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Abstract

Cluster analysis by nonnegative low-rank approximations has experienced a remarkable
progress in the past decade. However, the majority of such approximation approaches are
still restricted to nonnegative matrix factorization (NMF) and suffer from the following
two drawbacks: 1) they are unable to produce balanced partitions for large-scale manifold
data which are common in real-world clustering tasks; 2) most existing NMF-type cluster-
ing methods cannot automatically determine the number of clusters. We propose a new
low-rank learning method to address these two problems, which is beyond matrix factor-
ization. Our method approximately decomposes a sparse input similarity in a normalized
way and its objective can be used to learn both cluster assignments and the number of clus-
ters. For efficient optimization, we use a relaxed formulation based on Data-Cluster-Data
random walk, which is also shown to be equivalent to low-rank factorization of the doubly-
stochastically normalized cluster incidence matrix. The probabilistic cluster assignments
can thus be learned with a multiplicative majorization-minimization algorithm. Exper-
imental results show that the new method is more accurate both in terms of clustering
large-scale manifold data sets and of selecting the number of clusters.

Keywords: cluster analysis, probabilistic relaxation, doubly stochastic matrix, manifold,
multiplicative updates

1. Introduction

Cluster analysis is a main task of exploratory data mining, and a common technique for
statistical data analysis used in many fields. Usually, optimization of the clustering objec-
tives is NP-hard and relaxation to “soft” clustering is a widely used technique. In the past
decade, various low-rank matrix approximation objectives, together with a nonnegativity
constraint on the cluster indicator matrix, have widely been used for the relaxation purpose.

c©2016 Zhirong Yang, Jukka Corander and Erkki Oja.
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The most popular nonnegative low-rank approximation method is Nonnegative Matrix
Factorization (NMF; Lee and Seung, 1999, 2001). It finds a matrix which approximates the
pairwise similarities between the data items and can be factorized into two nonnegative low-
rank matrices. NMF was originally applied to vector data, for which Ding et al. (2010) did
later show that it is equivalent to the classical k-means method. NMF has also been applied
to weighted graph defined by the pairwise similarities of the data items. For example, Ding
et al. (2008) presented Nonnegative Spectral Cuts by using a multiplicative algorithm; and
Arora et al. (2011, 2013) proposed Left Stochastic Decomposition that approximates a
similarity matrix based on Euclidean distance and a left-stochastic matrix. Topic modeling
represents another example of a related factorization problem. Hofmann (1999) introduced
a generative model in Probabilistic Latent Semantic Indexing (PLSI) for counting data,
which is essentially equivalent to NMF using Kullback-Leibler (KL) divergence and tri-
factorizations. Bayesian treatment of PLSI by using Dirichlet priors was later introduced
by Blei et al. (2001). Symmetric PLSI with the same Bayesian treatment is called Interaction
Component Model (ICM; Sinkkonen et al., 2008).

Despite the remarkable progress, the above NMF-type clustering methods still suffer
from one or more of the following problems: 1) they are not accurate for the data in curved
manifolds; 2) they cannot guarantee balanced partitions; 3) their learning objectives cannot
be used to choose the number of clusters. The first problem is common in many real-
world clustering tasks, where data are represented by raw features and simple similarity
metrics such as Euclidean or Hamming are only accurate in small neighborhoods. This
induces sparse accurate similarity information (e.g. as with the K-Nearest-Neighbor for a
relatively small K) as input for clustering algorithms. In the big data era, the sparsity is
also necessary for computation efficiency for large amounts of data objects. Most existing
clustering methods, however, do not handle well the sparse similarity. The second problem
arises due to the lack of suitable normalization of partitions in the objective function.
Consequently, the resulting cluster sizes can be drastically and spuriously variable, which
hampers the general reliability of the methods for applications. The third problem forces
users to manually specify the number of clusters or to rely on external clustering evaluation
methods which are usually inconsistent with the used learning objective.

In this paper we propose a new clustering method that addresses all the above-mentioned
problems. Our learning objective is to minimize the discrepancy between the similarity
matrix and the doubly-stochastically normalized cluster incidence matrix, which ensures
balanced clusterings. Different from conventional squared Euclidean distance, the discrep-
ancy in our approach is measured by Kullback-Leibler divergence which is more suitable for
sparse similarity inputs. Minimizing the objective over all possible partitions automatically
returns the most appropriate number of clusters.

We also propose an efficient and convenient algorithm for optimizing the introduced
objective function. First, by using a new nonnegative matrix decomposition form, we find
an equivalent solution space of low-rank nonnegative doubly stochastic matrices. This
provides us a probabilistic surrogate learning objective called Data-Cluster-Data (DCD in
short). Next we develop a new multiplicative algorithm for this surrogate function by using
the majorization-minimization principle.

