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Abstract We present the results of a 1-D global kinetic simulation of the solar wind in spherical
coordinates without a magnetic field in the region from the Sun to the Earth’s orbit. Protons are considered
as particles while electrons are considered as a massless fluid, with a constant temperature, in order to study
the relation between the hybrid and hydrodynamic solutions. It is shown that the strong electric field in the
hybrid model accelerates the protons. Since the electric field in the model is related to electron pressure,
each proton in the initial Maxwellian velocity distribution function moves under the same forces as in the
classical Parker Solar wind model. The study shows that the hybrid model results in very similar velocity
and number density distributions along the radial distance as in the Parker model. In the hybrid simulations,
the proton temperature is decreased with distance in 1 order of magnitude. The effective polytropic index
of the proton population slightly exceeds 1 at larger distances with the maximum value ∼1.15 in the region
near the Sun. A highly non-Maxwellian type of distribution function is initially formed. Further from the
Sun, a narrow beam of the escaping protons is created which does not change much in later expansion.
The results of our study indicates that already a nonmagnetized global hybrid model is capable of
reproducing some fundamental features of the expanding solar wind shown in the Parker model and
additional kinetic effects in the solar wind.

1. Introduction

The hydrodynamic description of the coronal plasma escape from the solar surface was first proposed by
Parker [1958], which implied a polytropic relationship between the temperature and plasma density. This
model has two important parameters: the polytropic index, 𝛾 , and the ratio of the gravitational and thermal
energies 𝜆0 = GMm∕(R0kBT0), where G is the gravity constant, M is the mass of the Sun, m is the mass of a
particle, kB is the Boltzmann constant, and R0 and T0 are the radius and temperature of the lower reference
boundary, respectively. Parker investigated solutions for different parameters (𝜆0, R0) and his findings show
that the physical solution, which starts at R0 with a subsonic velocity is passing through the critical point and
has to satisfy the following conditions:

𝛾 ≤ 3∕2, 2𝛾 ≤ 𝜆0 ≤ 𝛾∕(𝛾 − 1) (1)

In an isentropic flow case without heating, we have 𝛾 = 5∕3 for a monatomic gas. In such a case the con-
ditions above are not satisfied and thus the subsonic flow cannot pass by a sonic point and cannot reach a
supersonic velocity. Taking 𝛾 to be less than 5∕3, we imply a distributed volume heating which is proportional
to (5∕3 − 𝛾) [see Lamers and Cassinelli, 1999]. Condition (1) determines a lower limit for heating which can
provide acceleration of the plasma flow from a subsonic velocity to a supersonic one. If condition (1) is not
satisfied, then the flow should be supersonic even at the lower boundary. In a one-fluid hydrodynamic case,
we do not have a force able to immediately accelerate the flow to the supersonic velocity just at the lower
boundary. However, in a kinetic or hybrid model case the fast flow acceleration can be provided by a strong
electric field in the vicinity of the lower boundary, as will be discussed later in the paper. After the Parker
model, further developments in solar wind modeling were performed mainly in two directions: (1) two-fluid
approach taking into account different temperatures of the protons and electrons [Sturrock and Hartle, 1966;
Hartle and Sturrock, 1968] and also pressure anisotropy related to the magnetic field [Leer and Axford, 1972];
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(2) kinetic description of the solar wind plasma in electric and gravitation fields. All fluid models assume
some value of the effective polytropic index which has a crucial influence on the solution. In addition, the
most advanced fluid models include energy and momentum sources due to absorbtion of the Alfven wave
perturbations propagating from the Sun. Various modifications of the two-fluid models were considered by
Cuperman and Harten [1970, 1971], Hartle and Barnes [1970], Habbal et al. [1995], Tu and Marsch [1997, 2001],
Esser and Habbal [1995], and Kim et al. [2004]. Kinetic models pioneered by Chamberlain [1960] can provide
more rich and detailed description of the solar wind flow compared to the fluid models. In particular, kinetic
models may yield non-Maxwellian features of distribution functions, a radial electric field which is necessary to
keep quasi-neutrality of the solar wind plasma in the gravitational field of the Sun [Lemaire and Scherer, 1973],
and possibly can take into account effects of interaction between particles and plasma waves [Marsch, 2006].
Physical aspects and advances of the kinetic approach in application to the solar wind flow were discussed by
Meyer-Vernet [2007] and Echim et al. [2011]. The advantage of kinetic models is that they allow one to obtain
particle distribution functions which are rather different to derive from the Maxwellian ones. The main feature
of the kinetic models is the appearance of a radial electric field, which is needed to provide a quasi-neutrality
condition for plasma in the gravitational field. An additional condition to be fulfilled is that the radial electric
current has to vanish. The existing kinetic models are based on steady state analytical solutions. Regarding
this, a question arises about the stability of such solutions. A numerical hybrid approach has an intermediate
status between the kinetic and fluid models, because it considers protons as particles and electrons as a fluid.
This approach has been used earlier to study the expansion of the solar wind in a moving and expanding sim-
ulation box [see, e.g., Liewer et al., 1999; Hellinger et al., 2003; Tulasi et al., 2013; Parashar et al., 2013]. However,
in this study we present a global Euler formalism hybrid numerical model for the simulation of the solar wind
in spherical coordinates from the Sun to Earth’s orbit.

