure 1(c). Node a initially receives many in-links and it should be considered
important. After time t = 8, however, it does not receive any more in-links and
thus, its importance should diminish. By using time-respecting walks one can
accurately model the fact that the probability of the random walk being at node
a decreases as time increases beyond time t = 8. Essentially, the probability that
a random walk being at node a after time t = 8 corresponds to the probability
that the random walk has arrived at node a before time t = 8 and it has not left
yet. Clearly this probablity decreases as time increases beyond t = 8.

We now define temporal PageRank more formally. Let ZT (v, u | t) be a set of
all possible temporal walks that start at node v and reach node u before time t.
We can compute the probability of a particular walk z ∈ ZT (v, u | t) as the
number c(z | t) of all such walks (starting at v and reaching u before time t)
normalized by a number of all temporal walks that start at node v and have the
same length

Pr′
[
z ∈ ZT (v, u | t)

]
=

c(z | t)∑
z′∈ZT (v,x|t)
x∈V, |z′|=|z|

c(z′ | t) . (2)

To compute the number c(z | t) of temporal walks that start at v and reach
u before time t one can consider the unweighted count of all possible temporal
walks. Such a count implies that once reaching u at time t1 the random walk
selects uniformly at random one of the future interactions (u, x, t2), with t2 >
t1, to move out of u. This model is not very intuitive as it assumes that the
random walk has knowledge of the future interations. Instead, once reaching u
by an interaction (v, u, t1) it is more likely to move out of u in one of the next
interactions (u, x, t2). Thus, we assume that the probability of taking (v, u, t1)
followed by (u, x, t2) increases as the time difference (t2 − t1) decreases.

To model this decreasing probability we consider an exponential distribution.
Our motivation for this definition is the exponential-decay model in data-stream
processing, which is commonly used. We define the probability that interaction
(v, u, t1) is followed by (u, x, t2):

Pr [(v, u, t1), (u, x, t2)] = β|(u,y,t
′)|t′∈[t1,t2], y∈V |.

We will refer to β as transition probability. The weighted number of temporal
walks is then defined as



c(z | t) = (1− β)
∏

((ui−1,ui,ti),(ui,ui+1,ti+1))∈z

β|(ui,y,t
′)|t′∈[ti,ti+1], y∈V |,

where (1−β) is a normalization term. Note that β = 1 with omitted normaliza-
tion corresponds to the unweighted case. In this case we view temporal network
as a sequence of samples from some unknown and changing distribution P ′.

By combining Equations (1) and (2), the temporal PageRank score of a node
u at time t is defined as

r(u, t) =
∑
v∈V

t∑
k=0

(1− α)αk
∑

z∈ZT (v,u|t)
|z|=k

Pr′ [z | t] .
(3)

Note that according to this definition, the temporal PageRank score of a node u
is a function of time. Thus, although our definition is an adaptation of the path-
counting formulation of static PageRank (Equation (1)), the temporal PageRank
is not a limiting distribution as static PageRank.

Also note that the definition of temporal PageRank (Equation (3)) does
not incorporate explicitly a personalization vector h. Instead, in the temporal
PageRank model presented above, the probability of starting a temporal walk
at a node u is proportional to the number of temporal edges that start in u. The
vector that contains the starting probabilities for all nodes is referred to as walk
starting probability vector and it is denoted by h′. The vector h′ is learned from

the data, in particular, for each node u, it is h′(u) = |(u,v,t)∈E: ∀v∈V |
|E| .

On the other hand, given a personalization vector h∗, the personalized tem-
poral PageRank is defined as

r(u, t) =
∑
v∈V

t∑
k=0

(1− α)αk h
∗(v)

h′(v)

∑
z∈ZT (v,u|t)
|z|=k

Pr′ [z | t]
(4)

Equation (4) assumes that the walk starting probability vector h′ is known. In
practice, h′ can be learned by one scan of the edges of the temporal network.

