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We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mix-
tures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT)
model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition
between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal
“combinatorial” entropy of mixing, both of which have a large impact on the results. We also propose
a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This
problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not
equal, either due to poor equilibration or reduced system size/time sampling, which are typical prob-
lems for ab initio MD. The new scheme enables improved convergence of the results with respect to
configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful
assessment, we perform MD simulations of liquid mixtures of water with several other molecules of
varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that
results in excellent agreement with experiment can be obtained with little computational effort for some
systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced
by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas
partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF
and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a
slightly better “all-around” force field when compared to OPLS+SPC/E.© 2016 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4973001]

I. INTRODUCTION

The two-phase thermodynamic (2PT) model, introduced
by Lin et al. in 2003,1 has sparked interest in recent years
due to its ability to obtain converged thermodynamic proper-
ties from relatively short molecular dynamics (MD) runs. The
model builds upon the density of states formalism developed
by Berens et al.2 The central idea of 2PT is to separate the
total number of degrees of freedom N of the system under
study into (1 – f )N “solid-like” and f N “gas-like” degrees of
freedom, for which thermodynamic properties are calculated
separately. This partition relies on the critical parameter f, the
fluidicity, which is a measure of how the diffusive properties
of the real system compare to those of an ideal hard-sphere
gas. The original 2PT formalism was developed for mono-
component fluids, where the effects of mixing of different
molecular species do not need to be taken into account. Recent
work by Lai et al.3 and Pascal and Goddard4 has dealt with
the derivation of 2PT expressions for multicomponent sys-
tems, where many expressions are modified by including molar
fractions in the definitions. Their treatment is based upon the
assumption of ideal combinatorial mixing. While this can be a
valid assumption for mixtures of fully miscible and similarly

a)Electronic mail: mcaroba@gmail.com

sized molecules, it may not hold accurate when studying, e.g.,
thermodynamic properties of large solvated molecules such
as typical outer-sphere electrochemically active complexes,
liquid mixtures where the difference in size of the various
molecules is pronounced, and fully immiscible or partially
immiscible liquids.

In this paper we present and extensively assess new
ways to estimate fluidicities and different mixing schemes,
applied to liquid mixtures where the size of the constituent
molecules is allowed to differ considerably. In particular, we
study the excess entropy of mixing of methanol/water, ace-
tonitrile/water, N,N-dimethylformamide (DMF)/water, and
n-butanol/water, where the ratio of molecular weights varies
between ∼1.8:1 and ∼4.1:1 (see Fig. 1). We show that while
the choice of method to perform the solid/gas partition has a
sizable impact on the results, it is the expression to estimate
the combinatorial entropy of mixing that has the largest effect
on the calculated entropy values. For instance, estimating the
combinatorial entropy of mixing from the molar fractions, as
given by the expression for a mixture of ideal gases, works
reasonably well for the acetonitrile/water and methanol/water
mixtures. However, this approximation breaks down quantita-
tively for DMF/water (where DMF molecules are considerably
larger than water molecules) and even leads to qualitatively
incorrect results for n-butanol/water, the latter being a mixture
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FIG. 1. Systems studied in this work. Binary mixtures of water with methanol,
acetonitrile, N, N-dimethylformamide (DMF), and n-butanol were simulated.
The different colored balls represent hydrogen (white), oxygen (red), carbon
(yellow), and nitrogen (blue).

of immiscible liquids. The choice of force field also strongly
affects the results. We have tested the general Amber force
field (GAFF)5 and the OPLS force field6 with the SPC/E
water model.7 Overall, GAFF performed better across mix-
tures while OPLS+SPC/E gave quantitatively very accurate
results for methanol/water.

In addition, when short MD trajectories or small systems
are considered, the temperature fluctuations introduced by the
specific thermostat used might lead to transient inhomoge-
neous distribution of the thermal kinetic energy. Here we show
that the leading error can be easily accounted for with a first-
order correction consisting of the scaling of the DoS so that
the correct number of degrees of freedom is retrieved.

The improved methodology presented here has been imp-
lemented in our freely available DoSPT code (http://dospt.org).

II. FORMALISM FOR ENTROPY CALCULATION

For a detailed description of the 2PT formalism, the reader
is referred to the original literature on the density of states
(DoS) approach2 and the 2PT model,1 as well as follow-up
work from the 2PT authors.3,4,8 Here we are mostly concerned
with the extension to mixtures, which was previously discussed
in Refs. 3 and 4, and the solid/gas partition procedure.

Within the context of the 2PT model, an extensive ther-
modynamic property of the system (e.g., its entropy), to which
we refer generically as Φ, can be expressed as a functional of
the DoS S(ν),

Φ =

∫ ∞
0

dν Ss(ν) W s
Φ +

∫ ∞
0

dν Sg(ν) Wg
Φ

, (1)

where the DoS has been decomposed into a “gas-like” DoS
Sg(ν) and a “solid-like” DoS Ss(ν). The WΦ are the weight-
ing functions that allow to compute the contribution of each
vibrational mode toΦ, and are given in Refs. 2 and 8. The total
DoS, S(ν) = Ss(ν)+ Sg(ν), is calculated as the mass-weighted
normalized sum of the vibrational modes of all the degrees of
freedom present in the system. If the system is a monoatomic
fluid, then the total DoS is

S(ν) =
2

kBT

∑
j,k

mjs
k
j (ν), (2)

where T is the temperature, kB is Boltzmann’s constant, mj are
the atomic masses, and sk

j (ν) is given by the squared modulus
of the Fourier transform of the atomic velocities

sk
j (ν) = lim

τ→∞

1
τ

�����

∫ τ

0
dt vk

j (t) e−2πiνt
�����

2

, (3)

where j runs over all the atoms in the system and k refers to
each of the Cartesian components of the atomic velocities. τ is

the time lapse over which the Fourier transform is performed.
In practice, when the velocities are obtained from an MD sim-
ulation, a finite value of τ needs to be used. The integral of S(ν)
equals the total number of degrees of freedom. The gas-like
DoS is obtained from hard-sphere (HS) theory as1