2. Model Description

The adopted hybrid model is the part of the MULTI space plasma simulation platform which includes different
hybrid models to study the interaction of various solar system bodies with the solar wind (Mars, Venus,
the Moon, Saturnian satellite Titan, comets, asteroids, etc.). Recently, the original Cartesian mesh model
was extended to the spherical mesh and inherits the main properties of the Cartesian platform. The model
equations are described in detail in Kallio and Janhunen [2003] and its spherical mesh version in Dyadechkin
et al. [2013].

If we suppose that there is no magnetic field, then the system of hybrid model equations can be reduced to
the following set of equations:

ne = ni (2)

E = −
∇pe

ene
(3)

dvi

dt
=

qi

mi
E +

Fgravitation

mi
(4)

dri

dt
= vi (5)

Equation (2) denotes the quasi-neutrality condition, where ne and ni are the electron and ion number densi-
ties, respectively. The parameters mi, qi , ri , and vi are the mass, electric charge, the position, and the velocity
of ions, respectively. In the analyzed simulation the ions were assumed to be protons. Equation (3) describes
the electric field, where ∇pe is the gradient of the electron pressure and equation (4) Newton’s second law
including the electric force and the gravitational force Fgravitation.

The described system of equations is a closed system and describes the evolution of ion positions xi and ion
velocities vi self-consistently from their initial state. In the model that is used, the particles are propagated
with a leapfrog algorithm (see Kallio and Janhunen [2003] for the details of the algorithms). During a single
time step, dt, the quantities are evaluated from

(
xt−1∕2

i , vt
i

)
to

(
xt+1∕2

i , vt+1
i

)
.
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If we assume for simplicity that the electron temperature Te is a constant, we get from equation (3) the radial
electric field, Er :

Er = −
kBTe

ene

𝜕ne

𝜕r
, (6)

an equation which describes the ambipolar field in terms of the number density gradients.

If we consider only the radial motions of the particles, as is done in the developed hybrid model, we can
therefore simplify the system of equations (2)–(5) rewriting them to a 1-D radial case:

ne = ni, (7)

dvr,i

dt
= 1

mi

(
−

kBTe

ne

𝜕n
𝜕r

)
− GM

r2
, (8)

dri

dt
= vr,i. (9)

In our model we use the simulation domain which is based on the spherical coordinate grid [Dyadechkin et al.,
2013]. The main difference between the full 3-D case and the analyzed case is that we consider a pseudo 1-D
case and use only a single grid layer in 𝜃 and𝜙directions. In the simulation, the following spherical coordinate
simulation box is used: r=[rmin, rmax], 𝜃=[𝜋∕2−𝜋∕24, 𝜋∕2+𝜋∕24] and𝜙=[−𝜋∕24, 𝜋∕24], where rmin =106 km
and rmax =151×106 km. The number of grid cells in three dimensions was nr ×n𝜃×n𝜙=7500×1×1. The radial
cell size, dr, was 20,000 km, and the number of macropatricles per cell was 300. The simulation time step
was 10 s. The simulation time step, dt, was chosen to be sufficiently small so that the majority of the protons
do not jump over a cell during dt, dt∕dr = 20, 000 km/10 s = 2000 km/s, while the initial thermal velocity of
the protons was 90 km/s and the maximum bulk velocity of a proton in the simulation was about 600 km/s.
To check how grid resolution affects the solution, were performed several runs with smaller and higher radial
grid sizes. It turned out that the result does not depend on the spatial resolution within the computational
noise limit.