3 Algorithms

3.1 Computing temporal PageRank

In order to compute temporal PageRank we need to process the sequence of
interactions E and calculate the weighted number of temporal walks. When a
new interaction (u, v, t) arrives it can be used to advance any of the temporal
walks that end in u, or it can be the start of a new walk. To keep count of the
number of walks ending at each node we use an active mass vector s(t) ∈ R|V |,
with s(u, t) being equal to the weighted count of walks ending at node u at
time t. We also use a vector r(t) ∈ R|V | to keep temporal PageRank estimates,



Algorithm 1: stream processing

input : E, transition probability β ∈ (0, 1], jumping probability α
1 r = 0, s = 0;
2 foreach (u, v, t) ∈ E do
3 r(u) = r(u) + (1− α);
4 s(u) = s(u) + (1− α);
5 r(v) = r(v) + s(u)α;
6 if β ∈ (0, 1) then
7 s(v) = s(v) + s(u)(1− β)α;
8 s(u) = s(u)β;

9 else if β = 1 then
10 s(v) = s(v) + s(u)α;
11 s(u) = 0;

12 normalize r;
13 return r;

where r(u, t) stores the value of temporal PageRank (t-pr) of node u at time t.
Algorithm 1 processes a sequence of interactions E, updates the counts s(t) and
r(t) for each new interaction (u, v, t), and outputs r as a t-pr estimate.

Proposition 1. Algorithm 1 computes temporal PageRank defined in Eq. (3).

Proof. Algorithm 1 counts explicitly the weighted number of temporal walks.
Lines 3 and 4 correspond to initiating a new walk with probability 1− α. With
probability α the last interaction is chosen to continue active walks that wait in
node u (line 5). Line 7 (or 10, depending on transition probability β) increments
the active walks (active mass) count in the node v with appropriate normalization
1−β. Line 8 (or 11) decrements the active mass count in node u. If the transition
probability is β = 1, then the random walk chooses the first suitable arrived
interaction to continue the walk. ut

Algorithm 1 processes all interactions E in one pass and O(n) space. We need
O(1) space per node, leading to totalO(n) space, while every interaction initiates
a constant number of updates, leading to O(1) update time per interaction.

To compute personalized temporal PageRank for a given personalization h∗

we perform normalization, defined by Equation (4), and multiply terms (1− α)

in lines 3 and 4 by h∗(u)
h′(u) . Unless we know the distribution of temporal edges in

advance, we need to learn h′. Thus, we obtain a 2-pass algorithm to calculate
personalized temporal PageRank for a given personalization vector h∗.

3.2 Temporal vs. static PageRank

Temporal PageRank is defined to handle network dynamics and concept drifts.
An intuitive property that one may expect is that if the edge distribution of the



temporal edges remains constant, then temporal PageRank approximates static
PageRank. In this section we show that indeed this is the case.

Consider a weighted directed graph Gs = (V,Es, w) and a time period
T = [1, .., T ]. Without loss of generality assume

∑
e∈Es

w(e) = 1 and let Nout(u)
be the out-link neighbors of u. Let edges e ∈ Es be associated with a sampling
distribution SE : p[e = (u, v)] = w(e). A temporal graph G = (V,E) is con-
structed by sampling T edges from Gs using SE (probability to pick an edge
into E is proportional to the weight of this edge in the static graph). We will
consider a simple case of transition probability β = 1: a random walk takes the
first suitable interaction to continue.

In the setting described above we can prove the following statement.

Proposition 2. The expected values of temporal PageRank on graph G = (V,E)
converge to the values of static PageRank on graph Gs = (V,Es, w), with per-
sonalization vector h(u) =

∑
v∈Nout(u)

w(e = (u, v)) (weighted out-degree).

Proof. At any time moment t every vertex u ∈ V has PageRank score r(u, t)
and active mass (number of walkers that wait to continue) equal to s(u, t).

The expected value E(r(v, T )) of the PageRank count of node v at time T is
a sum over expected increments of r(v) over time:

E(r(v, T )) =

T∑
t=1

E(∆r(v, t)).

At time t the increment of r(v) can be caused by selecting an edge e(t) =
(v, q) with starting point in v and q ∈ V . In this case r(v) is incremented by
(1 − α). Another possibility to increment r(v) is to select an edge e(t) = (q, v)
with u as an end point and q ∈ V . In this case r(v) is incremented by αs(q, t),
where s(q, t) is a value of active mass in node q at time t. Let p(u) be a probability
that sampled interaction has u as its start point. Note, that

p(u) =

∑
j∈V w(e = (u, j))∑

i∈V
∑

j∈V w(e = (i, j))
,

that is, the normalized out-degree of u. Thus, E(∆r(v, t)) can be written as

E(∆r(v, t)) = (1− α)p(v) + α
∑
u∈V

p(u)p(v|u)E(s(u, t)).