Sg(ν) =
S(0)

1 +
(
πS(0)ν
2NDoFf

)2
, (4)

where NDoF is the total number of degrees of freedom in
the system. Sg(ν) integrates to f NDoF, that is, the number
of gas-like DoF. The solid-like DoS is simply obtained as
the difference between the total DoS and the gas-like DoS,
Ss(ν) = S(ν) − Sg(ν), and therefore integrates to (1 − f )NDoF.
The extension of Eqs. (2) and (3) to polyatomic molecules has
been done by Lin et al.8 and will not be discussed further in
this paper. Here we are more interested in how the partition of
S(ν) into its “solid-like” and “gas-like” parts is done (i.e., how
f is calculated), and how the pure fluid formalism is extended
to mixtures.

At this point, we also need to bring into discussion the
concept of partial properties, which are given on a “per-
component” basis. Since several critical parameters such as
mass, moment of inertia, and symmetry number are only
well-defined within an ensemble of molecules when all the
molecules are of the same type, we use capital greek scripts
(Λ, Γ) to denote different molecule types within a mixture, and
w to denote the type of degree of freedom (i.e., translational,
rotational or vibrational). For instance, in a water/methanol
mixture, SΛ,w(ν) ≡ Swat,trn(ν) would denote the total DoS cor-
responding only to the translational degrees of freedom of the
water molecules within the mixture.

A. Gas/solid partition: Fluidicity

The partition between solid-like and gas-like DoS is done
via the “fluidicity” parameter f. The fluidicity of a molecular
system within the 2PT formalism is defined as the ratio of the
system’s diffusivity (as calculated from the MD trajectory)
over the diffusivity of an auxiliary ideal hard-sphere fluid1

f =
D(T , N)

DHS
0 (T , N , V ;σHS)

, (5)

where N is the number of particles, V is the system’s vol-
ume, and σHS is the effective hard-sphere diameter. Using our
notation extended to mixtures, we rewrite Eq. (5) as

f Λw =
DΛw(T , {NΓ})

DΛ,HS
0 (T , {NΓ}, VΛ; {σΓ})

, (6)

where Γ = 1, . . . , Nsg and Nsg is the number of components in
the system (e.g., Nsg = 2 for a binary mixture). VΛ is the partial
volume of componentΛ. Note that Eq. (6) slightly differs from
the extension to mixtures in Ref. 4, since we have in principle
allowed DΛ,HS

0 to depend on all the particle numbers and we
are allowing the hard-sphere diameters to differ between com-
ponents. The latter consideration is important if one intends to
study mixtures where the difference in molecular size of the
different components is large. Lai et al.3 provided a discussion
on how to estimate VΛ; we use an approach based on Voronoi
partition9 that has proven to be fairly robust for our purposes,

http://dospt.org
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especially because the partial volume data can be extracted
directly from the MD information and therefore reflects the
possible effect of explicit molecular interactions on the partial
volumes (as opposed to, e.g., using tabulated values based on
reference molecular or atomic radii).

The “real” diffusivity of the system [the numerator
in Eq. (6)] is directly calculated from the MD trajectory
information1

DΛw(T , NΛ) =
SΛw(0)kBT

4MΛNDoF
Λ,w

, (7)

where MΛ is the mass of the molecules of type Λ. In order to
estimate the “ideal” diffusivity DΛ,HS

0 for multicomponent
gases, a mean free path including all the particle types should
be taken into account. The different particle types are the differ-
ent sets of identical molecules present in the simulation, which
are characterized by their mass MΛ, effective HS diameter σΛ,
and particle density NΛ/V . The expression for the mean free
path for the molecules belonging to component Λ is10

`Λ =
*.
,

Nsg∑
Γ=1

NΓ
V
π
(
σΛ + σΓ

2

)2
√

1 +
MΛ
MΓ

+/
-

−1

. (8)

The summation is performed over all the components present
in the system. Assuming the diffusivity for molecules of type
Λ to be proportional to the product of their mean velocity

v̄Λ =
√

3kBT
MΛ

and their mean free path, Eq. (8), leads to the fol-
lowing expression for the hard-sphere diffusivity of component
Λ in the zero-pressure limit:

DΛ,HS
0 (T , N , V ;σΛ) =

3
8

1

NΛ/V σΛ2ΩΛ

(
kBT
πMΛ

) 1
2

, (9)

where we have derived the prefactor by requiring that Eq. (9)
reduce to the monocomponent 2PT expression in the limit of
only one component present in the system (the “rigorous” self-
diffusion coefficient given by McQuarrie11). The extra term
containing the multicomponent correction, ΩΛ, is given by

ΩΛ =
1

4
√

2

Nsg∑
Γ=1

NΓ
NΛ

(
1 +

σΓ
σΛ

)2√
1 +

MΛ
MΓ

. (10)

A complication arises due to the fact that ΩΛ depends on the
hard-sphere diameters, which cannot be obtained a priori for
multicomponent systems. For monocomponent systems, Lin
et al.1 proposed expressions that relate fluidicity to hard-sphere
diameter and allow to conveniently compute the fluidicity
directly from known properties of the system. When more than
one component is present, it is not possible to write down these
equations anymore because the compressibility factor depends
on more than one hard-sphere diameter, which are not known
a priori. Therefore, the hard-sphere diameters must be either
obtained by numerical optimization within a multicomponent
formalism (the approach that we follow) or the components
must be handled separately within the monocomponent for-
malism (e.g., the approach followed by Lai et al.3). In the
Appendix we propose a new self-consistent approach, based
on a penalty function, to simultaneously optimize the hard-
sphere diameters of all the components. Additionally, we also
adapt the Stokes-Einstein model of rotational diffusion to be
used within the 2PT formalism. In the Appendix we compare

these different ways to obtain translational and rotational flu-
idicities with the original 2PT implementation. In Sec. IV, we
will show how the chosen fluidicity formalism has a sizable
impact on the calculated entropy values.