The new method is compared against many other clustering methods on various real-
world data sets. The results show that the DCD method can often produce more accurate
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clusterings, especially for large-scale manifold data sets containing up to hundreds of thou-
sands of samples. We also demonstrate that it can select the number of clusters much more
precisely than other existing approaches.

Although a preliminary version of our method has been presented earlier (Yang and Oja,
2012a), the current paper introduces several significant improvements. First, we show that
the proposed clustering objective can be used to learn not only the cluster assignments but
also the number of clusters. Second, we show that the proposed structural decomposition
is equivalent to the low-rank factorization of a doubly stochastic matrix. Previously it
was known that the former is a subset of the latter and now we prove that the reverse
also holds. Third, we have performed much more extensive experiments, where the results
further consolidate our conclusions.

The remainder of the paper is organized as follows. We review the basic clustering
objective in Section 2. Its relaxed surrogate, the DCD learning objective, as well as opti-
mization algorithm, are presented in Section 3, and the experimental results in Section 4,
respectively. We discuss related work in Section 5 and conclude the paper by presenting
possible directions for future research in Section 6.

2. Normalized Output Similarity Approximation Clusterability

Given a set of data objects X = {x1, . . . , xN}, cluster analysis assigns them into r groups,
called clusters, so that the objects in the same cluster are more similar to each other than to
those in the other clusters. The cluster assignments can be represented by a cluster indicator
matrix F̄ ∈ {0, 1}N×r, where F̄ik = 1 if xi is assigned to the cluster Ck, and F̄ik = 0
otherwise. The cluster incidence matrix is defined as M̄ = F̄ F̄ T . Then M̄ ∈ {0, 1}N×N
and M̄ij = 1 iff xi and xj are in the same cluster.

Let Sij ≥ 0 be a suitably normalized similarity measure between xi and xj . For a good
clustering, it is natural to assume that the matrix S should be close to the cluster incidence
matrix M̄ . Visually, M̄ is a blockwise matrix if we sort the data by their cluster assignment,
and S should be nearly blockwise. The discrepancy or approximation error between S and
M̄ can be measured by a certain divergence D(S||M̄), e.g. Euclidean distance or Kullback-
Leibler divergence. For example, He et al. (2011); Arora et al. (2011, 2013) used D(S||M̄)
with Euclidean distance to derive their respective NMF clustering methods.

Directly minimizing D(S||M̄) can yield imbalanced partitions (see e.g., Shi and Malik,
2000). That is, some clusters are automatically of much smaller size than others, which
is undesirable in many real-world applications. To achieve a balanced clustering, one can
normalize M̄ to M in the approximation such that

∑N
i=1Mij = 1 and

∑N
j=1Mij = 1, or

equivalently by normalizing F̄ to F with Fik = F̄ik/
√∑N

v=1 F̄vk. The matrix M = FF T

then becomes doubly stochastic. Such normalization has appeared in different clustering
approaches (e.g., Ding et al., 2005; Shi and Malik, 2000). In this way, each cluster in M
has unitary normalized volume (the ratio between sum of within-cluster similarities and the
cluster size; also called normalized association (Shi and Malik, 2000)).

In this work we define clusterability as the maximum proximity between the data and

a clustering solution. In similarity-based cluster analysis, C(S)
def
= −minM D(S||M) can be

used as a measure of clusterability for the similarity S over all normalized clusterings. For
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an easy reference within this paper, we call it Normalized Output Similarity Approximation
Clusterability (NOSAC) and D(S||M) the NOSAC residual for a specific clustering M .
Note that the optimum is taken over partitions which possibly have different values of r.
Therefore the optimization can be used to learn not only cluster assignments but also the
number of clusters. Similarly, minimizing D(S||M) can also be used to select an optimum
among partitions produced by e.g. different hyper-parameters or different initializations.

Minimizing D(S||M̄) or D(S||M) is equivalent to a combinatorial optimization problem
in discrete space which is typically a difficult task (see e.g. Aloise et al., 2009; Mahajan et al.,
2009; Shi and Malik, 2000). In practice it is customary to first solve a relaxed surrogate
problem in continuous space and then perform discretization to obtain F̄ or F . Different
relaxations include, for example, nonnegative matrices (Ding et al., 2008; Yang and Oja,
2010) and stochastic matrices Arora et al. (2011, 2013) for the unnormalized indicator F̄
in D(S||M̄), and orthogonal matrices (Shi and Malik, 2000), as well as nonnegative and
orthogonal matrices (Ding et al., 2006; Yang and Oja, 2012b; Yang and Laaksonen, 2007;
Yoo and Choi, 2008; Pompili et al., 2013) for the normalized indicator F in D(S||M).