To calculate expected amount of active mass in s(u, t), notice that s(u, t)
equals to total increments of r(u) happened between the time moment, when
edge with starting point in u was selected to update, and t:

E(s(u, t)) = ∆r(u, t)p(u) + (∆r(u, t) +∆r(u, t− 1))p(u)(1− p(u)) + . . .

· · ·+ p(u)(1− p(u))t−1
t−1∑
t′=0

∆r(u, t− t′) =

t−1∑
t′=0

E(∆r(u, t− t′))p(u)

t−1∑
k=t′

(1− p(u))k



The inner sum is a geometric progression:

E(s(u, t)) =

t−1∑
t′=0

E(∆r(u, t− t′))p(u)
1

p(u)

[
(1− p(u))t

′
− (1− p(u))t

]
.

We sum E(s(u, t)) over time and consider the two summations separately:

T∑
t=1

E(s(u, t)) =

T∑
t=1

t−1∑
t′=0

E(∆r(u, t− t′))(1− p(u))t
′

−
T∑

t=1

t−1∑
t′=0

E(∆r(u, t− t′))(1− p(u))t.

The first summation term can be written as:

T∑
t=1

t−1∑
t′=0

E(∆r(u, t− t′))(1− p(u))t
′

=

T∑
t=1

E(∆r(u, t))

T−t∑
t′=0

(1− p(u))t.

The second summation term is:

T∑
t=1

t−1∑
t′=0

E(∆r(u, t− t′))(1− p(u))t =

T∑
t=1

E(∆r(u, t))(1− p(u))t
T−t∑
t′=0

(1− p(u))t.

Putting the parts together:

T∑
t=1

E(s(u, t)) =

T∑
t=1

E(∆r(u, t))(1− (1− p(u))t)

T−t∑
t′=0

(1− p(u))t

=

T∑
t=1

E(∆r(u, t))(1− (1− p(u))t)
1

p(u)
(1− (1− p(u))T−t+1).

Now the expected total increment E(r(v, T )) can be expressed as:

E(r(v, T )) =

(1− α)

T∑
t=1

p(v) + α
∑
u∈V

p(v|u)

T∑
t=1

E(∆r(u, t))(1− (1− p(u))t)(1− (1− p(u))T−t+1).

We need to show that

lim
T→∞

E(r(v, T ))

T
= (1− α)p(v) + α lim

T→∞

∑
u∈V

p(v|u)
E(r(u, T ))

T
. (5)

Let us upper-bound E(∆r(v, t)). Consider a time moment t′ ≤ t. A value of
mass introduced to the system at t′ is (1−α). This mass can arrive to the node
v at time moment t through a sequence of t − t′ steps of transmission (when a
node u, which currently holds this mass, was chosen for action) or retainment
(a node u was not chosen for action and the mass remains in u). Transmission



happens with probability p(u)α; the probability of retainment is 1−p(u). Define
p = maxv∈V {1−p(v), αp(v)}. Then the expected value remained from this mass
is upper-bounded by (1−α)p(t−t

′). The sum of all introduced bits of mass is an
upper-bound for the active mass expected to enter node v at time t:

E(∆r(v, t)) ≤
T∑

t′=1

(1− α)pt
′
≤ (1− α)

p(1− pt)
1− p ≤ 1

1− p

Now we need to show that the following limit goes to 0:

lim
T→∞

1

T

T∑
t=1

E(∆r(u, t))((1− p(u))T+1 − (1− p(u))t − (1− p(u))T−t+1)

= lim
T→∞

1

T

T∑
t=1

E(∆r(u, t))(1− p(u))T+1 − lim
T→∞

1

T

T∑
t=1

E(∆r(u, t))(1− p(u))t

− lim
T→∞

1

T

T∑
t=1

E(∆r(u, t))(1− p(u))T−t+1

Consider three limits separately. The first one:

lim
T→∞

1

T

T∑
t=1

E(∆r(u, t))(1− p(u))T+1 = lim
T→∞

(1− p(u))T+1

T

T∑
t=1

E(∆r(u, t))

≤ lim
T→∞

pT+1

T

T∑
t=1

1

1− p = 0

The second one:

lim
T→∞

1

T

T∑
t=1

E(∆r(u, t))(1− p(u))t ≤ lim
T→∞

1

T (1− p)

T∑
t=1

pt = lim
T→∞

1

T (1− p)
p− pT+1

1− p = 0

The third one:

lim
T→∞

1

T

T∑
t=1

E(∆r(u, t))(1− p(u))T−t+1 ≤ lim
T→∞

pT+1

T (1− p)