B. Entropy of mixing

The 2PT method can accurately describe the changes in
entropy arising from molecular interactions: changes in vibra-
tional and diffusive modes can be accounted for by means of
the solid/gas partition of the DoS. However, when dealing with
mixtures, the increase in entropy due to the additional volume
to which each of the components has access also needs to be
taken into account. Lai et al. proposed to use the ideal entropy
of mixing,3 that is, the entropy of the mixture is given by

Smixture =
∑
Λ

SΛ − kB

∑
Λ

NΛ ln

(
NΛ
N

)
. (11)

Equation (11) assumes that the components are fully misci-
ble, there is no clustering in the mixture and the molecular
volumes of both components are the same. Basically, Eq. (11)
assumes that the two substances mix like an ideal gas. We will
show in Sec. IV that this assumption seems to work remark-
ably well for fully miscible small-sized molecules, such as
our methanol/water and acetonitrile/water mixtures, but breaks
down for DMF/water and butanol/water. While DMF and
water are in principle fully miscible, the disparity in molecular
size and the planarity of DMF might lead to some geometri-
cal limitations as to how nearby molecules can be stacked
together in the mixture. Butanol/water on the other hand are
immiscible, and we chose this system as an extreme example
of the breakdown of Eq. (11).

Eq. (11) is an ad hoc correction to the entropy which
requires combinatorial mixing in the mixture to occur sim-
ilarly as it does in ideal gases. It would be more desirable
to incorporate the combinatorial mixing contribution into the
partition function and derive the corrections in a more rigor-
ous manner. This has been done by Lazaridis and Paulaitis,12

who argue that combinatorial mixing is accounted for, to a first
approximation, by the partial molar volumes. That is, instead
of Eq. (11) one should use the following expression:

Smixture =
∑
Λ

SΛ − kB

∑
Λ

NΛ ln

(
VΛ
V

)
. (12)

A more in-depth discussion of this issue can be found from
Lazaridis and Paulaitis,12 who argue that Eq. (12) provides the
correct “one-particle” terms. Further corrections involve incor-
porating radial distribution functions into the computations.
The performance of Eqs. (11) and (12) was already tested by
Meroni et al.13 They pointed out that Eq. (12) leads to results in
worse agreement with experiment than Eq. (11). We will show
in Sec. IV that this tends to also be the case for our calcula-
tions. However, as we will see in Sec. IV, the agreement is very
much case specific and strongly influenced by the force field
used. One needs to take into consideration that the total entropy
of mixing arises from two separate contributions. On the one
hand, there are the specific molecular interactions that change
the vibrational and diffusive modes. On the other hand, there
are the combinatorial effects, which are a measure of the extra
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volume available to each of the components upon mixing and
how the molecules spatially rearrange in the new environment.
To compute the latter, we are currently relying on Eqs. (11) and
(12), which are only simple approximations. In practice, these
two effects will either compete or cooperate. The combinato-
rial term always increases the entropy, except for immiscible
substances where the components have no access to “extra
space” when put in contact (where it is zero). The interaction
term can affect the entropy by either lowering or increasing it.
For a specific mixture, good agreement with experiment could
be due to either a good description of both terms or to an error
cancellation. Finally, note that Eq. (12) always leads to a larger
calculated entropy than Eq. (11), except for when all the partial
molar volumes are equal, in which case they yield the same
result.

All in all, a more sophisticated approach based on prop-
erties directly accessible from the MD trajectories is required
to accurately account for non-ideal mixing effects that can-
not be traced back to changes in vibrational or diffusive modal
changes. Such an approach would ideally be based for instance
on radial distribution function analysis, or another type of post-
processing of MD trajectory information, that has access to the
deviation of molecule distribution from random. Trying to inte-
grate such a general scheme within the 2PT model is beyond
the scope of the present manuscript, but will be the topic of
future work.

III. MOLECULAR DYNAMICS SIMULATIONS

All the MD simulations were performed with the Gromacs
suite.14,15 We have tested two popular force fields: OPLS6

and GAFF.5 The OPLS force field was used in conjunction
with the SPC/E rigid water model.7 This choice was moti-
vated by the good results obtained by Pascal and Goddard4

for methanol/water, and also to allow direct comparison of our
implementation of 2PT with theirs. All the molecular topolo-
gies and force field parameters were obtained from the Virtual
Chemistry online repository.16–18

All the simulations were performed, for each mixture and
force field, in three steps as follows. (i) To determine the evo-
lution of density with composition, random boxes containing
a total of 2400 atoms were generated, after which NPT simu-
lations were run at 1 atm using a stochastic velocity-rescaling
thermostat19 and a box-rescaling barostat (Berendsen)20 with
time constants of 0.1 ps and 1 ps, respectively. To realize the
different molar fractions of the mixtures, the molecules in the
pure water system (800 water molecules) were replaced by
methanol, acetonitrile, DMF and butanol molecules in 1:2,
1:2, 1:4, and 1:5 ratios, respectively (i.e., one DMF molecule
replaced 4 water molecules). This approach allowed to keep
the overall box size approximately constant. A total of 9 differ-
ent configurations for the pure liquids and 3 configurations for
every other composition were generated. Each NPT simulation
was run for a total of 500 ps and the average density over the
last 250 ps was chosen as the equilibrium density of that par-
ticular configuration. After that, the equilibrium densities were
averaged among configurations to obtain the final equilibrium
density for each composition. (ii) Once the densities had been
determined, the same number of independent configurations as

before (9 for the pure liquids and 3 otherwise) was generated
within boxes of fixed size, corresponding to the densities esti-
mated in the previous step. Additional NVT dynamics were
simulated for 500 ps with the Nosé-Hoover thermostat21,22

with a time constant of 0.1 ps. (iii) Taking each of the final
snapshots of the NVT equilibrations as starting points, addi-
tional 100 ps of NVT dynamics were run and subsequently
sliced into five 20 ps trajectories for analysis with our 2PT
implementation, DoSPT. The atomic positions and velocities
were saved every 2 fs. To ensure appropriate resolution of H
vibrations, the integration step for all of the simulations was
chosen as 0.5 fs.

