
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Myllärniemi, Varvana; Kujala, Sari; Raatikainen, Mikko; Sevón, Piia
Development as a journey: factors supporting the adoption and use of software frameworks

Published in:
Journal of Software Engineering Research and Development

DOI:
10.1186/s40411-018-0050-8

Published: 01/01/2018

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Myllärniemi, V., Kujala, S., Raatikainen, M., & Sevón, P. (2018). Development as a journey: factors supporting
the adoption and use of software frameworks. Journal of Software Engineering Research and Development,
6(6), 1-22. https://doi.org/10.1186/s40411-018-0050-8

https://doi.org/10.1186/s40411-018-0050-8
https://doi.org/10.1186/s40411-018-0050-8

Myllärniemi et al. Journal of Software Engineering Research and
Development (2018) 6:6
https://doi.org/10.1186/s40411-018-0050-8

RESEARCH Open Access

Development as a journey: factors
supporting the adoption and use of
software frameworks
Varvana Myllärniemi1, Sari Kujala1, Mikko Raatikainen2,1* and Piia Sevón3

*Correspondence:
mikko.raatikainen@helsinki.fi
2University of Helsinki, Helsinki,
Finland
1Aalto University, Espoo, Finland
Full list of author information is
available at the end of the article

Abstract
From the point of view of the software framework owner, attracting new and
supporting existing application developers is crucial for the long-term success of the
framework. This mixed-methods study explores the factors that support developers in
adopting and continuously using a framework. Data was collected from two sources:
interviews with experienced practitioners and a longitudinal survey of novice
developers. According to the results, developers use API (application programming
interface) capabilities and peer experiences to justify the selection of the framework. To
commit developers and to ensure continuous use, enjoyment of using the framework
and its perceived usability are important factors. Instead of focusing solely on the API,
the framework owner should consider all platform boundary resources: API,
development tools and information. In addition, the boundary resources should
support developers’ needs throughout the developer journey, from early adoption to
continuous use.

Keywords: Software framework, Application development, Software ecosystem,
Usability, Developer experience, Developer journey

1 Introduction
Software frameworks are nowadays extensively used to develop different kinds of soft-
ware applications efficiently. For example, using a framework, such as Spring, Django,
Node.js or Angular.js, is the de facto standard approach for developing web software. Sim-
ilarly, mobile applications are developed using a mobile application framework; examples
include PhoneGap and Ionic. Selecting a framework is a critical design decision in any
application development. This is because the selected framework will dictate the applica-
tion architecture (Johnson 1997) — for example, Django will dictate that the application
is organized to follow a specific Model-View-Controller design pattern. Hence, once the
development has started, changing the selected framework may require the redesign and
reprogramming of the application.
Software frameworks can often be paralleled at least from development perspective

with software ecosystems. Software ecosystems have become an increasingly popular
means to collaboratively develop software (Hanssen and Dybå 2012). In both software
ecosystems (Bosch and Bosch-Sijtsema 2010) and frameworks, there exists a shared

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-018-0050-8&domain=pdf
http://orcid.org/0000-0002-2410-0722
mailto: mikko.raatikainen@helsinki.fi
http://creativecommons.org/licenses/by/4.0/

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 2 of 22

common technology, i.e., platform, that is developed by the platform owner, and develop-
ers build applications on top of the platform to satisfy the end-users’ needs.
In software ecosystems, facilitating application development is important for the suc-

cess of the ecosystem (Bosch 2009; Ghazawneh 2012). This is likewise in software
frameworks. Frameworks, however, are not typically usable by or visible to end-users,
but exist mainly to serve application developers and to facilitate application development.
Therefore, we considered that it is worthwhile studying in the context of frameworks how
the framework owner can attract new developers and support them in their activities
throughout the developer journey. In this study, a developer journey refers to the lifecy-
cle of the developer interacting with the framework, corresponding to the concept of a
customer journey (Zomerdijk and Voss 2010). Besides just attracting new developers, it
is important to serve existing developers in their journey. Although initial acceptance is
important for any software system, its long-term success depends on continued use and
user adoption (Bhattacherjee 2001).
Specifically, we focus on platform boundary resource. In software ecosystems, plat-

form boundary resources have been identified as the key means to facilitate applica-
tion development (Dal Bianco et al. 2014). Platform boundary resources expose and
extend the platform to application developers and are the externally visible assets
that application developers use from the platform (Ghazawneh and Henfridsson 2010;
Ghazawneh 2012). Examples of boundary resources include APIs (Application Program-
ming Interfaces) but also all other resources or assets provided for developers such as
development tools, documentation, and forums (Dal Bianco et al. 2014). Similar bound-
ary resources also exist in software frameworks. Therefore, it is worthwhile studying
how platform boundary resources can support the developers also in the context of
frameworks.

1.1 Research problem and contributions

Our goal is to investigate the following overall research question: What factors support
application developers in adopting and continuously using a software framework? The
detailed research questions are set as follows:
RQ1 How do platform boundary resources support or hinder the adoption and

continuous use of a framework?
RQ2 What factors support the customer loyalty of application developers after initial

framework use?
The results of the study help framework owners to attract new developers and support

tehm in their activities. To answer the research questions, we conducted an explorative,
mixed-method study. First, we interviewed experienced practitioners to explore how plat-
form boundary resources affect the usage of the framework. The interviews focused on
one specific framework, Qt, and all practitioners were from companies that use the Qt
framework. Second, we conducted a longitudinal student survey to explore the selection
of the framework and first steps of its initial use both qualitatively and quantitatively. The
survey was conducted during a university course where students freely selected and used
any framework, including Qt, to build an application. This enabled us to follow adoption
and initial use while they were taking place, compared to practitioners who adopted the
framework a long time ago. Hence, our study included both experienced and novice Qt
developers, and combined both qualitative and quantitative data collection and analysis.

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 3 of 22

Moreover, we studied the phenomenon in different phases: before the adoption of the
framework, after initial use, and in continuous use.
This study provides the following contributions. We did not solely focus on the API

as is often done in the previous work, but took a broader view of all platform bound-
ary resources and through the different phases of the developer journey. Thus, we were
able to identify how different platform boundary resources support framework selec-
tion, adoption, initial use, and continuous use. We also explored the developers’ overall
evaluation of the framework measured in terms of enjoyment and usability. Indeed,
we found that enjoyment and usability predict developers’ customer loyalty to the
framework.