In this paper we emphasize that the doubly stochasticity constraint is essential for
balanced clustering, which cannot be guaranteed by the above relaxations. Besides this
constraint, we also keep the nonnegativity constraint to achieve sparser low-rank factorizing
matrix. These conditions as a whole provide a tighter relaxed solution space A for M :

A =

A∣∣∣∀i,
N∑
j=1

Aij = 1;A = UUT ;U ∈ RN×r;∀i, k, Uik ≥ 0

 . (1)

To our knowledge, however, there is no existing technique that can minimize a generic
cost function over low-rank A or over U . The major difficulty arises because the doubly
stochasticity constraint is indirectly coupled with the factorizing matrix U . Note that this
optimization problem is different from normalizing the input similarity matrix to be doubly
stochastic before clustering (Zass and Shashua, 2006; He et al., 2011; Wang et al., 2012).

3. Low-rank Doubly Stochastic Matrix Decomposition by Probabilistic
Relaxation

In this section we show how to minimize D(S||A) over A ∈ A with suitable choice of
discrepancy measure and complexity control. First we identify an equivalent solution space
of A which is easier for optimization. Then we develop the multiplicative minimization
algorithm for finding a stationary point of the objective function.

3.1 Probabilistic relaxation

We find an alternative solution space by relaxing M to another matrix B in the matrix set

B =

{
B
∣∣∣Bij =

r∑
k=1

WikWjk∑N
v=1Wvk

;W ∈ RN×r;∀i
r∑

k=1

Wik = 1;∀i, k,Wik ≥ 0

}
. (2)

Comparing the original low-rank doubly stochastic matrix decomposition space A with the
DCD space B shows that the following equivalence holds:
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Theorem 1 A = B.

The proof is given in Appendix A. Previously it was known that A ⊇ B (Yang and Oja,
2012a). Now this theorem shows that A ⊆ B also holds, which implies that we do not miss
any solution in A by using B. We prefer B because the minimization in B is easier, as there
is no explicit doubly stochasticity constraint and we can work with the right stochastic
matrix W . Note that W appears in both the numerator and denominator within the
sum over k. Therefore this structural decomposition goes beyond conventional nonnegative
matrix factorization schemes.

A probabilistic interpretation of B is as follows. Let Wik = P (k|i), the probability of
assigning the ith data object to the kth cluster.1 In the following, i, j, and v stand for data
sample indices (from 1 to N) while k and l stand for cluster indices (from 1 to r). Without
preference to any particular sample, we impose a uniform prior P (j) = 1/N over the data
samples. With this prior, we can compute

P (j|k) =
P (k|j)P (j)∑r
v=1 P (k|v)P (v)

=
P (k|j)∑r
v=1 P (k|v)

(3)

by the Bayes’ formula. Then we can see that

Bij =
r∑

k=1

WikWjk∑N
v=1Wvk

(4)

=

r∑
k=1

P (k|j)∑N
v=1 P (k|v)

P (k|i) (5)

=

r∑
k=1

P (j|k)P (k|i) (6)

=P (j|i). (7)

That is, if we define a bipartite graph with the data samples and clusters as graph nodes,
Bij is the probability that the ith data node reaches the jth data node via a cluster node
(see Figure 1). We thus call this DCD random walk or DCD decomposition after the
Data-Cluster-Data walking paths. Since B is nonnegative and symmetric (which follows
easily from the definition), in non-trivial cases it can be seen as another similarity measure
between data objects. Our learning target is to find a good approximation between the
input similarity matrix S and the low-rank output similarity B.

3.2 Kullback-Leibler divergence

Euclidean distance or Frobenius norm is a conventional choice for the discrepancy measure
D. However, it is improper for many real-world clustering tasks where the raw data features
are weakly informative. Similarities calculated with most simple metrics such as Euclidean
distance or Hamming distance are then only accurate in a small neighborhood, whereas data

1. We use the abbreviation to avoid excessive notation. In full, P (k|i) def
= P (β = Ck|ξ = xi), where β and ξ

are random variables with possible outcomes in clusters {Ck}rk=1 and data samples {xi}Ni=1, respectively.

Similarly P (i)
def
= P (ξ = xi) and P (i|k) def

= P (ξ = xi|β = Ck).
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Figure 1: Data-cluster bipartite graph for N data samples and r clusters (r < N). The
arrows show a Data-Cluster-Data (DCD) random walk path, which starts at the
ith data node (sample) and ends at the jth data node via the kth cluster node.

points from different clusters often become mixed in wider neighborhoods. That is, only a
small fraction of similarities, e.g. K-Nearest-Neighbor similarities with a relatively small
value of K, are reliable and should be fed as a sparse input to clustering algorithms, while
the similarities between the other, non-neighboring samples are set to zero. Least-square
fitting with such a sparse similarity matrix is dominated by the approximation to the many
zeros, which typically yields only poor or mediocre clustering results.