To test the effect of high-frequency vibrations on the
results, we ran calculations both constraining all the H-
containing bonds and also allowing them to vibrate. The results
indicate sizable changes on the predicted equilibrium densi-
ties (especially for water) but no significant changes on the
calculated entropies of mixing. A possible explanation for this
is that hydrogen vibrations are dominated by intra molecular
forces which do not change upon mixing. In addition, because
hydrogen-containing bonds vibrate several times during the
time that it takes a nearby molecule to rearrange according
to the felt electrostatic or dispersive interaction, that molecule
would only feel an effective interaction which is already well
captured with constrained bonds. Therefore, since no remark-
able features were observed other than the aforementioned
effect on density, the results shown in Sec. IV are mostly for
the H-bond constrained simulations.

IV. RESULTS AND DISCUSSION: EXCESS ENTROPY
OF MIXING OF BINARY MIXTURES

In this section we compare the results of our simulations
to experimental results available in the literature of excess
entropy of mixing for the chosen binary mixtures. The excess
entropy of mixing SE

mix is defined as the difference between the
real entropy of the mixture and the entropy calculated assum-
ing ideal mixing. Defining molar entropies of the pure liquids
with a bar, S̄Λ, then SE

mix is given by

SE
mix = Smixture −

∑
Λ

NΛS̄Λ + kB

∑
Λ

NΛ ln

(
NΛ
N

)
. (13)

Computationally, Smixture is given by either Eq. (11) or (12),
depending on the approximation used for the combinatorial
entropy of mixing.

In order to interpret the results of our simulations, one
needs to keep always in mind the five main sources of error:

1. The choice of force field. Each force field will deter-
mine which “version of reality” we are analyzing, and
will impose the absolute limit to how well experimental
observations can be reproduced.

2. The intrinsic ability of the 2PT approximation to correctly
compute entropies.

3. The particular way to compute fluidicities, i.e., the
solid/gas partition, that will serve as input to the 2PT
machinery.

4. The choice of “ideal” or “combinatorial” entropy of
mixing, which acts as a correction to the 2PT values.

5. Statistical error arising from the MD sampling.
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TABLE I. Calculated data for pure liquids and experimental references. In the cases where experimental values of molar entropies were lacking at the desired temperature, they had to be extrapolated from existing data (see
table footnotes). For the calculated molar entropies S0, “Std” indicates values obtained using the standard 2PT approach for rotational fluidicity8 whereas “S-E” indicates the Stokes–Einstein-based treatment for rotational
fluidicity developed in the Appendix of this manuscript; in both cases translational fluidicity is the same. The mean absolute error (MAE) has been calculated from the shown values, discarding the 313 K and 323 K values for
water to avoid biasing it by introducing a particular liquid more than once. Error estimates for the entropies are calculated as the standard deviation of all the 20 ps MD trajectory slices (5 slices per each of the 9 independent
trajectories, totaling 45 data points per liquid).

GAFF OPLS + SPC/E

Fully flexible Constrained H-bonds Fully flexible Constrained H-bonds
Experiment

S0 (J/mol K) S0 (J/mol K) S0 (J/mol K) S0 (J/mol K)

ρ (kg/m3) (Std./S-E) ρ (kg/m3) (Std./S-E) ρ (kg/m3) (Std./S-E) ρ (kg/m3) (Std./S-E) ρ (kg/m3) S0 (J/mol K)

Water
T = 298 K 1007 65.4 ± 0.3/65.2 ± 0.3 982 68.7 ± 0.1/68.6 ± 0.1 1029 53.2 ± 0.4/52.7 ± 0.4 995 60.2 ± 0.2/59.8 ± 0.2 997a 69.92a

T = 313 K 995 69.0 ± 0.3/68.9 ± 0.3 968 72.3 ± 0.1/72.3 ± 0.1 1024 57.5 ± 0.3/57.0 ± 0.3 987 64.1 ± 0.2/63.7 ± 0.2 992a 73.61a

T = 323 K 987 71.5 ± 0.3/71.5 ± 0.3 958 74.5 ± 0.1/74.6 ± 0.1 1020 60.2 ± 0.3/59.8 ± 0.3 981 66.6 ± 0.2/66.2 ± 0.2 988a 75.98a

Methanol
T = 298 K 798 115.1 ± 0.4/118.4 ± 0.5 794 117.3 ± 0.4/120.0 ± 0.6 761 116.9 ± 0.4/117.8 ± 0.5 765 118.2 ± 0.3/118.7 ± 0.3 786a 127.2a

Acetonitrile
T = 323 K 685 144.2 ± 0.2/146.3 ± 0.4 687 143.8 ± 0.2/145.7 ± 0.4 697 139.6 ± 0.2/140.6 ± 0.5 699 139.4 ± 0.2/140.1 ± 0.4 750b 157.03b

DMF
T = 313 K 949 190.7 ± 0.8/185.9 ± 0.8 949 191.1 ± 0.7/186.1 ± 0.7 886 201.6 ± 0.8/196.5 ± 0.8 887 201.5 ± 0.7/196.3 ± 0.6 930c 220.70c