Simulated particles, the so-called macroparticles, correspond to a certain number of real particles [see
Dyadechkin et al., 2013] that only move along the radial line: [𝜃, 𝜙] = [𝜋∕2, 0]. This means that the center of the
macroparticle is always located on this line. We used an absorbing boundary condition for the particles, which
is applied to the Rmin and Rmax surface. If the center of a macroparticle crossed the outer surface (rcenter

mp > Rmax)
or the inner surface (rcenter

mp < Rmin), the macroparticle was removed from the simulation box. The radial electric
field, Er , is stored on the cell faces, and it is calculated at the particle position via linear interpolation.

3. Results of the Numerical Simulations

In this section we describe the results of the numerical simulations and compare the results with the Parker’s
solar wind model [Parker, 1958].

We used only one particle species, protons (H+), which were launched from the inner radius r = Rmin. These
particles were generated within the first grid cell by using a Maxwellian velocity distribution function with
proton temperatures of Tp =106 K. The simulations were performed for three different electron temperatures:
Te,1 = 1.5 × 106 K, Te,2 = 2.0 × 106 K, and Te,3 = 3.0 × 106 K. The number density, n0, at the inner radius of the
simulation box r=Rmin, was 1014 m−3, and the initial radial proton bulk velocity, Ur,0, was zero. The simulation
time is 3 × 106 s.

There is a small relaxation time for the hybrid solution to reach steady state, the time scale of which is approxi-
mately the time it takes for the slowly moving protons to fill the simulation domain (see Figure 1). For example,
the Earth’s orbit relaxation time in the simulation is about 5 days. The data from the numerical simulations
were taken after the solution reached the steady state regime.

The distribution of the bulk radial velocity and the number density along the radial distance from the Sun
is presented in Figures 2 and 3, respectively. As can be observed the hybrid solution shows a noticeable
agreement with Parker’s isothermal model of the solar wind.
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Figure 1. Time dependencies for (top) number density and (bottom) bulk velocity at three radial distances from the
center of the Sun in the developed hybrid simulation. The figure demonstrates that the relaxation time within the
simulation box is about 0.5 × 106 s. The figure also shows the level of statistical fluctuation.

Since the radial profiles of the bulk velocity and the number density are very similar to the Parker’s profiles,
the total radially outward mass flux, 𝜌m(=mpnUr4𝜋r2), obtained from the hybrid simulations (see Figure 4)
corresponds to the mass loss rate taken from the Parker model. Figure 4 shows that the mass flow is nearly
constant along the radial distance with stronger noise for the higher electron temperature.

Figure 2. Bulk velocities, Ur , for three different electron temperatures with respect to the radial distance. The blue lines
are the results of the hybrid simulation, and the red lines are the Parker solution for the isothermal solar wind for three
different electron temperatures: Te,1 =1.5 × 106 K, Te,2 =2.0 × 106 K, and Te,3 =3.0 × 106 K. The velocity profiles from the
numerical simulations were taken when the solution reached the steady state regime.
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Figure 3. Number density distribution against the radial distance for three electron temperatures (blue lines) in the
hybrid model. The red lines show the number densities for similar temperatures, which were calculated based on the
Parker solution. The initial value of the number density for the Parker solution was the same as that used in the hybrid
model simulation.

It should also be noted that although the bulk velocity, number density, and the mass loss rate in the hybrid
model were similar to the isothermal Parker model, there is also an important difference between the models.
Instead of a constant hydrodynamic temperature in the Parker’s model, the electron and proton temperatures
as in the hybrid simulations are different. The behavior of the proton temperature Tp along the radial distance
is shown in Figure 5. It can be seen that Tp initially drops rapidly an order of magnitude and then decreases
slowly with increasing distance from the Sun.

Such behavior can be explained in terms of the electric field acceleration. The potential energy associated with
the electric potential, 𝜑E , is given in Figure 6. Furthermore, the change of the potential energy of the protons,
which moves from the distance r to the distance r0, 𝜑g, is Δ𝜑g(r)=𝜑g(r) −𝜑g(r0)=GmpM∕r0 −GmpM∕r where
r0 = rmin. Since the electric field is associated in the hybrid model with the electron pressure (see equation (6))
change of the electric potential energy of a proton, 𝜑E , is

Δ𝜑E(r) = 𝜑E(r) − 𝜑E(r0) = kBTe ln
ne

n0
, (10)

where n0 is the number density at the inner surface r = r0. The electric potential energy decreases rapidly
near the Sun and then continues to decrease slowly. As a consequence, the protons are initially accelerated
by the strong electric field and then rapidly cooled when expanding into a vacuum. The protons are cooled
at the same time when the initial Maxwellian velocity distribution function becomes non-Maxwellian when
particles move through the total potential structure.