Here we propose to use (generalized) Kullback-Leibler divergence which is a more suit-
able approximation error measure between the sparse input similarity S and the dense
output similarity B, because the approximation relies more heavily on the large values in S
(see e.g. Févotte and Idier, 2011). The underlying Poisson likelihood models more appropri-
ately the rare occurrences of reliable similarities. We thus formulate our learning objective
in the relaxed DCD space as the following optimization problem:

minimize
W≥0

DKL(S||B) =
N∑
i=1

N∑
j=1

(
Sij log

Sij
Bij
− Sij +Bij

)
(8)

subject to Bij =

r∑
k=1

WikWjk∑
vWvk

, (9)

r∑
k=1

Wik = 1, i = 1 . . . , N. (10)
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Dropping the constant terms in DKL(S||B), the objective function is equivalent to maxi-
mizing

∑N
i=1

∑N
j=1 Sij logBij because

∑N
i=1

∑N
j=1Bij = N . Note that this form is similar

to PLSI (Hofmann, 1999) except for the decomposition form in B. Therefore we can enjoy
the similar complexity control by using a Dirichlet prior (see Section 3.3).

Kullback-Leibler divergence also facilitates optimization, as we shall see in the algorithm
development below. In objective and gradient calculation, it is straightforward to involve
only the non-zero entries in S which brings an efficient implementation. Moreover, given
properties of the logarithm function, we can break the comprehensive structure of B into
several additive terms when majorizing the objective with the convex-concave procedure
(Hunter and Lange, 2004). As a result, this yields relatively simple update rules in the
algorithm. See Section 3.4 and Appendix B for details.

3.3 Regularization

The DCD learning objective function is parameterized by the matrix W whose rows sum
to one. Assuming that these rows are observations from a common Dirichlet distribution,
we can apply the log-Dirichlet prior to control the complexity in W . This gives the cost
function of our DCD clustering method:

J (W ) = −
N∑
i=1

N∑
j=1

Sij logBij − (α− 1)
N∑
i=1

r∑
k=1

logWik. (11)

This is also equivalent to regularization by using a total Shannon information term.

If Sij are integers, the DCD objective is the log-likelihood of the following generative
model: 1) draw the rows of W according to uniform Dirichlet distribution with parameter
α; 2) for t = 1, . . . , T , add one to entry (i, j) ∼ Multinomial

(
1
NB, 1

)
. The Dirichlet prior

vanishes when α = 1. By using α > 1, the prior gives further relaxation by smoothing the
W entries, which is often desired in early stages of W learning.

Although it is possible to construct a multi-level graphical model similar to the Dirichlet
process topic model (Blei et al., 2001; Sinkkonen et al., 2008), we emphasize that the smallest
approximation error (i.e. with α = 1) is the final DCD goal. The Dirichlet prior is used only
in order to ease the optimization. Therefore we do not employ more complex generative
models.

3.4 Optimization

Multiplicative updates are widely used in optimization for nonnegative matrix factorization
problems. To minimize an objective J over a nonnegative matrix W , we first calculate the
gradient and separate it into two nonnegative parts (∇+

ik ≥ 0 and ∇−ik ≥ 0):

∇ik
def
=

∂J
∂Wik

= ∇+
ik −∇

−
ik. (12)

Usually the separation can easily be identified from the gradient. Then the algorithm

iteratively applies a multiplicative update rule Wik ← Wik
∇−

ik

∇+
ik

until convergence. Such

algorithms have several attractive properties, as they naturally maintain the positivity of
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W and do not require extra effort to tune learning step size. For a variety of NMF problems,
such multiplicative updates monotonically decrease J after each iteration and therefore W
can converge to a stationary point (Yang and Oja, 2011).

We cannot directly apply the above multiplicative fixed-point algorithm to DCD because
there are probability constraints on the W rows. In practice, projecting the W rows to the
probability simplex after each iteration would often lead to poor clustering result.

Instead, we employ a relaxing strategy (Zhu et al., 2013) to handle the probability
constraint. We first introduce Lagrangian multipliers {λi}Ni=1 for the constraints:

L(W,λ) = J (W ) +
∑
i

λi

(
r∑

k=1

Wik − 1

)
. (13)

This suggests a preliminary multiplicative update rule for W :

W ′ik = Wik
∇−ik − λi
∇+
ik

, (14)

where

∂J
∂W

=
[(
W TZW

)
kk
s−2k +W−1ik

]︸ ︷︷ ︸
∇+

ik

−
[
2 (ZW )ik s

−1
k + αW−1ik

]︸ ︷︷ ︸
∇−

ik

, (15)

with Zij = Sij/Bij and sk =
∑N

v=1Wvk. Imposing
∑

kW
′
ik = 1 and isolating λi, we obtain

λi =
bi − 1

ai
, (16)

where

ai =
r∑
l=1

Wil

∇+
il

, and , bi =
r∑
l=1

Wil
∇−il
∇+
il

. (17)