Butanol
T = 298 K 800 172.0 ± 1.0/168.2 ± 1.0 798 174.0 ± 1.0/170.2 ± 0.9 786 182.8 ± 0.9/178.5 ± 0.8 790 184.2 ± 1.1/179.8 ± 1.1 805d 225.73d

MAE 2.8% 12.3/12.4% 2.8% 10.9/11.0% 4.1% 14.2/14.9% 3.2% 11.9/12.7% 0 0

aExperimental data for pure water and methanol have been taken from the NIST WebBook23 and retrieved from www.nist.gov.
bDensity of pure acetonitrile taken from Ref. 24. Entropy at 323 K estimated by extrapolating the heat capacity Cp reported by Putnam et al.25 and extending the integral ∫ Cp d(ln T ) for the liquid phase up to 323 K (see Table XIII of Ref. 25).
cDensity of DMF taken from Ref. 26. Entropy extrapolated to 313 K from the values of Smirnova et al.27

dDensity of butanol taken from Ref. 28. Entropy taken from Ref. 29.

http://www.nist.gov
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In this paper we are assessing the sources of error 1, 3, 4,
and 5. For the time being, we disregard source 2 and assume
that with optimal partitioning (point 3) and mixing (point 4)
schemes, 2PT can yield very accurate results. Statistical error
(point 5) is linked to the number of sampled trajectories, their
duration, and whether they sample a representative portion of
configuration space; it will be discussed further at the end of
this section in the context of DoS renormalization. Finally,
one could argue that it is not possible to decouple the intrin-
sic ability of 2PT to yield accurate thermodynamics from the
ability to calculate the fluidicity itself (points 2 and 3). To do
so, one would need to establish a measure of fluidicity and its
connection to the solid/gas partition of the degrees of freedom
that makes sense also outside of the 2PT framework. This is
not a trivial task and we will not deal with it in the present
manuscript.

We simulated mixtures of water with other three fully mis-
cible compounds (methanol, acetonitrile, and DMF) and one
immiscible compound (butanol), in an attempt to test a wide
range of molecular size mismatches, as shown in Fig. 1. The
results for standard molar entropies S0 and densities of the
pure liquids are given in Table I. The temperatures for each
compound were chosen to match the temperature at which
available experimental measurements for the binary mixtures
were conducted. The values for the pure liquids serve as the ini-
tial benchmark of each force field because the error emanating
from the mixing scheme is not present. Overall, GAFF seems to
yield entropies in better agreement with experiment for water
and acetonitrile, whereas OPLS+SPC/E performs better for
DMF and butanol (although the description of butanol is poor
for both force fields). Both force fields yield similar entropies
for methanol. It is worth noting that the predicted density of
DMF is quite off with OPLS, which might help explain that
better results can be obtained with GAFF for DMF/water mix-
tures. The effect of constraining the H-containing bonds is
small for the larger molecules, but quite noticeable in the case
of water, especially for the OPLS+SPC/E force field (it should
be mentioned that the SPC/E model of water is optimized for
a rigid description). As previously mentioned, imposing or
lifting these constraints does not have a sizable impact on
the excess entropies of the different mixtures. In contrast to
these results, switching the description of rotational fluidicity
between the standard 2PT implementation and the Stokes-
Einstein-based treatment does have a slightly larger impact
on mixtures than on pure liquids (the comparison for mixtures
is shown in Table II). Finally, note from the error estimates
given in the table that typical uncertainties are very small,
especially for water. One can expect a single 20 ps simulation
of liquid water analyzed with the 2PT formalism to yield molar
entropy values with a typical error of about 0.4% for flexible
water and 0.15% for rigid water models. This is a valuable
feature in the context of simulations where sampling becomes
computationally expensive (e.g., in ab initio MD simulations).

The results for the different binary mixtures are given
in Fig. 2. An error estimate for all the mixtures except for
butanol/water is given in Table II. Good qualitative descrip-
tion of methanol/water, acetonitrile/water, and DMF/water is
achieved with both force fields tested, but the quantitative
agreement depends strongly on the particular mixture, force

TABLE II. Error estimate for different fluidicity and force field approxima-
tions for the aqueous mixtures studied in this work. n-butanol has been omitted
because of the lack of experimental data in the full molar range. The error is
calculated from the integral of the distance between simulated and experimen-

tal excess entropy curves: error =
√
∫

1
0 dx [SE

sim(x) − SE
exp(x)]

2
. The lower the

number the closer the simulated and experimental curves are. All values are
in J/mol K.

GAFF OPLS+SPCE

∆ SC-σ SC-σ+SE ∆ SC-σ SC-σ+SE

Methanol+water
mol 1.47 1.65 0.85 0.47 0.45 0.46
vol 1.89 2.07 1.28 0.46 0.74 0.33
Acetonitrile+water
mol 0.41 0.56 0.36 1.38 0.95 1.28
vol 1.03 1.18 0.94 0.77 0.34 0.66
DMF+water
mol 2.38 3.21 3.53 4.16 5.12 5.35
vol 3.60 4.51 4.88 5.58 6.57 6.82