2 Background
2.1 Software frameworks

Software frameworks, also termed application development frameworks, specify reusable
architecture design and partial implementation of an application (Fayad and Schmidt
1997; Johnson 1997). Software frameworks also have a few drawbacks. Because frame-
works are complex and involve specific designs, they are difficult to learn andmay require
extensive hands-on training (Johnson 1997; Fayad and Schmidt 1997). The suitability of
a framework for a particular application may not be apparent until some investment in
learning has already taken place (Fayad and Schmidt 1997). Debugging applications can be
tricky due to the inverted flow of control between the framework and application-specific
method callbacks (Fayad and Schmidt 1997).
The current research on frameworks tends to focus on their technical capabilities, for

example comparisons between and selection guidelines for mobile application frame-
works (Serrano et al. 2013; Ribeiro and da Silva 2012) and web frameworks (Shan and Hua
2006). There are also descriptions of specific frameworks, such as Ruby on Rails (Bächle
and Kirchberg 2007) and Java (Johnson 2005). In contrast, there is little research on how
frameworks are selected and used by developers in practice.
However, when focusing only on the API provided by the framework, there exists a

wealth of research from different viewpoints. In particular, API usability (Rama and Kak
2015; Burns et al. 2012; Piccioni et al. 2013; Robillard and Deline 2011) and API learn-
ability (Robillard and Deline 2011; Stylos and Myers 2008) have been commonly studied.
This is because poor API usability can lead to programmer frustration, reduced produc-
tivity and potential bugs (Rama and Kak 2015). API usability is affected by, for example,
method naming and grouping, parameter naming and grouping, exception declarations,
and method-level documentation (Rama and Kak 2015). Similarly, an API should clearly
map to the problem domain concepts (Ratiu and Jurjens 2008). One take-away is that doc-
umentation is crucial in supporting developers in learning and using an API (Burns et al.
2012; Robillard and Chhetri 2015; Rama and Kak 2015; Piccioni et al. 2013).
As another popular topic, API evolution has been studied extensively (Robbes and

Lungu 2011; Espinha et al. 2015), also from the viewpoint of frameworks (Schäfer et al.
2008; Robbes and Lungu 2011). When an API changes, client applications may have to
propagate the changes on their side (Robbes and Lungu 2011). This is made worse by the
sporadic communication between the API owner and application developers (Espinha
et al. 2015; Robbes and Lungu 2011). An API-breaking change may take months to be
noticed (Robbes and Lungu 2011). Therefore, the API owners should put more effort into

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 4 of 22

early versions of APIs, and application developers should separate parts that have the
potential to change through good architectural design (Espinha et al. 2015).

2.2 Platforms and platform boundary resources

For many companies, customer needs cannot be satisfied through internal development
alone (Bosch 2009). By opening up their products as software ecosystems, companies
give up part of their control and design capabilities (Ghazawneh and Henfridsson 2012)
to gain greater speed and wider coverage. Consequently, software ecosystems are also
gaining popularity as a research topic. Over 100 studies on existing ecosystems have been
reported in the literature (Manikas 2016).
A software ecosystem is defined as "a set of businesses functioning as a unit and inter-

acting with a shared market for software and services, together with the relationships
among them, where relationships are frequently underpinned by a common technological
platform or market" (Jansen et al. 2009).
Hence, a software ecosystem exists around a central technology that is often referred to

as a software platform (Manikas andHansen 2013; Bosch 2009; Bosch and Bosch-Sijtsema
2010). Within software ecosystems, the platform is a key technological resource (Manikas
and Hansen 2013; Taylor 2013). The platform may be, for example, an end-user applica-
tion, an operating system, a standard system architecture, or a communications protocol
(Bosch 2009; Taylor 2013). The platform can be used directly by end-users (for example,
the Google Drive ecosystem), but can also be used primarily by other software developers
(for example, the Eclipse plugin ecosystem or Apache plugin ecosystem). Sometimes the
platform resembles an infrastructure that is utilized during software development in dif-
ferent domains (Manikas 2016). An important property of the software platform is that
it is extensible beyond the borders of the organization controlling it (Hanssen 2012), and
that it is important for interaction within the ecosystem (Manikas 2016).
The platform owner needs to provide resources, platform boundary resources

(Ghazawneh and Henfridsson 2010; Ghazawneh 2012), so that external developers can
build applications on top of the software platform. The platform boundary resources are
a way for the platform owner to control and influence what happens in the software
ecosystem, while benefiting from the generativity of external application development
(Ghazawneh and Henfridsson 2010). Furthermore, platform boundary resources mini-
mize the coordination effort between application developers and the platform owner.
Finally, platform boundary resources enable coordination between application develop-
ers. This is especially crucial when companies that build similar applications want to
collaborate with each other directly (van Angeren et al. 2016).
There are three different kinds of platform boundary resources (Fig. 1) (Dal Bianco et al.

2014). Application boundary resources expose the services of the platform to applications
and are used by applications at runtime. Examples include APIs, libraries, and binaries.
Development boundary resources are the tools provided to developers to support them in
application development. Examples include integrated development environments (IDE),
software development kits (SDKs), debuggers, compilers, editors, and application stores.
Social boundary resources transfer the information needed to develop the applications
and explain the platform to developers. Examples include documentation, training mate-
rial, events, development guidelines, intellectual property rights, agreements between
the platform owner and application developers, social media and online forums. Social

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 5 of 22

Fig. 1 Different kinds of platform boundary resources enable the developers to build applications on top of
the software platform (Dal Bianco et al. 2014)

boundary resources also enable interaction within the development community; software
development is ultimately a social activity (Messerschmitt and Szyperski 2003).

3 Methods
We carried out a mixed-methods study on software frameworks and collected both
qualitative and quantitative data (Fig. 2). First, we interviewed nine experienced practi-
tioners from two companies that develop applications using the Qt framework. Second,
we conducted a longitudinal survey among students who represented less experienced
developers and were selecting and starting to use Qt or other frameworks to develop an
application.

Fig. 2 Overview of the research method

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 6 of 22

3.1 The studied frameworks

Themain framework in the focus of this research was Qt1. In addition, the student survey
included data from other frameworks that the students used in their course assignment
(Fig. 2): this enabled comparison between Qt and other frameworks.
Qt is a software framework that is targeted especially for cross-platformmobile applica-

tion development, graphical UI (user interface) development, and embedded application
development. To support cross-platform development, Qt applications can be compiled
directly to multiple operating systems working in a wide variety of devices such as PCs,
tablets, mobile phones, and embedded systems. Qt is offered under a dual model of open
source and proprietary licenses. Qt was originally released around 20 years ago and has
reached version 5.7.0. The development of Qt is nowmanaged byQt Company. Originally,
Qt was developed in Norway and later acquired by Nokia. Several notable applications
around the world have been developed using Qt: examples include the KDE desktop envi-
ronment and Google Earth. Qt supports applications written in C++ and QML. QML (Qt
Markup Language) is a proprietary JavaScript-like scripting language, using which UIs
can be programmed declaratively.
We selected Qt as the main study subject because of its accessibility. Qt is also rela-

tively popular especially in commercial embedded products and it has long history that
has made it mature and quite large. For example, there exist a lot of different types of
boundary resources and each type of boundary resource are significant in size.

3.2 Data collection: interviews

We conducted nine semi-structured interviews with practitioners using Qt (left side of
Fig. 2). Hence, this part of the study focused on the views of experienced and already loyal
developers who use Qt regularly.