Putting this λ back in Eq. 14, we obtain

Wik ←Wik
∇−ikai + 1− bi
∇+
ikai

. (18)

To maintain the positivity of W , we add bi to both the numerator and denominator, which
does not change the fixed point and gives the ultimate update rule:

Wik ←Wik
∇−ikai + 1

∇+
ikai + bi

. (19)

The above calculation steps are summarized in Algorithm 1. In implementation, one does
not need to construct the whole matrix B. The ratio Zij = Sij/Bij only requires calculation
on the non-zero entries of S.

The above algorithm obeys a monotonicity guarantee provided by the following theorem.
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Algorithm 1 Relaxed MM Algorithm for DCD

Input: similarity matrix S, number of clusters r, positive initial guess of W .
Output: cluster assigning probabilities W .
repeat

Bij =
r∑

k=1

WikWjk∑
vWvk

Zij = Sij/Bij

sk =
∑N

v=1Wvk

∇−ik = 2 (ZW )ik s
−1
k + αW−1ik

∇+
ik =

(
W TZW

)
kk
s−2k +W−1ik

ai =
r∑
l=1

Wil

∇+
il

, bi =
r∑
l=1

Wil
∇−il
∇+
il

Wik ←Wik
∇−ikai + 1

∇+
ikai + bi

until W converges under the given tolerance

Theorem 2 Denote W new the updated matrix after each iteration of Algorithm 1. It holds
that L(W new, λ) ≤ L(W,λ) with λi = (bi − 1)/ai.

The proof (given in Appendix B) mainly follows the Majorization-Minimization procedure
(Hunter and Lange, 2004; Yang and Oja, 2011). The theorem shows that Algorithm 1
jointly minimizes the approximation error and drives the rows of W towards the probability
simplex. The Lagrangian multipliers are adaptively and automatically selected by the
algorithm, without extra human tuning effort. The quantities bi are the row sums of the
unconstrained multiplicative learning result, while the quantities ai balance between the
gradient learning force and the probability simplex attraction. Besides convenience, we find
that this relaxation strategy works more robustly than the brute-force projection after each
iteration.

DCD minimizes the relaxed NOSAC residual for a particular r. To select the best
number of clusters, we can run Algorithm 1 over a range of r values, discretize W to obtain
the hard cluster assignment F̄ , and return the one with smallest NOSAC residual. See
Section 4.2 for examples.

3.5 Initialization

Proper initialization is needed to achieve satisfactory performance for practically any clus-
tering method that involves non-convex optimization. DCD accepts any clustering results
as its starting point. In our implementation, we add a small positive perturbation (e.g. 0.2)
to all entries of the initial cluster indicator matrix. Next, the perturbed matrix is fed to our
optimization algorithm (with α = 1 in Algorithm 1). Among all runs of DCD, we return
the clustering result with the smallest D(S||M).
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In particular, the regularized DCD (i.e. with various α 6= 1) can also provide initializa-
tion for the non-regularized DCD (i.e. with α = 1). That is, the parameter α only appears
in the initialization and its best value is also determined by the smallest resulting D(S||M).

4. Experiments

We have tested the DCD method and compared it with other existing cluster analysis
approaches. The experiments were organized in two groups: 1) we ran the methods with a
fixed number of clusters, mainly comparing their clustering accuracies; 2) we ran DCD across
different r values, demonstrating how to use NOSAC residual to determine the optimal
number of clusters as well as its advantage over several other clustering evaluation methods.

4.1 Clustering with known number of clusters

In the first group of experiments, the number of the ground truth classes in the data sets
was known in advance, and we fixed r to that number. We compared DCD with a variety of
state-of-the-art clustering methods, including Projective Nonnegative Matrix Factorization
(PNMF; Yang et al., 2007; Yang and Oja, 2010), Nonnegative Spectral Clustering (NSC;
Ding et al., 2008), Orthogonal Nonnegative Matrix Factorization (ONMF; Ding et al., 2006),
Probabilistic Latent Semantic Indexing (PLSI; Hofmann, 1999), Left-Stochastic Decomposi-
tion (LSD; Arora et al., 2011, 2013), as well as two classical methods k-means (Lloyd, 1982)
and Normalized Cut (Ncut; Shi and Malik, 2000). Besides NMF, we have also selected
several recent clustering methods, including 1-Spectral (1-Spec; Hein and Bühler, 2010),
Landmark-based Spectral Clustering (LSC; Chen and Cai, 2011; Cai and Chen, 2015),
Sparse Subspace Clustering (SSC; Elhamifar and Vidal, 2009, 2013), and Multiclass Total
Variation (MTV; Bresson et al., 2013). There are some other recent methods (e.g., Ro-
driguez and Laio, 2014; Liu and Tao, 2016), which is however not scalable to large numbers
of samples and thus not included here.