field, and mixing scheme, as can be seen from the calculated
errors in Table II. The case of butanol/water is special
because of the miscibility gap and lack of experimental values
throughout the full molar range. Overall, molar-based mix-
ing [Eq. (11)] tends to yield results in better agreement with
experiment than volume-based mixing [Eq. (12)], a result that
agrees with what has been previously reported in the literature
for hard sphere mixtures.13 Our self-consistent HS diameter
optimization with Stokes–Einstein-based rotational treatment
seems to outperform the ∆ (original) treatment only for GAFF
methanol/water. For other mixtures it is either equivalent, e.g.,
methanol/water with OPLS and acetonitrile/water, or inferior
to the standard “∆ approach” (based on the original formu-
lation with “normalized diffusivity” ∆1). Removing the S-E
treatment leads to less differing results between the two meth-
ods (not shown in Fig. 2, but error estimates available in
Table II). This supports the idea, previously discussed in the
literature, that HS mixtures can indeed be well approximated
as an ensemble of non-interacting HS systems.4,34 It is not
surprising that the largest errors appear for the mixtures with
the biggest dissimilarity in molecular sizes, and can probably
be traced back to the need for a more specific mixing scheme
than the two simple approaches explored here. Overall, our
results point towards the conclusion that with an accurate force
field and the correct mixing scheme (which would be more
sophisticated than the simple molar-based and volume-based
schemes explored here) the 2PT method is able to produce very
accurate entropies not only for pure liquids but also for liq-
uid mixtures. Detailed entropy and fluidicity data, computed
for all the combinations of force field, mixing scheme, and
hard-sphere formalism explored here, can be obtained from
the supplementary material.

To get an idea of the effect of the used approximated com-
binatorial mixing entropy on the results, we have tabulated the
mole-based and volume-based combinatorial entropy contri-
butions to binary mixtures for different molar fractions and
representative relative molecular sizes. These values are given
in Table III, where for a binary mixture, the combinatorial

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-015701
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FIG. 2. Excess entropy of mixing of
different liquid mixtures simulated with
either GAFF or OPLS+SPC/E force
fields. We show the effect of dif-
ferent ways to calculate fluidicities:
“∆” for the original 2PT expres-
sions, “SC-σ” for the self-consistent
procedure for translational fluidicity
explained in the Appendix, and “SE”
for the Stokes-Einstein-based estimation
of rotational fluidicity, also explained
in the Appendix. We also show the
effect of using molar-based entropy
mixing (“mol”) versus partial volume-
based entropy mixing (“vol”). The
experimental results are taken from
Ref. 30 (methanol+water), Ref. 31 (ace-
tonitrile+water), Ref. 32 (DMF+water),
and Ref. 33 (butanol+water). Note that
experimentally butanol and water are
miscible only through part of the com-
positional regime.

molar entropy correction∆S̄ to the total entropy of the mixture
is

∆S̄mol = −kBNA (x1 ln x1 + x2 ln x2) ,

∆S̄vol = ∆S̄mol + kBNAx1 ln

(
x1 + x2

V̄2

V̄1

)
+ kBNAx2 ln

(
x2 + x1

V̄1

V̄2

)
,

(14)

where NA is the Avogadro constant. The combinatorial correc-
tions are large and can be in the order of ∼5% or more of the
total entropy of the mixture (depending on molecular size and
number of degrees of freedom per molecule). For example,
for methanol/water at x = 0.5, mole-based and volume-based
combinatorial mixing amount to approximately +5.8 J/mol K

TABLE III. Amount contributed to the total entropy of binary mixtures by
the two mixing schemes explored in this paper [second terms in Eqs. (11)
and (12)]. Both mole-based and volume-based schemes contribute the same
entropy when the partial molar volumes are the same, V̄1 = V̄2. x1 is the
mole fraction of component 1, therefore the molar fraction of component 2 is
x2 = 1 – x1. As a guide for the mixtures explored in this paper, the V̄1/V̄2 ratios
are approximately 2.2, 3.2, 4.1, and 5.1 for methanol/water, acetonitrile/water,
DMF/water, and butanol/water, respectively.

Mole-based
mixing entropy Volume-based mixing entropy

∆S̄mol (J/mol K) ∆S̄vol (J/mol K)

x1 V̄1 = V̄2 V̄1 = 2V̄2 V̄1 = 3V̄2 V̄1 = 4V̄2 V̄1 = 5V̄2

0.1 2.703 2.919 3.305 3.732 4.162
0.2 4.161 4.524 5.131 5.763 6.371
0.3 5.079 5.531 6.247 6.958 7.620
0.4 5.596 6.088 6.829 7.541 8.188
0.5 5.763 6.253 6.959 7.618 8.207
0.6 5.596 6.046 6.671 7.241 7.742
0.7 5.079 5.457 5.964 6.418 6.812
0.8 4.161 4.437 4.798 5.115 5.387
0.9 2.703 2.853 3.043 3.207 3.348

and +6.4 J/mol K, respectively. These quantities are larger (in
modulus) than the corresponding experimental excess entropy
of mixing, circa –3.7 J/mol K (Fig. 2). For comparison, the
total entropy of the mixture at x = 0.5 is ∼90.8 J/mol K
(these data for all the mixtures can be retrieved from the
supplementary material). Therefore, a large error comput-
ing the combinatorial contribution will lead to a large error
in the estimated excess entropies. This highlights again
the need to develop an accurate approach to incorporate
combinatorial mixing entropies into the 2PT formalism.

Finally, we want to make an important remark on the con-
vergence of the calculations. Our results for methanol/water
for OPLS+SPC/E are in excellent agreement with the corre-
sponding results presented by Pascal and Goddard.4 How-
ever, our error bars (given by the standard deviation of our
results) are significantly smaller, even though we use very
similar sampling schemes (15 snapshots per composition). The
reduced spread of our values comes as the result of a correction
(renormalization) that we apply to the DoS, and is justified as
follows. As mentioned in the Introduction, for a finite-size
system, temperature fluctuations lead to transient inhomoge-
neous distribution of the thermal kinetic energy among degrees
of freedom of different types: this kinetic energy might be
distributed in different proportions between the translational,
rotational, and vibrational degrees of freedom. In other words,
for any given finite time interval, the translational, rotational,
and vibrational temperatures might not be equal. This issue
may become exacerbated if the system has not been properly
equilibrated or the sampled trajectory is short, e.g., because of
limited available computational power and/or memory. From
the point of view of the calculated density of states, this kinetic
energy transfer leads to an effective number of degrees of
freedom that does not match the real number of degrees of
freedom. For instance, in a system made up of M molecules
with N atoms each, the total real number of degrees of free-
dom amounts to 3MN, of which 3M are translational, 3M are
rotational, and the remainder 3M(N – 2) (assuming molecules