Selecting participants The target population was experienced practitioners working in
companies that use Qt in their application development.
The practitioners were selected using convenience sampling. We asked one Qt man-

ager to name external application developers and projects. Based on his recommendation,
we recruited participants from two Finnish companies. The contact persons from those
companies were approached via e-mail to identify practitioners for interview.
The selected practitioners’ professional experience ranged from 10 to 25 years. They

represented different kinds of stakeholders: three developers and architects, three con-
sultants, and three managers (Table 1). Their experience in using Qt also varied. Five of
them had used Qt for several yeas, up to 11 years. Four interviewees had used Qt less
than one year. Six of the practitioners were from Company A, whereas three of the prac-
titioners were from Company B. The practitioners were using Qt to build either mobile
applications across several platforms (Android, iOS and Windows Phone) or embedded
software that was delivered together with the hardware.

Table 1 Number and roles of interviewed practitioners

Participants Practitioner role Practitioner tasks with Qt

3 Developers and architects Develop and design applications

3 Qt consultants Develop applications, provide customer guidance and analysis

3 Managers Create demos, take part in the framework selection process

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 7 of 22

Data collection The interviews were conducted in a semi-structured style. A set of
themes with predefined questions were used, but additional questions were asked for
each theme. The themes were as follows: background information, selection of Qt, get-
ting started with Qt, daily use of Qt, use of Qt platform boundary resources, willingness to
recommend Qt, and future expectations and needs.
The average length of the interviews was 1 hour and 16minutes. The interview protocol

followed the recommendations in (Seaman 1999). The interviews were voice-recorded
and captured into initial notes. Soon after each interview session, extensive and detailed
notes were written by listening to the recording.
The first two interviews were conducted as pilot interviews. The pilot interviewees rep-

resented different kinds of stakeholders, which also gave an understanding on how the
themes fit to different types of interviewees.

3.3 Data collection: student survey

We conducted a longitudinal student survey (right side of Fig. 2) to investigate how novice
developers select, adopt and initially use frameworks.

Participants and procedure The target population was less experienced developers. To
select participants to match this population, we conducted the study amongMaster’s level
university students who were attending the User Interface Construction course in the
department of Computer Science.
During the course, students developed an application that consisted of a UI and some

mock-up functionality to enable interaction. Three versions of the application for var-
ious platforms were developed during the course. Although Qt was advertised by the
course personnel, the students were free to use any framework and change it during the
course. The application was created in teams of three students, and the project lasted
approximately three months.
The longitudinal survey was timed in three phases to capture students’ expectations,

initial experiences and final experiences (Table 2). Students were invited to participate
in the study during a lecture and through the course web page. Participation was not
mandatory, but students received two extra points for their course for responding to
all three questionnaires. Out of 86 students who participated the course, 74 answered
questionnaire I (response rate 86.0%), 64 students answered questionnaire II, and 51 stu-
dents answered questionnaire III. The drop in participants is typical, and unavoidable in
longitudinal studies (Ployhart and Ward 2011).
Out of those 51 students who responded to all three questionnaires, 57% were male.

Their ages ranged from 19 to 50, with the majority (67%) belonging to the age group

Table 2 The student survey consisted of three questionnaires

Questionnaire Measurement point Information gathered

I Expectations before usage At the beginning of the course Background information, expectations,
expected usability, expected enjoyment

II Initial experiences 3 weeks from project start Usage, enjoyment, usability, support from
platform boundary resources

III Final experiences Project end after 3 months Usage, customer loyalty, enjoyment,
usability, support from platform boundary
resources

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 8 of 22

20-25 years. The students had little previous experience with Qt: 6.8% of the students had
tried out Qt and 6.8% had used Qt repeatedly. The students’ overall software development
experience ranged from a few programming courses to 15 years of professional experi-
ence. About 30% of students mentioned having experience from hobby projects and 33%
of the respondents already worked in a company as a software developer.

Survey design The longitudinal survey used similar design and quantitative measures
as a previous longitudial study focusing on the role of expectations and experiences in
service evaluation (Kujala et al. 2017). The survey included three questionnaires at three
time points: before use, after three weeks of use, and after three months of use (Table 2).
Enjoyment and subjective usability were measured in all three questionnaires to find out
how they evolve over time: first the expectations, then the experiences. Questionnaire
I asked about students’ background, experience of using frameworks and expectations,
while questionnaires II and III focused on students’ experiences (Table 3). Enjoyment
was used as a measure of how intrinsically motivating the framework was (Davis et al.
1992), and the statements that measured enjoyment were adapted from (Davis et al. 1992)

Table 3 The questions used in both questionnaires II and III

Theme and questions Response type

Usage:

What framework have you primarily used for implementing your course assignment? Open

Estimate how many working hours you have spent so far on finding information on or Open
installing the selected framework.

Estimate how many working hours you have spent so far on implementing the assignment Open
with the selected framework.

Customer loyalty:

How likely would you recommend the framework to a friend who is interested in it? Likert 0-10

Enjoyment:

I felt good about the framework. Likert 1-7

I enjoyed using the framework. Likert 1-7

I think using the framework was rewarding. Likert 1-7

If you wish, you can explain your experiences here. Open

Usability:

The framework met my requirements. Likert 1-7

Using the framework was a frustrating experience. Likert 1-7

The framework was easy to use. Likert 1-7

I needed to spend too much time correcting things when using the framework. Likert 1-7

If you wish, you can explain your experiences here. Open

Support from platform boundary resources:

How well did the APIs support the implementation of your course assignment? Likert 1-7

Describe any problems with the APIs. Open

Describe any strengths of the APIs. Open

How well did the development tools support the implementation of your course Likert 1-7
assignment?

Describe any problems with the development tools. Open

Describe any strengths of the development tools. Open

What information sources related to the framework did you use? Open

How well did the information sources support using the framework? Likert 1-7

Describe any problems with the information sources. Open

Describe any strengths of the information sources. Open

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 9 of 22

and (Mitchell et al. 1997). Subjective usability of the framework was measured with the
Usability Metric for User Experience (UMUX) (Finstad 2010). UMUX measures usabil-
ity through three ISO 9241-11 dimensions: effectiveness, efficiency, and satisfaction. To
study customer loyalty, we measured users’ overall evaluation of the framework using
likelihood-to-recommend measure that can be used to calculate the Net Promoter Score
(NPS), a strong indicator of customer loyalty and growth (Reichheld 2003). To study how
the platform boundary resources support development, the students were asked to rate
the different boundary resources and to identify their strengths and weaknesses (Table 3).
The questionnaires were piloted (Kitchenham and Pfleeger 2002) and corrected

based on the feedback. In the pilot, two Master’s students and one student from the
course answered the questionnaires and thereafter described how they understood each
question.

3.4 Data analysis

The data analysis was split into two parts (Fig. 2). The qualitative analysis focused on the
Qt framework and on answeringRQ1. The quantitative analysis covered all of the selected
frameworks to answer RQ2.