T∑
t=1

p−t = lim
T→∞

pT+1

T (1− p)
p−T − 1

1− p

≤ lim
T→∞

p

T (1− p)2 = 0

It follows that Expression (5) is true.
Now, if we define pr(v) = limT→∞

1
T E(r(v, T )), then Expression (5) can be

written as personalized PageRank in a steady state:

pr(v) = (1− α)p(v) + α
∑
u∈V

p(v|u)pr(u)

ut
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(e) Twitter
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Fig. 2: Convergence of Temporal PageRank to static PageRank. The first row
(2a, 2b, 2c) corresponds to degree personalization, the second row (2d, 2e, 2f)
corresponds to random personalization, given a priori.

4 Experimental evaluation

To further support our theoretical analysis, we provide an empirical evaluation
of temporal PageRank. The implementation of all algorithms and scripts are
publicly available.1 We first describe our experimental setup.

Datasets. We consider semi-real temporal networks, constructed by using real-
world directed networks with edge weights equal to the frequency of corre-
sponding interaction. In particular, we consider the following networks: Face-
book, Twitter and Students. For each such network we extract static subgraphs
Gs = (V,Es, w) with n = 100 nodes, obtained by BFS from a random node. We
normalize edge weights w to sum to 1. Then we sample a sequence of temporal
edges E, such that each edge e ∈ Es is sampled with probability proportional
to its weight w(e); the distribution of sampled edges is denoted by SE(w). The
number of temporal edges E is set to m = 100 K.

The Facebook dataset is a 3-month subset of Facebook activity in a New
Orleans regional community [23]. The dataset contains an anonymized list of
wall posts (interactions). The Twitter dataset tracks activity of Twitter users in
Helsinki during 08.2010–10.2010. As interactions we consider tweets that contain
mentions of other users. The Students dataset2 is an activity log of a student on-

1 https://github.com/polinapolina/temporal-pagerank
2 https://toreopsahl.com/datasets/online_social_network

https://github.com/polinapolina/temporal-pagerank
https://toreopsahl.com/datasets/online_social_network
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(c) Students

Fig. 3: Comparison of temporal PageRank ranking with static PageRank ranking,
degree personalization is used.
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Fig. 4: Rank quality (Pearson corr. coeff.) and transition probability β.

line community at the University of California, Irvine. Nodes represent students
and edges represent messages.

Measures. To evaluate the settings in which temporal PageRank is expected to
converge to the static PageRank of a corresponding graph, we compare temporal
and static PageRank using three different measures: we use (i) Spearman’s ρ to
compare the induced rankings, we also use (ii) Pearson’s correlation coefficient r,
and (iii) Euclidean distance ε on the PageRank vectors.

All the reported experimental results are averaged over 100 runs. Damping
parameter is set of α = 0.85. Waiting probability β for temporal PageRank is
set to 0 unless specified otherwise.

4.1 Results

Convergence. In the first set of experiments we test how fast the tempo-
ral PageRank algorithm converges to corresponding static PageRank. In this
setting we process datasets with m temporal edges and compare the tempo-
ral PageRank ranking with the corresponding static PageRank ranking. In the
plots of Figure 2 we report Pearson’s r, Spearman’s ρ and Euclidean error ε.
The first column corresponds to the calculation of temporal PageRank without
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Fig. 5: Adaptation for the change of sampling distribution.
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Fig. 6: Convergence to static PageRank with increasing number of random scans
of edges.

any a priori knowledge of personalization vector. Thus, the resulting temporal
PageRank corresponds to the static PageRank with out-degree personalization:
h(u) =

∑
v∈Nout(u)

w(u, v), where Nout(u) are out-link neighbors of u. The sec-
ond column shows convergence in the case when the personalization vector h∗

is given and appropriate renormalization of t-pr counts is taking place.

The plots in Figure 2 show that in both variants of personalization the be-
havior is similar: in most cases the correlation of the PageRank counts reaches
high values already after 20 K temporal edges. Pearson’s r is remarkably high,
while Spearman’s ρ is typically lower. This can be explained by the large num-
ber of discordant pairs in the tail of ranking — due to producing a power-law
distribution PageRank is known to give robust rankings only at the top of the
ranking list. The Euclidean error ε also decreases to near-zero values fast.