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-015701
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with at least 3 atoms each) are vibrational. For reasonably
equilibrated systems where the instantaneous temperature
oscillates around the target thermodynamic temperature, the
total DoS integrates to values very close to 3MN (especially
for constant-energy simulations). However, the decomposed
translational, rotational, and vibrational DoS each integrate
to values that might deviate considerably from 3M, 3M, and
3M(N – 2), respectively. Since, within the 2PT formalism
(and also in general), translational, rotational, and vibrational
DoF do not contribute equally to the entropy (their weighting
functions are different), this means that the convergence of
thermodynamic properties calculated from the DoS will suf-
fer accordingly. The following first-order correction, or DoS
renormalization to the correct number of DoF, considerably
ameliorates the issue and improves the convergence of the 2PT
method:

S̃w(ν) = Sw(ν)
NDoF
w

∫ dν Sw(ν)
, (15)

FIG. 3. (Top panel) Excess entropy results for methanol/water mixtures. The
“renormalized DoS” result with “constrained H-bonds” is the exact same as
the corresponding OPLS+SPC/E graph from Fig. 2 with ∆ approximation for
the fluidicity, and molar-based mixing. Here we show the effect on statistical
variance (standard deviation of results at a given mole fraction, given by error
bars) of the DoS renormalization procedure discussed in the text. (Bottom
panel) Temperatures for “fully flexible” pure methanol, for a typical 20 ps
trajectory, calculated for each type of degree of freedom based on the velocity
decomposition.8 The thick green lines give a smoothed-out representation of
the data points.

where w ≡ (trn, rot, vib). A comparison between the results
obtained using the unnormalized “conventional” DoS Sw(ν)
and those obtained using the renormalized DoS S̃w(ν) are
shown in Fig. 3 (top panel) for methanol/water with the
OPLS+SPC/E force field. The bottom panel of the figure
shows the instantaneous temperatures for pure methanol as
they evolve during a typical 20 ps dynamics, calculated from
the velocity decomposition.8 Translational and rotational tem-
peratures oscillate with a longer period and larger amplitude
than the total temperature. It can be observed how the renor-
malization approach allows much improved convergence of
the entropy values, especially for high methanol mole frac-
tions and in the case of a “fully flexible” simulation, where
high frequency H-bond vibrations affect the thermalization
of the system. This correction is extremely attractive since it
considerably improves the statistical precision of the results at
virtually no added computational cost.

V. CONCLUSIONS

In this manuscript we have carried out a detailed and
careful assessment of the strengths and limitations of the
2PT method1 to correctly estimate the entropy of binary liq-
uid mixtures throughout a wide range of dissimilarly sized
molecules.

The largest sources of error turned out to be the choice
of force field, the assumed “ideal” or “combinatorial” entropy
of mixing, and the fluidicity scheme employed to realize the
solid/gas partition (not necessarily in that order). While the
quality of the force field employed affects any free energy esti-
mation method, the two latter factors affect the 2PT method
quite specifically. We have shown that ideal mixing based on
molar fractions tends to yield better agreement with experi-
ment than partial volume-based ideal mixing. This possibly
occurs because of a systematic overestimation of the entropy
of mixing by the 2PT method; volume-based mixing entropy
is always higher than molar-based mixing entropy, therefore
the molar-based scheme would always be better at correct-
ing a systematic overestimation. The issue with combinatorial
entropy of mixing also appears in spite of volume-based mix-
ing constituting the “one-particle” term in the calculation of
the total entropy of mixing.12 We hypothesize that inclusion
of higher-order interaction terms contained in the radial dis-
tribution functions (RDFs), or rather the change in the RDFs
moving from the pure liquids to the mixture, could be a suc-
cessful route in ameliorating this problem. This will be the
subject of future work on our part.

The main strengths of 2PT are being able to provide free
energies directly from unaltered molecular dynamics (e.g.,
it does not require a modified Hamiltonian to couple initial
and final states) and, especially, the ability to yield converged
results at very low computational cost. We have presented an
improved convergence scheme, based on the renormalization
of the density of states, which allows faster convergence with
respect to the number of sampled configurations, thus making
2PT even more attractive than before. Our new methodologies
presented here have been implemented, together with the orig-
inal 2PT approach previously discussed in the literature, into
our DoSPT code, available online at http://dospt.org.

http://dospt.org
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All in all, and taking the issues and benefits explained
above into consideration, the 2PT method is emerging as a very
promising molecular dynamics free energy method. However,
at the moment accuracy seems to be highly case specific. In
order to become highly flexible, and thus more appealing to the
computational chemistry community as a standard method, we
need to make further progress on the issues regarding solid/gas
partitioning and, especially, combinatorial entropy of mixing.