Figure 4. The mass flow flux, mpnUr4𝜋r2 (kg/s), for three different electron temperatures: red line for Te,1 = 1.5 × 106 K,
blue line for Te,2 = 2.0 × 106 K, and black line for Te,3 = 3.0 × 106 K. The values are taken at t = 2 × 106 s.
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Figure 5. Profiles of the radial protons temperature Tp for three different electron temperatures in the hybrid model:
the red line: Te,1 =1.5 × 106 K, the blue line: Te,2 =2.0 × 106 K, and the black line: Te,3 =3.0 × 106 K. The Tp is derived
from the protons pressure Tp =P∕(nkB). The figure represents the time moment t=2 × 106 s of the simulation.

As mentioned in section 1, the Parker model is very sensitive to the value of the polytropic index 𝛾 , which has to
satisfy the condition 𝛾≤3∕2. It is interesting to find the effective polytropic index from our hybrid simulations.
Using pressure variations p and corresponding number density variations n, we can find the polytropic index
as 𝛾= ln(p∕p0)∕ ln(n∕n0), where n0 and p0 are the number density and pressure values, respectively, at r=Rmax.
The dependence of ln(p∕p0) on ln(n∕n0) is presented in Figure 7. As one can see in the figure, the higher the
electron temperature, the closer the profile to the line 𝛾 = 1. This can be seen more clearly in Figure 8 where
the function 𝛾(r) is shown. The maximum value of 𝛾max ∼1.15 is found to be in the region near the Sun. The
characteristic distances of 𝛾 profiles look similar to the proton temperature profiles in Figure 5. It seems that
the scale of the polytropic index variation coincides approximately with the critical distance (or distance of

the critical point) of the Parker model, rc = GM∕c2
s , where cs =

√
kTe∕mp is now the speed of the ion acoustic

wave instead of the sound speed of the Parker model.

It should be noted that our estimation of the polytropic index 𝛾 is slightly less than that obtained from the
observation in the solar wind, which is not surprising, due to the simplicity of our model. For example, Sittler
and Scudder [1980] estimated based on Voyager 2 and Mariner 10 data that 𝛾 = 1.17, while Whang [1998]
obtained 𝛾 = 1.28 based on Voyager 2 data. In addition, Totten et al. [1995] derived the maximal value 𝛾=1.46
based on Helios proton data.

Figure 9 presents the proton distribution function evolution in the course of the solar wind expansion
obtained from the hybrid simulations. As can be seen in the figure, initially, the distribution function was

Figure 6. Profiles of the electrical (e𝜑E , dotted lines), gravitational (mp𝜑g , the solid green line), and the total (electrical
+ gravitational) potential energy change relative to the inner face (r = Rmin) in the hybrid stimulation for three different
electron temperatures. The solid red, blue, and black lines represent the electrical potential for Te,1, Te,2, and Te,3,
respectively. The solid red, blue, and black lines which are marked by circles represent the total potentials for Te,1, Te,2,
and Te,3, respectively.
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Figure 7. Profiles for adiabatic indexes for three different electron temperatures in the hybrid model: the red line for
Te,1 =1.5 × 106 K, the blue line for Te,2 =2.0 × 106 K, and the black line for Te,3 =3.0 × 106 K. The green line represents
the case when the adiabatic index 𝛾=1, and it is added to the figure for better comparison of the numerical results.
The figure represents the time moment t=2 × 106 s of the simulation. Pressure, P, and number density, n, normalized
to P0 and n0 the values of pressure and number density, respectively, at r = Rmax.

chosen to be Maxwellian at the Sun’s boundary of the simulation domain. Then the protons start to be acceler-
ated outward by the electric field, which leads to the formation of the proton beam. The first departure stage
of the beam formation is clearly seen for the range dr =[1 × 106, 21 × 106] km in Figure 9a. The leading part
of the distribution function consists of the escaping protons, the trailing plateau-like part being populated
with the ballistic particles which do not have enough energy to overtake the potential barrier (see Figure 6)
and which are reflected back. The next stage of the velocity distribution function evolution is shown for the
range dr=[21 × 106, 41 × 106] km. Here one can see only the beam of the escaping protons. The distribution
function becomes more and more narrow with the increasing radial distance. Note that the distribution func-
tion continues to be non-Maxwellian in the simulation, as can be seen by noting that the velocity distribution
function remains asymmetric with respect to the mean speed vSW.