In Figure 3 we show direct comparison between rankings, obtained by static
and temporal PageRanks after processing all temporal edges. We observe that
the rank correlation is high for top-ranked nodes and decreases towards the tail
of ranking.

Transition probability β. In this experiment we evaluate the dependence of
the resulting ranking and the speed of convergence on the transition probabil-
ity β. The plots in Figure 4 show that lower transition probability β corresponds



to slower convergence rate. On the other hand, smaller values of β produce bet-
ter correlated rankings. This behavior is intuitive, as a lower value for β implies
accumulation of more information regarding the possible walks, which in turn
implies a slower convergence rate.

Adaptation to concept drifts. In this experiment we test whether tempo-
ral PageRank is adaptive to concept drifts. We start with a temporal network
sampled from some static network G1

s = (V,Es, w1). After sampling m tempo-
ral edges E1, we change the weights of the static graph and sample another
m temporal edges E2 from G2

s = (V,Es, w2). A final sequence of m edges E3

is sampled from G3
s = (V,Es, w3). We run our algorithm on the concatenated

sequence E = 〈E1, E2, E3〉, without a priori personalization. On Figure 5 we
report correlation with the corresponding ground-truth static PageRank. The
transition probability β is set to 0.5. In all cases, temporal PageRank is able to
adapt to the changing distribution quite fast. Note however, that the previous
history is not completely eliminated and for each change of the distribution an
increasing number of edges is required to reach a certain correlation level.

Random scans. In the last experiment, given a static graph Gs = (V,Es, w)
we generate a sequence of temporal E by scanning the edges Es in random order
several times. Figure 6 shows that as the number of scans increasing, our estimate
for temporal PageRank converges to the static PageRank of the graph. We see
that the correlation obtains high values even after a few (around 10) scans. This
experiments suggests a very simple and efficient algorithm to compute the static
PageRank of a graph, by running our algorithm on a small number of linear
scans (randomly ordered) on the graph edges.

5 Related work

PageRank is one of the most popular measures for ranking the nodes of a network
according to their importance. The original idea was introduced by Page and
Brin [20] for application to web search, and since then it is widely used as a
graph-mining tool. As the size of typical networks has increased significantly
over the last years, and as networks tend to grow and evolve fast, research on
designing scalable algorithms for computing PageRank is still active [16].

A different line of research is dedicated to efficient approaches for updat-
ing PageRank in dynamic and/or online scenarios [4, 5, 12, 19, 22]. The term
“dynamic” is typically used to refer to the model of edge additions and dele-
tions. However, we discussed in the introduction, even in these dynamic settings
PageRank is defined as a stationary distribution over a static graph (the cur-
rent graph). Another research direction uses temporal information to calculate
weights of edges of a static graph [10,17].

On the contrary, temporal PageRank intends to capture the continuous inter-
action between individuals. Temporal PageRank is defined over temporal net-
works [9, 18], where each edge has an associated time-stamp recording an in-
teraction at that point. To our knowledge there is no published work, which
considers temporal generalization of PageRank. The closest work is dedicated



to Bonacich’s centrality [15]. It focuses on empirical study of a citation network
with coarse snapshots, aggregated over a year. In contrast, we are interested in
theoretical relation between temporal and static PageRanks and test our meth-
ods on several networks with fine granularity.

The static Pagerank definition has multiple interpretations, extensively dis-
cussed in a survey by Langville et al. [14]. Our definition of temporal PageRank
has a random walk-based interpretation inspired by the one given for static
PageRank [3]. Methodologically, the closest papers to our work, are Monte-Carlo
simulation algorithms [2] and PageRank calculation by local updates [1, 7].

6 Concluding remarks

We proposed a generalization of static PageRank for the case of temporal net-
works. The novelty of our approach relies on the fact that we explicitly take into
account the exact time that nodes interact, which leads to more accurate rank-
ing. The main feature of the generalization is that it takes into account structural
network changes, and models the fact that the importance of nodes may change
during the lifetime of the network, according to changes in the distribution of
edges. Additionally, we showed that if the distribution of edges remains stable,
the temporal PageRank converges to the static PageRank. We provided an ef-
ficient algorithm to calculate temporal PageRank and demonstrated its quality
and convergence rate through multiple experiments on diverse datasets.

Acknowledgements. This work is partially supported by the Academy of Fin-
land project “Nestor” (286211) and the EC H2020 RIA project “SoBigData”
(654024).
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