SUPPLEMENTARY MATERIAL

See supplementary material for this paper contains
detailed partial entropy and fluidicity data for all the simu-
lations.
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APPENDIX: SELF-CONSISTENT HARD-SPHERE
MODEL FOR MIXTURES AND ROTATIONAL
DIFFUSIVITY

In order to simultaneously optimize the hard-sphere diam-
eters of all the components we can minimize the following
penalty function with σΛ as the variational parameters:

∂

∂σΛ



*.
,
z −

Nsg∑
Γ=1

VΓ
V

zΓtrn( f Γtrnξ
Γ
trn)+/

-

2

+

Nsg∑
Γ=1

VΓ
V

*.
,

DΓtrn
DΓ,HS

0,trn

−
4f Γtrnξ

Γ
trn

zΓtrn( f Γtrnξ
Γ
trn) − 1

+/
-

2
= 0, (A1)

where z is the compressibility factor of the hard-sphere mix-
ture, calculated according to the Mansoori-Carnahan-Starling-
Leland equation of state for hard-sphere mixtures34 using the
total volume and mole fractions (multiplied by their respective
translational fluidicities f Γtrn) to calculate the individual pack-
ing fractions, see Eq. (7) of Ref. 34; VΓ is the partial volume
of component Γ (that can be accurately calculated using, e.g.,
Voronoi partitioning) and V is the total volume; ξΓtrn is the
partial packing fraction of component Γ, that is, its packing
fraction calculated within its own partial volume,

ξΓtrn =
π

6
NΓ
VΓ

σ3
Γ
; (A2)

and zΓtrn is the partial compressibility factor calculated accord-
ing to the Carnahan-Starling equation of state using partial
packing fractions,

zΓtrn( f Γtrnξ
Γ
trn) =

1 + f Γtrnξ
Γ
trn +

(
f Γtrnξ

Γ
trn

)2
−

(
f Γtrnξ

Γ
trn

)3(
1 − f Γtrnξ

Γ
trn

)3
. (A3)

Minimizing the second term in Eq. (A1) ensures that the
deviation of real diffusivity from zero-pressure diffusivity
for each individual component in the interacting mixture is
well described within its own partial volume by the mono-
component HS formalism.1 Minimizing the first term in
Eq. (A1) ensures that the weighted sum of non-interacting
HS compressibilities zΓtrn is as close as possible to the real
compressibility z of the interacting HS mixture. Therefore, by
self-consistently solving Eq. (A1), we are obtaining a set of
effective HS diameters that optimize the description of the
multicomponent system as an ensemble of non-interacting
monocomponent systems which resembles the multicompo-
nent system as closely as possible. Within this approach, the
“normalized diffusivity” parameter ∆ from the original 2PT
model is not required, and the fluidicity is calculated directly
from the definition, Eq. (6) with w ≡ trn, once the HS diame-
ters have been determined. As a final note, for monocomponent
systems the approach outlined above reduces to the original
2PT formalism.1

In Fig. 4 we compare our self-consistent HS diameter
approach (SC-σ) with the approach based on the normalized
diffusivity ∆.3 We show results for a water/methanol mixture
modeled with the OPLS force field and SPC/E water and a
water/DMF mixture modeled with GAFF. As expected, both
formalisms predict the same HS diameters for the pure liquids.
Our SC-σ approach systematically predicts larger effective HS
diameters for water and smaller effective HS diameters for the
other molecules, when compared to the approach employed by
Lai et al.3 However, the truly important quantities to perform
the solid/gas partition are the translational and rotational flu-
idicities (the vibrational DoS is purely solid-like). Lin et al.8

proposed that rotational fluidicity be estimated on the same

FIG. 4. Hard-sphere diameters for each component of a methanol/water mix-
ture (top) and DMF/water mixture (bottom), calculated using the normalized
fluidicity approach (∆) and the simultaneous self-consistent approach (SC-σ).
Error bars indicate statistical variation in the data (standard deviation), which
was obtained by averaging several configurations for each composition, as
explained in Sec. III.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-015701
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footing as the translational one. This is achieved by calculat-
ing an effective rotational HS diameter which is independent
of the translational one. However, the theory of HS diffusion
allows to compute rotational diffusion directly taking the trans-
lational HS diameter as input. The Stokes-Einstein relation for
rotational diffusion of a spherical particle is

D̃Λ0,rot =
kBT

πηΛ0 σ
3
Λ

, (A4)

where ηΛ0 is the “shear viscosity” coefficient (or simply, “vis-
cosity” coefficient). Here we use a tilde to denote the usual
rotational diffusivity constant, with units of 〈1/time〉, rather
than the value calculated with Eq. (7) from the rotational DoS
as defined by Lin et al.,8 which has units of 〈length2/time〉
and is an “effective” rotational diffusivity constant. For a
hard-sphere monocomponent fluid, viscosity and translational
diffusion are related as follows:11

η0 =
5
6

Nm
V

D0,trn. (A5)

Therefore, we obtain the ideal rotational diffusion coefficient
of component Λ as

D̃Λ0,rot =
6
5

kBT

NΛ/VΛMΛσΛ3

1

DΛ0,trn

, (A6)

where the HS diameter σΛ is calculated from the transla-
tional properties. To correct for non-sphericity of elongated
molecules, Eq. (A6) can be rewritten taking into account the
principal moments of inertia I i as

D̃Λ,eff
0,rot =

1
3

D̃Λ0,rot

(
I iso

I1
+

I iso

I2
+

I iso

I3

)
, (A7)

where the isotropic (symmetrized) moment of inertia I iso is
simply

I iso =
1
3

(I1 + I2 + I3) . (A8)

FIG. 5. Translational and rotational fluidicities obtained for each compo-
nent of a methanol/water mixture, calculated using the normalized fluidicity
approach (∆) and the simultaneous self-consistent approach (SC-σ). The
rotational fluidicity obtained with the Stokes–Einstein-based approach from
the translational SC-σ hard-sphere diameters is also shown. Error bars are
explained in the caption of Fig. 4.

Note that in the limiting case of a perfectly spherical molecule
(I1 = I2 = I3) Eq. (A7) reduces to the correct result, that is,
D̃Λ,eff

0,rot = D̃Λ0,rot. Finally, the rotational fluidicity parameter can
be calculated from the definition:

f Λrot =
D̃Λrot

D̃Λ,eff
0,rot

. (A9)

In Fig. 5 we compare the fluidicities computed for our
methanol/water mixture using the different approaches pre-
viously outlined.
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