It is worth noting that due to the conservation of angular momentum, v𝜙r = const, the distribution function
becomes narrow very soon with respect to transverse velocity components. The relation v𝜙r = const leads to
the fact that the width of distribution function decreases inversely proportional to the distance from the Sun.
Therefore, we consider only radial particle motion.

Although we concentrated in this paper on steady state solution, it is still worth to show the formation of
the supersonic proton flow. The solar wind is formed by emitting protons (better to say macroparticles) from

Figure 8. The radial dependence of the polytropic index, 𝛾(r), for three different electron temperatures in the
hybrid model at different distances from the center of the Sun: the red line for Te,1 =1.5 × 106 K, the blue line for
Te,2 =2.0 × 106 K, and the black line for Te,3 =3.0 × 106 K. The figure represents the time moment t=2 × 106 s of
the simulation.
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Figure 9. (top) Demonstration of the velocity distribution function for three different spatial ranges dr in the hybrid
model: the blue line shows the velocity distribution for dr1 =(1 × 106, 21 × 106) km, the green line shows the velocity
distribution for dr1 =(21 × 106, 41 × 106) km, and the black like shows the velocity distribution for dr1 =(131 × 106,

151 × 106) km. All profiles are normalized to the maximum number of particles for each profile. The red line represents
the positive part, i.e., outward moving particles of the Maxwellian velocity distribution function for which the initial
bulk velocity was zero and the initial temperature of the protons was 106 K. The figure represents the time moment
t=2 × 106 s of simulation.

the Sun-faced side wall of the simulation box. Macroparticles are emitted with the Maxwellian distribution
function, so there is a number of particles with high thermal velocities from the tail of the distribution, which
propagate far away from the wall even for one simulation time step. These particles form the leading front of
the wind and create the initial gradient of number density, which in its turn leads to generation of the electric
field (see equation (6)). Electric field is derived as a cell center value according to number density distribu-
tion. At the initial stage when the macroparticle has not yet filled up the whole simulation box, it is possible
that inside a grid cell there are not even a single macroparticle. Therefore, electric field can be infinitely large
because the number density of the denominator in equation (6) is zero. To prevent this situation, we use back-
ground electron number density and insert it into a cell in which the electron number density is lower than
some critical value. This background critical electron number density in our simulation was set to be 105 m−3,
while the macroparticle weight (number of protons in single macroparticle) is 8 ⋅ 1033, which gives number
density of the order of 109 m−3. The electric field produced by the gradient of number density accelerates
particles. As a result of this additional acceleration and initial thermal particles, the leading extending region
is formed with supersonic flow behind. The maximum value of the flow is mainly defined by the initial thermal
velocity which is larger than both the speed of the ion acoustic wave and steady state speed of the wind
(Figure 10). In the course of time the leading region is propagating outward the Sun, and slowly, the flow
velocity tends to its steady state value.

Figure 10. Illustration of time dependency of radial bulk velocity Vr during different stage of simulation. Different colors
represent different time moments as mentioned on the figure expositor. The red line corresponds to the beginning of
the steady state regime (t=106 s). Electron temperature in the presented case is Te,1 =1.5 × 106 K.
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Figure 11. The ratio of the ion inertial length to the grid size as function of the radial distance. Electron temperature in
the presented case is Te,2 =2.0 × 106 K.

At the end of this section it is worth to mention the limitation of the used simulation grid. Figure 11 shows
ratio of the inertial length to the grid size as a function of the radial distance. This ratio is rather small and
thus the grid size much exceeds the inertial length scale. Comparison of the numerical solutions obtained
for different grid sizes indicates that the resolution is sufficient for the gradient scales. But one has to keep
in mind that our grid size is not sufficient to resolve possible plasma instabilities, which can appear due to a
particular shape of the ion distribution function. However, usage of very fine grid size in the whole large-scale
calculation domain would require too large computational capacities. An alternative way is to identify possible
unstable regions using the previously obtained large-scale solution. Therefore, we would consider the aspects
of possible instabilities as a subject for future study.

4. Discussion

This study describes, according to the best of the authors’ knowledge, the first detailed analysis of a global
spherical symmetric kinetic hybrid model and its relation to the classical Parker model. In the kinetic model
the radially expanding solar wind was assumed to be nonmagnetized, as was assumed in the Parker model.