Qualitative analysis The analysis for RQ1 utilized two data sources: practitioner inter-
views and open answers from the student survey (Fig. 2). The analysis was conducted as
qualitative content analysis using both a priori and emerging codes (Lazar et al. 2010).
The coding of the content utilized open coding, similar to Grounded Theory (Strauss and
Corbin 1998).
The process of analyzing the practitioner interviews (Section 3.2) started immediately

after the first interview. The data to be analyzed consisted of the detailed notes written
when listening to interview recordings. A priori codes, based on the interview themes
and on existing knowledge on Qt, were used to mark and organize the data. Examples
of such codes were social boundary resource and selecting Qt. The data was organized
into an Excel spreadsheet, where each row contained the data corresponding to one code
and each column corresponded to one interviewee. In addition, emerging codes were
used to expand and refine the analysis; examples of emerging concepts included open
source licensing and peer support. Initial analysis was carried out immediately after each
interview. The results of the analysis and new codes were then taken into account in the
following interviews and previous interviews were refined if needed. The cross-analysis
of the interviews was carried out after all the interviews had been conducted; it combined
data related to one code as well as compared data from different codes.
The process of analyzing the student survey results was based on the responses to the

open questions in the student survey (Section 3.3). This analysis focused on the final
experiences (questionnaire III) and on those students who selected the Qt framework (15
students out of 51). The open responses from these 15 students yielded rich qualitative
content to be analyzed (four pages of plain text in total). The content was coded in similar
way as the interviews: using predefined codes for each platform boundary resource type,
and using emerging codes (e.g., deployment, taking into use).
Finally, a cross-analysis of interviews and survey was performed to answer RQ1.

The data and analysis results were combined and categorized per platform boundary

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 10 of 22

resources. We compared practitioner and student experiences for each platform bound-
ary resource type, to identify any similarities and differences. Emerging concepts were
used to construct main findings for each platform boundary resource type. An example
of such an emerging concept was fragmentation of social boundary resources. In addition,
we identified whether such concepts supported or hindered development, and to which
development phase they were related.

Quantitative analysis The analysis for RQ2 was based on the quantitative data from the
student survey (Fig. 2). The statistical analysis began with establishing the summary mea-
sures of the scales and assessing their reliability. Data were only included from those 51
students that answered all three questionnaires, so that the trends of the variables could
be reliably analyzed. Moreover, 10 students were excluded from the statistical analysis
for partly missing data. Cronbach’s alpha coefficients of enjoyment were .885, .867 and
.954 from the first to the third questionnaire. Cronbach’s alpha coefficients of usability
were .746, .747 and .870 accordingly, demonstrating a high degree of internal reliability
of the scales. To study the relation between students’ loyalty to the framework and other
study variables (Table 3), bivariate correlations were used to compute the correlation
coefficients.

4 Results for RQ1
The following presents how the platform boundary resources in Qt support or hinder
the adoption and use of the framework (RQ1). The results focus on Qt and are based on
practitioner interviews and open answers from the student survey (Fig. 2).

4.1 Application boundary resources

The application boundary resources in Qt (Table 4) consist of the Qt APIs, modules,
and programming interfaces. Table 5 identifies how these boundary resources support or
hinder the adoption and use of Qt.
API capabilities are the key justification when developers select the framework. For

example, students mentioned the cross-platform support in the API as the reason why
they chose Qt in the first place. Similarly, practitioners recommended selecting Qt based
on the API capabilities: an important justification was the API support for cross-platform
development and for embedded software development. Conversely, if there was a need
to develop a mobile application on top of one platform only, practitioners would not
recommend selecting Qt.

Table 4Main platform boundary resources in Qt

Boundary resource type Main boundary resources in Qt

Application boundary resources Qt modules in C++, e.g., Qt Core and Qt UI

QML (JavaScript-style declarative language)

Development boundary resources Qt Creator, Qt Designer, various compilers, etc.

Social boundary resources Qt website, e.g., Qt Documentation, Qt Blog

Qt Project site, e.g., Downloads, Forums

Documentation embedded in Qt Creator tool

Qt Resource Center, Qt Account, Qt social media

Other: searching Google, StackOverflow, Youtube

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 11 of 22

Table 5 How the different platform boundary resources supported or hindered the use and
adoption of Qt

Application boundary resources:

API capabilities Supports adoption: used to justify selecting a
framework

Unfamiliarity of the programming languages Hinders adoption: adds to the learning curve

Specialized APIs for different developers and purposes Supports use: improves productivity

Hinders use: if lacks necessary features

Framework source code available Supports use: improves framework visibility

Supports adoption: ensures framework continuity

Development boundary resources:

Difficulty in installing tools or initializing projects Hinders adoption: getting started takes time and
effort

Unnecessary libraries in installed tools Hinders adoption: download size, unexpected
issues

Complicated deployment Hinders (initial) use: major showstopper

Editor capabilities and embedded documentation Supports use: improves efficiency

Social boundary resources:

Personal recommendation and peer experiences Supports adoption: are valued when selecting the
framework

Active, long-lived community Supports adoption: continuity is important when
selecting the framework

Insufficient or irrelevant information on getting started Hinders adoption: not adequate guidance

Information not targeted and organized for developers’ Hinders use: lowers satisfaction, searching
needs information takes too much time

Code examples, videos Supports use: give easy-to-apply, hands-on
guidance

Peer help, online or face-to-face Supports use: sharing knowledge about similar
problems

When developers adopt a framework, the need to learn a new programming language
adds to the initial learning curve. Most Qt adopters have to learn a new language, since
Qt uses a proprietary language, QML. According to practitioners, if a developer needs
to learn a new language, this is a possible negative factor against selecting the frame-
work. This learning curve from a new programming language was also experienced in
the student survey. In general, most students were willing to invest in learning: 56.8%
wanted to learn a new framework during the course. However, some students felt it
took too much time to learn QML, despite the fact that QML resembles JavaScript
and thus was designed to be relatively easy to adopt for UI developers. According to
one student, "a fundamental issue, like how to add functionality to QML elements,
required several hours of brainwork [to learn]". Similarly, some students were not
familiar with C++ and reported having difficulties every time they had to write their
applications in C++.
Specializing APIs to serve different kinds of application developers and purposes

improves productivity, provided that the specialized APIs do not lack the necessary fea-
tures. Qt APIs are specialized to serve two purposes: C++ APIs are meant for developers
of embedded software and those who are familiar with C++, whereas QML APIs are
meant for UI developers. According to practitioners, QMLAPIs make it easy to create UI-
oriented applications by declaring UI elements. In addition, students who had to create a
UI-oriented application, confirmed that QML APIs improved productivity. According to
one student, "the main strength of QML is its ease of use: some things that are difficult

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 12 of 22

at first sight can be easily implemented in a small amount of code". However, challenges
arise if developers cannot solely rely on their specialized APIs. Students reported that
QML was still lacking important features needed for UI development, and they had to
write their applications partly on top of C++ APIs. One student reported, "It was difficult
to understand the relation between UI elements that needed to be implemented in C++
and QML, respectively".
Having the framework implementation available as open source code improves the vis-

ibility and continuity of the framework. According to practitioners, the source code was
used for debugging, diagnosing problems, and evaluating the usefulness of Qt for a certain
use. Furthermore, when selecting the framework, practitioners need to be assured of the
continuity of the framework. When the framework is published as open source code with
a suitable licensing model, the framework and its future are not tied only to one company.