We used default settings in the compared methods. The NMF-type methods were run
with maximum 10,000 iterations of multiplicative updates and with convergence tolerance
10−6. We used ratio Cheeger cut for 1-Spec. All methods except k-means, Ncut, 1-Spec,
LSC, SSC, and MTV were initialized by Ncut. That is, their starting point was the Ncut
cluster indicator matrix plus a small constant 0.2 to all entries.

We have compared the above methods on 43 data sets from various domains, including
biology, image, video, text, remote sensing, etc. All data sets are publicly available on the
Internet. The data sources and statistics are given in the supplemental document. For
similarity-based clustering methods, we constructed K-Nearest-Neighbor graphs from the
multivariate data with K = 10. The adjacency matrices of the graphs are then symmetrized
and binarized to obtain S, i.e. Sij = 1 if xj is one of the K nearest neighbors of xi or vice
versa; otherwise Sij = 0. This produces sparse similarity matrices.

We have used two performance measures for the clustering accuracies: the first is cluster
purity which equals 1

N

∑r
k=1 max1≤l≤r nkl, where nkl is the number of data samples in the

cluster k that belong to ground-truth class l; the second performance measure is Normalized
Mutual Information (NMI, Vinh et al., 2010) which equals

∑r
k=1

∑r
l=1

nkl
N log nkl/N

akbl/N2 , with

ak =
∑r

l=1 nkl and bl =
∑r

k=1 nkl.
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The resulting cluster purities and NMIs are shown in Tables 1 and 2, respectively. We
can see that our method has much better performance than the other methods. DCD shows
the optimal performance for 22 and 18 out of 43 data sets in purity and NMI, respectively,
which is substantially more frequently than for any of the other methods. Even for some
other data sets where DCD is not the winner, its cluster purities still remain close to the best
method. Our method shows particularly superior performance when the number of samples
grows. For the 19 data sets with N > 4500, DCD is the top performer in 17 and 11 cases
in purity and NMI, respectively. Note that purity corresponds to classification accuracy
up to a permutation between classes and clusters. In this sense, our method achieves
accuracy very close to many modern supervised approaches for some large-scale data in a
curved manifold such as MNIST2, though our method does not use any class labels. For text
document data set 20NG, DCD achieves comparable accuracy to those with comprehensive
feature engineering and supervised classification (e.g. Srivastava et al., 2013), even though
our method only uses simple bag-of-words Tf-Idf features and no class labels at all.

4.2 Selecting the number of clusters

In the second group of experiments, we assume that the number of clusters is unknown
and it must be automatically selected from a range around the number of ground truth
classes. We ran DCD with different values of r and calculated the corresponding NOSAC
residual after discretizing W to cluster indicator matrix; the best number of clusters was
then selected by the r with the smallest NOSAC residual.

We have compared the above DCD selection method with several other clustering eval-
uation methods: Calinski-Harabasz (CH; Calinski and Harabasz, 1974), Davies-Bouldin
(DB; Davies and Bouldin, 1979) and gap statistics (Tibshirani et al., 2001). We used their
implementation in Matlab. Each cluster evaluation approach comes with a supported base
clustering algorithm k-means (km) or linkage (lk). We thus have in total six methods for
selecting the number of clusters to be compared against DCD. Some of these compared
methods are very slow and required computation of more than five days for certain data
sets. This drawback is especially severe for data sets with very high dimensionality such as
CURET and COIL100. In contrast, DCD required at most two hours for any tested data set.

The results are reported in Table 3, which shows that DCD performs the best also in
terms of selecting the number of clusters. The corresponding curves of NOSAC residual
vs. number of clusters by DCD are shown in Figure 2. In the selected number of clusters,
the DCD results are closest to the ground truth for all data sets, much more accurately than
for any of the other methods. DCD correctly selects the best for CURET, OPTDIGITS, and
MNIST, and almost correctly (only differing by 1) for BOTSWANA and PHONEME. For COIL20

and COIL100, the DCD results are also reasonably good because we did not deliberately
tune the extent of the local neighborhoods. By simply replacing 10NN with 5NN as the
input similarities, DCD respectively selects 21 for COIL20 and 99 for COIL100 as the best
number of clusters.

2. see http://yann.lecun.com/exdb/mnist/
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Table 1: Clustering purities for the compared methods on various data sets. Boldface num-
bers indicate the best in each row. “-” means out-of-memory error.