The hybrid approach in our case can be considered as a two-fluid model with the pressure established by the
electrons through the electric field and also by the protons through the second moment of the distribution
function. As it was pointed out by Sturrock and Hartle [1966] who made two-fluid modeling of the solar wind,
the important feature of the two-fluid models is that the electron temperature is usually higher than the
proton temperature; hence, the electron pressure dominates. In our extreme hybrid model case, where elec-
trons are massless particles and their temperature was kept constant, the proton temperature is reduced
drastically more than 1 order of magnitude (see Figure 5). This means that proton pressure is not significant
any more in the equation of motion. Hence, in the first approximation after neglecting the proton thermal
pressure, the hybrid approach under consideration can be interpreted as a variant of the proton one-fluid
hydrodynamics but with the pressure established by the electrons through the electric field. Moreover, the
resulting system of equations is formally identical to the system which Parker used for his solution. That is why
our results for the proton velocity, number density, and mass loss rate (but not for the proton temperature)
are very close to the Parkers solution. Nevertheless, the physics of both solutions is rather different: the Parker
solar wind is accelerated by the pressure gradient of the initially heated gas, while in the hybrid approach the
solar wind is accelerated by electric field produced by the electrons.

The hybrid approach also reveals important differences from the Parker model. First of all, the proton temper-
ature decreases by more than 1 order of magnitude due to electric field acceleration. Second, we were able
to find the effective polytropic index for the proton gas that turns out to be a function of radial distance with
the maximum value 𝛾max ∼1.15. Variations in both the proton temperature and the polytropic index had the
length scales of several (2rc − 3rc) critical distances of the Parker model.

In the simulation, electrons are kept at a constant high temperature without heat flux and heating. This
assumption is based on the very high ratio of the electron and ion thermal conductivities. As was shown by
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Sturrock and Hartle [1966] for the two-fluid solar wind model, the variation of electron temperature is much
smaller than that of ions. Therefore, a simplified assumption of a constant electron temperature as a first step
for hybrid simulation was adopted. This assumption was also appropriate for comparison with the Parker
solution. The next step in the development of the simulation would require energy equation and temperature
anisotropy of electrons depending on the magnetic field.

In the region near the Sun, we observed particles which have different orbits: escape, ballistic with a plateau-
like distribution function. Further from the Sun, these ballistic particles disappear and eventually a beam of
protons is created, with the distribution function remaining non-Maxwellian in the hybrid model. Further
investigation to the asymmetry with respect to Kappa distributions observed in the solar wind (as reviewed
by Pierrard and Lazar [2010]) can be foreseen. The electric field at its strongest near the Sun and the total
potential energy difference is about equal to the gravitational potential energy. This left the escaping particles
sufficient energy to overcome the gravitational barrier and escape from the Sun.

It is interesting to note that the manner in which the solar wind protons escape from the Sun’s gravitational
field has certain phenomenological similarities with how the photoelectrons can escape from the surface of
an airless object: in both cases outflowing particles have to overcome a local potential barrier after which they
can escape from the object [see Dyadechkin et al., 2015].

Coulomb collisions are neglected in the developed simulation. As pointed out by Marsch and Goldstein [1983],
the high-speed solar wind ion distributions look like collisionless plasma. However, for low-speed solar wind
one often finds nearly isotropic ion distributions, which can be related to the Coulomb collisions. Therefore,
for further applications of the hybrid model to the slow wind, it would be important to take into account also
Coulomb scattering of ions.

Here we demonstrate only steady state results of solar wind propagation and we use only an initial Maxwellian
distribution function for velocities. However, the developed kinetic model allows us to start our simulations
initially with an arbitrary velocity distribution function, several ion populations, (e.g., fast and slow winds),
multiple ion species, (e.g., He++) and multiple-charged heavy ions. The time-dependent model also gives us
a possibility to simulate dynamical processes in the solar wind such us the number density or velocity jumps
(then the values of velocity or number density are increased on the inner boundary) and study their evolution,
that can mimic interplanetary coronal mass ejections.

The kinetic model can also simulate 2-D and 3-D problems which are, however, computationally highly expen-
sive and beyond the scope of the present study. Overall, the study suggests that already a nonmagnetized
global hybrid model is capable of reproducing some fundamental features of the expanding solar wind,
or stellar wind, shown in the Parker model. In addition, the new simulations require kinetic effects when
the initial Maxwellian velocity distribution plasma becomes non-Maxwellian, the electrons to be considered
nonisothermal, and simulation grid structure is nonuniform with implementation inside boundary layers.
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