4.2 Development boundary resources

The Qt development boundary resources (Table 4) consist of development tools that are
provided for Qt application developers. Table 5 identifies how these boundary resources
support or hinder the adoption and use of Qt.
If the development tools are not easy to install, or it is difficult to initialize the first

project, adoption is hindered. Some students had difficulties in installing the neces-
sary development tools, which caused a great deal of frustration. For example, one
student reported that the default compiler in the Qt IDE was not installed properly.
Students reported having difficulties in initializing the project, setting up the inte-
gration with the configuration management tool, and importing resources into a new
project. One student reported, "It was, for instance, difficult to know which project type
to choose for a new desktop project". According to the quantitative data, if students
spent a lot of time installing framework tools, their satisfaction with the framework was
lower (Table 6).
If the installed development tools include unnecessary libraries, adoption is hindered.

Almost all practitioners counted the size of the downloaded libraries as a downside:
in order to write even a few-row application, megabytes of libraries had to be down-
loaded along with the tools. Students also noted that the development tools referred
to libraries that were not needed by the application. For example, one student said she
encountered OpenGL driver issues when starting a project that contained a simple 2D
user interface.

Table 6 Correlation between different factors and students’ customer loyalty to the framework

Factor Correlation with loyalty

Enjoyment .91a

Usability .84a

Quality of social boundary resources .63a

Quality of development boundary resources .57b

Quality of application boundary resources .45a

Working hours spent on finding information on and installing the framework -.33b

Working hours spent in total -.23ns

a: Significant at the 0.05 level
b: Significant at the 0.01 level
ns: Not significant

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 13 of 22

If the development tools do not support the deployment of applications, initial use is hin-
dered. Students had difficulties in understanding how to deploy the compiled programs
correctly and to manage the dependencies. Deployment seemed to be quite critical for
early developer experience: those students that reported deployment problems were dis-
satisfied with the whole framework, and regretted choosing Qt over other frameworks.
Interestingly, none of the practitioners mentioned deployment as a challenge. Hence, easy
deployment seems to be especially important for initial use.
Good editor capabilities and documentation embedded in the editor improve develop-

ment efficiency. Several studentsmentionedQt code editor as being easy to use and handy.
In addition, students and practitioners said that the embedded documentation in the
editor was very helpful.

4.3 Social boundary resources

The social boundary resources of Qt (Table 4) include all sources of information and
communication means used by Qt developers. Table 5 identifies how these boundary
resources support or hinder the adoption and use of Qt.
When selecting the framework, personal recommendation and peer experiences are

valued highly. When selecting the framework, practitioners do not entirely trust the
marketing material on the Qt website, but they would like to see real references from
somebody who has actually used the framework. For example, posts on the official Qt
blog were not considered as neutral as blog comments, which reflected real-life experi-
ences. Practitioners considered that the best source of recommendation and experience
was an expert who knew about the framework.
When selecting the framework, active and long-lived community is valued.When select-

ing the framework, practitioners valued framework continuity. Wide framework usage
and an active, long-lived existing community create trust in the framework’s future.
If there is insufficient information on getting started, adoption is hindered. Students

reported there was a gap between what was described in the documentation and what
was actually required when starting application development. One student noted, "It was
difficult to get started straight away by trying to implement any more complicated system
than in any of the tutorials". Students hoped for a step-by-step getting-started tutorial as
well as a description of the "big picture" of the framework. One student compared it with
another framework and its package of getting-started videos: after watching a few videos,
a novice can start application development right away. In contrast, the more experienced
practitioners complimented Qt documentation as being highly suitable for their needs.
If the information is not targeted at and organized to meet developers’ needs, the use of

the framework becomes less satisfactory. Students felt that the available documentation
and information was more targeted at experienced developers and hence did not serve
their needs well. Even though practitioners valued the Qt documentation, they felt that
the Qt website was mostly not targeted at them, but contained merely marketing and
managerial material. Moreover, both students and practitioners said it was sometimes
difficult to locate correct information: one reason was because the documentation was
organized along the lines of framework versions. Furthermore, too many or fragmented
information channels, such as blogs, tutorial, manuals and websites, make it difficult to
search for and use information. Both practitioners and students said there were many
different information channels and it took too much time to search for information from

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 14 of 22

such channels. The importance of meeting developers’ needs with information was also
highlighted in the student survey. According to the quantitative data, if students spent
a lot of time searching for information, their satisfaction with the framework was lower
(Table 6).
Realistic enough code examples and how-to videos give practical, hands-on guidance

in using the framework. Practitioners and students felt that code examples were use-
ful: code examples show how to solve a particular problem or what can be done with a
particular feature. One practitioner pointed out that code examples should also demon-
strate how to create attractive applications with good user experiences, and hence the
examples should be created with UI designers. Furthermore, students valued how-to
videos highly: videos were considered to be particularly helpful in the early stages of get-
ting started with development. In contrast, practitioners indicated that Qt’s social media
and other such channels are not really useful: they add to the already huge number of
social media channels that need to be followed. Consequently, it seems that the informa-
tion sources are primarily used on a need-to-know basis, for trying to solve a particular
problem.
Peer help, either online or face-to-face, is valuable for solving problems in using the

framework. Both students and practitioners used peer help, such as StackOverflow2

discussions, frequently. Such peer help often focused on particular problems that stu-
dents had. Practitioners said the best way to solve a problem is to personally ask an
expert. For three practitioners, this expert was a dedicated contact person within the Qt
organization.

5 Results for RQ2
The following presents the factors that support the customer loyalty of developers after
initial framework use (RQ2). For this purpose, we analyzed the quantitative data of the
longitudinal student survey of Qt and other frameworks (Fig. 2). In the analysis, loyalty
was measured as willingness to recommend, whereas usage hours, enjoyment, usability
and different platform boundary resources constituted the supporting factors (Table 3).
All survey participants, regardless of the framework they used, were included into

the analysis. Out of 51 analyzed students, 15 selected Qt and used it to the end of the
assignment. Other choices included using various frameworks, such as Ionic, Django and
node.js, with a general-purpose editor, such as Eclipse. Frameworks with their own editing
environments, such as Android Studio and Visual Studio, were also used.
Enjoyment experienced in using the framework particularly supported customer loyalty.

When students enjoyed using the framework, they were more willing to recommend the
framework (Table 6). As students were free to select the framework, it obviously was
relevant for them that using the framework was emotionally rewarding and meaningful.
Only a few of the respondents described their enjoyment in the open answers, but they
particularly enjoyed it and felt powerful when they could accomplish their tasks with the
framework. It was also described that "the framework is enjoyable to use and pleasing
to the eye", "there are many example projects that look well documented", and "tools are
very convenient". Many respondents described usability problems that destroyed their
enjoyment. For example, one person stated: "At the moment it feels rather frustrating.
There are so many options and configurations that it is difficult to know, which things are
relevant and which not".