Data set N DCD k-means Ncut PNMF NSC ONMF PLSI LSD 1-Spec LSC SSC MTV

AMLALL 38 0.95 0.68 0.50 0.95 0.95 0.76 0.97 0.89 0.97 0.89 0.89 0.53
NCI 64 0.64 0.67 0.38 0.66 0.62 0.55 0.62 0.59 0.44 0.69 0.75 0.41
BT 106 0.47 0.45 0.29 0.50 0.50 0.44 0.49 0.48 0.42 0.42 0.34 0.47
IRIS 150 0.91 0.89 0.39 0.93 0.90 0.48 0.72 0.73 0.91 0.79 0.73 0.67
YALE 165 0.59 0.59 0.22 0.61 0.55 0.41 0.59 0.58 0.25 0.68 0.59 0.25
WINE 178 0.95 0.95 0.41 0.96 0.95 0.40 0.93 0.95 0.94 0.95 0.91 0.94
14CANCER 198 0.53 0.48 0.21 0.51 0.51 0.49 0.52 0.53 0.47 0.52 0.64 0.24
GLASS 214 0.87 0.88 0.38 0.75 0.83 0.81 0.71 0.78 0.68 0.75 0.80 0.83
VERTEBRAL 310 0.77 0.72 0.48 0.75 0.76 0.74 0.69 0.69 0.77 0.77 0.71 0.76
ECOLI 336 0.80 0.83 0.43 0.81 0.81 0.80 0.76 0.84 0.80 0.79 0.71 0.76
SVMGUIDE 391 0.71 0.63 0.57 0.61 0.58 0.57 0.64 0.66 0.61 0.57 0.71 0.66
ORL 400 0.73 0.75 0.17 0.77 0.76 0.64 0.70 0.77 0.25 0.77 0.77 0.29
VOWEL 990 0.35 0.39 0.14 0.37 0.37 0.37 0.30 0.34 0.28 0.31 0.28 0.30
MED 1.0K 0.58 0.63 0.33 0.55 0.55 0.53 0.53 0.57 0.42 0.37 0.55 0.33
COIL20 1.4K 0.82 0.61 0.11 0.69 0.73 0.49 0.41 0.56 0.30 0.83 0.82 0.75
YEAST 1.5K 0.55 0.52 0.34 0.50 0.51 0.53 0.48 0.51 0.54 0.52 0.46 0.46
ISOLET 1.6K 0.59 0.55 0.09 0.59 0.58 0.54 0.51 0.57 0.29 0.53 0.56 0.55
SEMEION 1.6K 0.93 0.63 0.13 0.81 0.73 0.67 0.60 0.91 0.73 0.92 0.77 0.83
MFEAT 2.0K 0.80 0.57 0.13 0.71 0.64 0.44 0.51 0.59 0.57 0.76 0.80 0.65
DNA 2.0K 0.68 0.76 0.53 0.57 0.54 0.53 0.62 0.65 0.53 0.54 0.53 0.53
SEG 2.3K 0.74 0.57 0.17 0.54 0.57 0.48 0.26 0.35 0.43 0.78 0.56 0.40
BOTSWANA 3.2K 0.75 0.57 0.11 0.65 0.59 0.54 0.33 0.43 0.41 0.69 0.66 0.52
CITESEER 3.3K 0.50 0.68 0.22 0.31 0.25 0.29 0.35 0.37 0.36 0.48 0.50 0.27
WEBKB 4.2K 0.56 0.44 0.39 0.42 0.53 0.41 0.56 0.54 0.48 0.57 0.39 0.51
OUTEX 4.3K 0.55 0.44 0.07 0.46 0.39 0.44 0.39 0.53 0.21 0.65 0.07 0.45
SATIMAGE 4.4K 0.76 0.75 0.25 0.67 0.77 0.68 0.49 0.62 0.82 0.74 0.70 0.48
PHONEME 4.5K 0.87 0.71 0.26 0.87 0.82 0.50 0.72 0.86 0.82 0.86 0.70 0.84
7SECTORS 4.6K 0.46 0.31 0.24 0.28 0.26 0.24 0.29 0.35 0.24 0.28 0.24 0.32
KSC 5.2K 0.64 0.18 0.18 0.60 0.53 0.39 0.33 0.42 0.50 0.64 0.50 0.54
BRUNA 5.6K 0.94 0.56 0.05 0.87 0.80 0.82 0.53 0.76 0.42 0.78 0.70 0.78
OPTDIGITS 5.6K 0.98 0.74 0.12 0.86 0.76 0.76 0.46 0.77 0.60 0.92 0.89 0.98
GISETTE 7.0K 0.93 0.68 0.51 0.52 0.64 0.51 0.61 0.77 0.93 0.90 0.78 0.52
COIL100 7.2K 0.81 0.60 0.05 0.68 0.70 0.51 0.39 0.61 0.20 0.64 0.80 0.66
ZIP 9.3K 0.85 0.54 0.17 0.57 0.67 0.41 0.46 0.63 0.81 0.79 0.74 0.80
TDT2 10K 0.86 0.86 0.89 0.89 0.89 0.88 0.88 0.87 0.53 0.85 0.88 0.76
PENDIGITS 11K 0.86 0.71 0.80 0.77 0.80 0.77 0.81 0.85 0.27 0.78 0.83 0.76
20NG 20K 0.62 0.39 0.40 0.38 0.40 0.39 0.47 0.48 0.06 0.50 0.17 0.19
LETTER 20K 0.38 0.29 0.29 0.36 0.31 0.37 0.34 0.34 0.11 0.35 0.33 0.26
MNIST 70K 0.97 0.48 0.77 0.84 0.79 0.73 0.79 0.81 0.88 0.87 - 0.85
NORB 97K 0.35 0.22 0.21 0.26 0.21 0.26 0.33 0.42 0.20 0.20 - 0.32
ACOUSTIC 99K 0.61 0.60 0.55 0.54 0.56 0.54 0.57 0.54 0.55 0.57 - 0.51
MOCAP 217K 0.29 0.21 0.14 0.18 0.12 0.17 0.14 0.17 0.07 0.25 - 0.14
COVTYPE 581K 0.56 0.49 0.51 0.53 0.51 0.54 0.51 0.49 0.49 0.49 - 0.49