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 15 of 22

The perceived usability of the framework supported customer loyalty. When students
felt the framework was usable, they were more willing to recommend the framework
(Table 6). As indicated in the qualitative results (Table 5), the usability of all plat-
form boundary resources is crucial. In particular, development tools and information
sources created usability problems that were related to installing tools, finding relevant
information, and deploying applications (Table 5).
Students initially had different levels of experience in using the frameworks. Hence, a

rival explanation could be that those students who were more familiar with the frame-
works would rate their usability higher. Therefore, we checked whether students’ expe-
rience with the frameworks correlated with their usability rating. After three weeks into
the assignment, the students’ previous experience was statistically significantly related
to usability (r=.48**, p=.002). After the assignment was completed, the students’ previ-
ous experience was no longer related to usability. Hence, in the early adoption phase,
low experience was related to low experienced usability, but after more use, previous
experience did not affect the evaluation.
The quality of the framework boundary resources (API, development tools, information)

supported customer loyalty. When students rated the platform boundary resources bet-
ter, they were more willing to recommend the framework (Table 6). Information quality
was particularly related to higher loyalty, but the quality of the development tools was
also strongly related. This is in line with the findings in Table 5: all platform boundary
resources are important in supporting application development.
Spending more time looking for information or installing the framework affected cus-

tomer loyalty negatively. The working hours spent on finding information and installing
the framework were negatively related to loyalty (Table 6). In contrast, the total number
of working hours was not related statistically significantly. With the Qt framework, stu-
dents spent much more time looking for information and installing the framework: 12.9
hours on average compared to 4.7 hours in other frameworks. In comparison, the hours
spent on using the framework to develop the application were more or less similar: 23.2
hours compared to 24.7 hours in other frameworks.
Lower enjoyment and usability ratings were due to problems encountered during use, not

due to initial expectations.We also analyzed how usability and enjoyment ratings evolved
over time in order to check that framework reputation or students’ initial expectations
were not biasing their evaluations. Figures 3 and 4 show the trends of usability and enjoy-
ment of Qt and other frameworks. Initially, expectations of usability and enjoyment were
positive for both Qt and other frameworks. Through experience, the perceived usability
and enjoyment of Qt declined, but usability and enjoyment ratings for other frameworks
were steady over time. This indicates that Qt developers did not have any preconceived
negative prejudice toward Qt, but the lower usability and enjoyment were caused by prob-
lems encountered during use. The lower evaluations of usability and enjoyment were also
reflected in the lower willingness to recommend. In the last questionnaire, the willing-
ness to recommend was considerably lower for Qt (M = 4.3, SD=3.41, scale 0-10) than
for other frameworks (M = 7.6, SD=2.11). If the percentage of detractors is subtracted
from the percentage of promoters to calculate the Net Promoter Score (NPS) (Reichheld
2003), the measure of loyalty, the NPS of Qt is -57.2%, which is considerably lower than
that of other frameworks (NPS 12.1%). Hence, problems encountered during use lead to
lower usability, enjoyment, and customer loyalty.

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 16 of 22

Fig. 3 Expected and experienced usability of the Qt framework (top) and other frameworks used in the
student survey (bottom)

6 Discussion
In this study, we identified several characteristics of platform boundary resources that
support or hinder adoption and use of the framework (Table 5). We also identified factors
that support developers’ loyalty after initial framework use, as indicated by their will-
ingness to recommend the framework (Table 6). Combining resuls from the practioners’
interviews and the student survey, the following proposes a number of recommendations
for the framework owner to support the developer journey. Our recommendations are
summarized in Table 7.
A central finding was that the needs of developers vary depending on the phase of

their journey, ranging from the earliest interest to continuous use. These different phases
can be called the developer journey, corresponding to the concept of a customer journey
(Zomerdijk and Voss 2010). Hence, the developer journey refers to the lifecycle of the
developer interacting with the framework.
When selecting a framework, both practitioners and less experienced developers justify

their choice through API capabilities, but also value peer recommendation and experi-
ences. This is in line with previous work on how customers select software products: The
choice is often justified in terms of product features (Mack and Sharples 2009), and peer

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 17 of 22

Fig. 4 Expected and experienced enjoyment of the Qt framework (top) and other frameworks used in the
student survey (bottom)

Table 7 Recommendations for the framework owner to support the developer journey

1 Consider the whole developer experience, including usability and enjoyment, and all platform bound-
ary resources.

2 Consider the whole developer journey and support developers in different journey phases.

3 Pay specific attention to framework adoption and initial use; that is, to ease of getting started, installing
tools, initializing projects and deploying applications.

4 Design API capabilities and select the programming languages to match developers’ know-how and
application development purposes.

5 Focus on information quality, not quantity: centralize information sources, avoid redundancy, and
communicate information sources and their target audience, for example, in a boundary resourcemap.

6 Provide both high-level documentation and low-level, e.g., method-level documentation; the high-
level documentation should explain the framework’s big picture.

7 Participate in building and sustaining an active community around the framework; this ensures peer
help, peer recommendation and visibility of the framework.

8 Evolve the framework actively and convince developers about the framework’s continuity; publishing
the framework as open source is one way to do this.

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 18 of 22

experiences are important in selection (Bristor 1990). When selecting a framework, the
API capabilities, the "features", are often advertised and visible. Even the existing compar-
isons of different frameworks (Serrano et al. 2013; Ribeiro and da Silva 2012; Shan and
Hua 2006) focus on API capabilities. In contrast, the quality of the framework may be
difficult to evaluate before actually trying it out. This may be the reason why peer recom-
mendation is important. As indicated in our student survey study, the framework quality
experienced affects the willingness to recommend.
However, the results of our student survey showed that when initially using a frame-

work, the real experiences are strongly affected by the quality of the framework as a whole,
not just by the APIs. In order to support adoption and initial use, it is critical to help
developers to get started, install tools, initialize projects, and deploy applications. Previ-
ous work has recognized that frameworks may be difficult to learn (Fayad and Schmidt
1997), and documentation is pivotal in learning (Robillard and Deline 2011).
Another central finding was that different kinds of platform boundary resources sup-

port developers in all phases of the developer journey. Several of our findings have been
previously identified in the literature: the value of source code visibility (Robillard and
Deline 2011), embedded documentation in development tools (Burns et al. 2012), code
examples (Burns et al. 2012; Piccioni et al. 2013; Nasehi et al. 2012), and tutorials (Tiarks
andMaalej 2014). As a novel contribution, we took a broader view and explicitly identified
development tools and information sources as important factors that support developer
loyalty. This contrasts with previous work, which typically focuses on APIs (Section 2).
Of the platform boundary resources, information sources are important for both novice

and experienced developers. Our results highlighted that developers in different phases
of the developer journey need different kinds of information. For example, experienced
developers were satisfied with Qt’s documentation, whereas novice student developers
needed information on the big picture of the framework and on how to get started. This
may indicate that the technical specification of the Qt API is well documented, but infor-
mation on supporting adoption and initial use could be improved. Similar findings have
been made in virtual communities: having personalized and good quality information
ensures satisfaction among community members (Lin 2008).
In previous work, framework information has been addressed from the API docu-

mentation point of view (Rama and Kak 2015; Burns et al. 2012; Robillard and Deline
2011), often focusing on documenting individual methods. However, besides having
low-level (method-level) documentation, there also needs to be high-level, conceptual
documentation (Robillard and Deline 2011). When learning the API, problems caused
by high-level documentation are more severe than problems related to low-level doc-
umentation (Robillard and Deline 2011). Our student survey results confirmed this;
high-level documentation is especially needed when adopting and initially using the
framework.
A central finding of the student survey was that developers’ customer loyalty is not

only affected by the technical characteristics of the framework. Perceived enjoyment and
usability, i.e., developers’ feelings and subjective experiences, are strongly correlated with
their loyalty to the framework, even more than different boundary resources. The impor-
tance of enjoyment is in line with the earlier research. When the use of a software system
is voluntary, enjoyment experienced by the end-user is a good predictor of continuous
use (Davis et al. 1992; Cyr et al. 2009; Kujala et al. 2017). As confirmed by our study,

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 19 of 22

such a finding applies when the software system is a framework and the end-user is an
application developer.
Enjoyment can be seen developers’ overall evaluation of the framework and how it

meets their needs. Previous studies have shown that positive emotions are mostly related
to user experience and negative emotions to low usability, cf. (Kujala and Miron-Shatz
2013). Thus, it is important to design for good user experience to ensure the loyalty of
developers in addition to correcting usability problems of the frameworks.
The importance of usability has also been recognized previously from the API point of

view (Burns et al. 2012; Rama and Kak 2015). Our results show that framework usability
is also affected by development tools and information sources, in particular, during early
adoption and initial use. Moreover, API usability has typically been evaluated in brief user
studies with small and limited tasks (Burns et al. 2012), which may not reveal all aspects
of the phenomenon. In contrast, we studied usability in a team project spanning several
months.
Having an active community is crucial for a framework’s success and continuity. An

active community provides better peer help, since it is easier for developers to find
solutions to similar problems. A community also generates peer recommendations and
success stories, which motivates other developers to select the framework. When select-
ing a framework, a lively community creates trust in the future of the framework. Since
framework selection is an investment, developers need to be convinced that the frame-
work exists and will be evolved actively in the future. One way to expand the community
and to ensure continuity is to publish the framework as open source. Open source frame-
works have gained popularity; they offer documentation and support without imposing
licensing fees (Johnson 2005). Nevertheless, our study did not focus specifically on how to
build the community, what kind of community type suits a specific framework (Tamburri
et al. 2013), or how community members interact with each other. This calls for future
work.

7 Threats to validity
Construct validity as a class of validity covers whether constructs are appropriate mea-
sures of real software engineering practice. Collecting data from students may pose a
threat to construct validity: howwell do students understand the constraints and support-
ing factors of real-world framework use? To mitigate this threat, we also collected data
from practitioners. As an example, practitioners pointed out the importance of commu-
nity longevity, whereas future evolution and support may not be relevant for students who
are focusing on one course assignment. In addition, 33% of students already had work
experience in industry.
Furthermore, ambiguous and poorly-worded questionnaires are potential threats to

construct validity. To mitigate this risk, we pilot-tested our questionnaires to ensure
that the questions were as unambiguous as possible. Moreover, we used qualitative
data to support the quantitative results and complemented the results with practitioner
interviews.
For qualitative data, construct validity was mitigated by a case study protocol that

defined the activities. A threat for validity is also related to interpretations of the quali-
tative data. We alleviated this treat by having several researchers to analyze the data and
data analysis was carried out iteratively.

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 20 of 22

External validity refers to generalizations beyond the subject population of the study.
Although we covered many frameworks in the survey, the focus of the interviews
was on practitioners experienced in Qt. Although Qt is relatively popular and mature,
Qt is also quite specific for, e.g., embedded devices so that generalization to other
kinds of frameworks, such as web frameworks remains a threat to external validity.
However, many frameworks also bear similarities to Qt. Generalizations beyond the
examined frameworks are not studied here but seem possible and worthwhile for further
assessment.

8 Conclusions
We presented a mixed-method study about supporting application developers in adopt-
ing and continuously using software frameworks. We interviewed nine experienced Qt
practitioners from two companies and conducted a longitudinal student survey targeted
at less experienced developers.
To conclude, developers justify framework selection with API capabilities, such as

cross-platform support, and with peer experiences, such as recommendations from other
developers. When developers actually adopt and initially use the framework, the qual-
ity of the development tools and information affect developer experience as well. In
particular, the framework owner should make sure that information is targeted at devel-
opers, taking into account the fact that developers in different phases of the developer
journey need different information. For example, developers who are new to a frame-
work need more high-level, conceptual information, whereas experienced developers
appreciate comprehensive technical documentation. Although frameworks are technical
products, enjoyment and usability, i.e., feelings and subjective experiences, predict devel-
opers’ customer loyalty to the framework after their initial use. Consequently, instead of
just focusing on the APIs, the framework owner should ensure all platform boundary
resources in the framework meet developers’ needs and expectations. Besides program-
ming, other developer tasks should be supported as well, such as installing the framework,
setting up projects, and deploying the resulting applications.
As future work, a holistic view of different kinds of boundary resources throughout the

developer journey could benefit from more research. It would also be beneficial to test
out our findings with other software frameworks as well as discuss in more depth the
similarities with software ecosystems. In particular, a survey among experienced practi-
tioners would shed light on the generalizability of our results. Moreover, the factors that
lead to both enjoyment and an experience of usability should be studied further. Our
results provide some early insights about factors creating enjoyment among less experi-
enced developers, but experienced developers may have different sources of enjoyment.
Furthermore, it would be interesting to know how critical is the usability of development
tools compared to the usability of APIs?

Endnotes
1 http://www.qt.io/
2 http://stackoverflow.com/

Abbreviations
API: Application programming interface; IDE: Integrated development environment; SDK: Software development kit; UI:
User interface; QML: Qt markup language; UMUX: Usability metric for user experience; NPS: Net promoter score

http://www.qt.io/
http://stackoverflow.com/

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 21 of 22

Acknowledgements
We acknowledge the financial support of TEKES as part of the Need for Speed (N4S) program and OpenReq project that
has received funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 732463. We also thank Digia and Qt Company for enabling this study.

Funding
This research is funded by the Need for Speed (N4S) program of TEKES and the OpenReq project of the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 732463.

Availability of data andmaterials
Please contact author for data requests.

Authors’ contributions
Authors VM, SK, MR, and PS contributed to study design, data analysis and approval of the manusript. PS and MR planned
and conducted the interview study. VM, SK and MR planned and conducted the survey study. VM had the main
responsibility for the manuscript and the other authors actively contributed to the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Aalto University, Espoo, Finland. 2University of Helsinki, Helsinki, Finland. 3Digia Plc., Helsinki, Finland.

Received: 20 February 2018 Accepted: 15 May 2018

References
Bächle M, Kirchberg P (2007) Ruby on rails. IEEE Softw 24(6):105–108
Bhattacherjee A (2001) Understanding information systems continuance: An expectation-confirmation model. MIS Q

25(3):351–70
Bosch J (2009) From software product lines to software ecosystems. In: Software Product Line Conference, San Francisco.

pp 111–119
Bosch J, Bosch-Sijtsema P (2010) From integration to composition: On the impact of software product lines, global

development and ecosystems. J Syst Softw 83(1):67–76
Bristor JM (1990) Enhanced explanations of word of mouth communications: The power of relationships. Res Consum

Behav 4(1):51–83
Burns C, Ferreira J, Hellmann TD, Maurer F (2012) Usable results from the field of API usability: A systematic mapping and

further analysis. In: Visual Languages and Human-Centric Computing (VL/HCC). IEEE, Innsbruck. pp 179–182
Cyr D, Head M, Ivanov A (2009) Perceived interactivity leading to e-loyalty: Development of a model for

cognitive-affective user responses. Int J Hum Comput Stud 67(10):850–869
Dal Bianco V, Myllärniemi V, Komssi M, Raatikainen M (2014) The role of platform boundary resources in software

ecosystems: A case study. In: IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, Sydney. pp 11–20
Davis FD, Bagozzi RP, Warshaw PR (1992) Extrinsic and intrinsic motivation to use computers in the workplace. J Appl Soc

Psychol 22(14):1111–1132
Espinha T, Zaidman A, Gross H-G (2015) Web API growing pains: Loosely coupled yet strongly tied. J Syst Softw 100:27–43
Fayad M, Schmidt DC (1997) Object-oriented application frameworks. Commun ACM 40(10):32–38
Finstad K (2010) The usability metric for user experience. Interact Comput 22(5):323–7
Ghazawneh A (2012) Towards a boundary resources theory of software platforms. PhD thesis, Jönköping University
Ghazawneh A, Henfridsson O (2010) Governing third-party development through platform boundary resources. In: The

International Conference on Information Systems (ICIS), Paper 48, St. Louis
Ghazawneh, A, Henfridsson O (2012) Balancing platform control and external contribution in third-party development:

the boundary resources model. Inf Syst J 23(2):173–192. AIS Electronic Library (AISeL). (http://aisel.aisnet.org)
Hanssen GK, Dybå T (2012) Theoretical foundations of software ecosystems. In: International Workshop on Software

Ecosystems (IWSECO), Cambridge. pp 6–17. CEUR Workshop Proceedings. (http://ceur-ws.org/)
Hanssen GK (2012) A longitudinal case study of an emerging software ecosystem: Implications for practice and theory. J

Syst Softw 85(7):1455–1466
Jansen S, Finkelstein A, Brinkkemper S (2009) A sense of community: A research agenda for software ecosystems. In:

International Conference on Software Engineering, Companion. IEEE, Vancouver. pp 187–190
Johnson RE (1997) Frameworks = components + patterns. Commun ACM 40(10):39–42
Johnson R (2005) J2EE development frameworks. Computer 38(1):107–110
Kitchenham B, Pfleeger SL (2002) Principles of survey research part 4: questionnaire evaluation. ACM SIGSOFT Softw Eng

Notes 27(3):20–23
Kujala S, Miron-Shatz T (2013) Emotions, experiences and usability in real-life mobile phone use. In: SIGCHI Conference on

Human Factors in Computing Systems. ACM, Paris. pp 1061–1070
Kujala S, Mugge R, Miron-Shatz T (2017) The role of expectations in service evaluation: A longitudinal study of a proximity

mobile payment service. Int J Hum Comput Stud 98:51–61
Lazar J, Feng JH, Hochheiser H (2010) Research methods in human-computer interaction. Wiley, Glasgow

http://aisel.aisnet.org
http://ceur-ws.org/

Myllärniemi et al. Journal of Software Engineering Research and Development (2018) 6:6 Page 22 of 22

Lin H-F (2008) Determinants of successful virtual communities: Contributions from system characteristics and social
factors. Inf Manag 45(8):522–527

Mack Z, Sharples S (2009) The importance of usability in product choice: A mobile phone case studylisbon, portugal.
Ergonomics 52(12):1514–1528

Manikas K (2016) Revisiting software ecosystems research: A longitudinal literature study. J Syst Softw 117:84–103
Manikas K, Hansen KM (2013) Software ecosystems—a systematic literature review. J Syst Softw 86(5):1294–1306
Messerschmitt DG, Szyperski C (2003) Software Ecosystem: Understanding an Indispensable Technology and Industry.

The MIT press, Cambridge
Mitchell TR, Thompson L, Peterson E, Cronk R (1997) Temporal adjustments in the evaluation of events: The "rosy view". J

Exp Soc Psychol 33:421–448
Nasehi SM, Sillito J, Maurer F, Burns C (2012) What makes a good code example? A study of programming Q&A in

StackOverflow. In: International Conference on Software Maintenance. IEEE, Trento. pp 25–34
Piccioni M, Furia C, Meyer B, et al (2013) An empirical study of API usability. In: International Symposium on Empirical

Software Engineering and Measurement. IEEE, Baltimore. pp 5–14
Ployhart RE, Ward A-K (2011) The "quick start guide" for conducting and publishing longitudinal research. J Bus Psychol

26(4):413–422
Rama GM, Kak A (2015) Some structural measures of API usability. Softw Pract Exper 45(1):75–110
Ratiu D, Jurjens J (2008) Evaluating the reference and representation of domain concepts in APIs. In: IEEE International

Conference on Program Comprehension. IEEE, Amsterdam. pp 242–247
Reichheld FF (2003) The one number you need to grow. Harward Business Rev 81(12):46–54
Ribeiro A, da Silva AR (2012) Survey on cross-platforms and languages for mobile apps. In: Conference on the Quality of

Information and Communications Technology (QUATIC). IEEE, Lisbon. pp 255–260
Robbes R, Lungu M (2011) A study of ripple effects in software ecosystems. In: International Conference on Software

Engineering. ACM, Waikiki. pp 904–907
Robillard MP, Chhetri YB (2015) Recommending reference API documentation. Empir Softw Eng 20(6):1558–1586
Robillard MP, Deline R (2011) A field study of API learning obstacles. Empir Softw Eng 16(6):703–732
Seaman C. B (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng 25(4):557–572
Schäfer T, Jonas J, Mezini M (2008) Mining framework usage changes from instantiation code. In: International

Conference on Software Engineering. IEEE, Leipzig. pp 471–480
Serrano N, Hernantes J, Gallardo G (2013) Mobile web apps. IEEE Softw 30(5):22–27
Shan TC, Hua WW (2006) Taxonomy of Java web application frameworks. In: International Conference on e-Business

Engineering (ICEBE). IEEE, Shanghai. pp 378–85
Strauss A, Corbin J (1998) Basics of Qualitative Research. 2nd edn. Sage, Thousand Oaks
Stylos J, Myers BA (2008) The implications of method placement on API learnability. In: Foundations of Software

Engineering. ACM, Atlanta. pp 105–112
Tamburri DA, Lago P, Vliet HV (2013) Organizational social structures for software engineering. ACM Comput Surv (CSUR)

46(1):3
Taylor R (2013) The role of architectural styles in successful software ecosystems. In: Software Product Line Conference.

ACM, Tokyo. pp 2–4
Tiarks R, Maalej W (2014) How does a typical tutorial for mobile development look like?. In: Working Conference on

Mining Software Repositories. ACM, Hyderabad. pp 272–281
van Angeren J, Alves C, Jansen S (2016) Can we ask you to collaborate? Analyzing app developer relationships in

commercial platform ecosystems. J Syst Softw 113:430–445
Zomerdijk LG, Voss CA (2010) Service design for experience-centric services. J Serv Res 13(1):67–82