5. Discussion

The results in the previous section demonstrate the solid performance of DCD on a wide
variety of data sets. In this section, we discuss the connections and differences between DCD
and other related work, and we also discuss other implementations of the input similarities
than the symmetrized K-Nearest-Neighbors.
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Table 2: Clustering NMIs for the compared methods on various data sets. Boldface numbers
indicate the best in each row. “-” means out-of-memory error.

Data set N DCD k-means Ncut PNMF NSC ONMF PLSI LSD 1-Spec LSC SSC MTV

AMLALL 38 0.85 0.37 0.03 0.81 0.81 0.49 0.91 0.72 0.91 0.77 0.68 0.04
NCI 64 0.66 0.68 0.44 0.66 0.64 0.60 0.66 0.61 0.46 0.71 0.75 0.45
BT 106 0.34 0.36 0.07 0.35 0.36 0.30 0.37 0.34 0.37 0.29 0.17 0.37
IRIS 150 0.81 0.76 0.02 0.82 0.78 0.10 0.59 0.59 0.81 0.59 0.61 0.76
YALE 165 0.62 0.64 0.27 0.62 0.57 0.50 0.61 0.61 0.37 0.66 0.62 0.29
WINE 178 0.84 0.83 0.01 0.85 0.84 0.00 0.80 0.84 0.83 0.84 0.72 0.83
14CANCER 198 0.53 0.47 0.20 0.52 0.51 0.50 0.54 0.54 0.50 0.51 0.63 0.21
GLASS 214 0.74 0.75 0.04 0.67 0.69 0.71 0.56 0.67 0.54 0.64 0.63 0.68
VERTEBRAL 310 0.52 0.41 0.00 0.47 0.48 0.46 0.38 0.36 0.54 0.56 0.36 0.52
ECOLI 336 0.58 0.64 0.05 0.58 0.57 0.59 0.50 0.59 0.60 0.54 0.39 0.67
SVMGUIDE 391 0.22 0.08 0.00 0.12 0.10 0.01 0.13 0.21 0.11 0.02 0.21 0.17
ORL 400 0.85 0.88 0.40 0.86 0.86 0.80 0.84 0.86 0.61 0.90 0.88 0.50
VOWEL 990 0.40 0.45 0.02 0.37 0.41 0.35 0.29 0.33 0.35 0.29 0.23 0.31
MED 1.0K 0.59 0.60 0.15 0.57 0.57 0.54 0.56 0.58 0.46 0.33 0.55 0.21
COIL20 1.4K 0.88 0.76 0.05 0.81 0.80 0.71 0.56 0.70 0.52 0.92 0.89 0.83
YEAST 1.5K 0.27 0.26 0.02 0.22 0.27 0.26 0.22 0.23 0.27 0.27 0.21 0.20
ISOLET 1.6K 0.72 0.71 0.07 0.72 0.71 0.69 0.67 0.71 0.60 0.69 0.71 0.69
SEMEION 1.6K 0.87 0.60 0.01 0.79 0.72 0.69 0.56 0.84 0.77 0.85 0.73 0.82
MFEAT 2.0K 0.75 0.58 0.01 0.68 0.61 0.45 0.43 0.56 0.66 0.73 0.75 0.68
DNA 2.0K 0.25 0.38 0.00 0.08 0.04 0.07 0.18 0.21 0.05 0.07 0.02 0.00
SEG 2.3K 0.66 0.57 0.00 0.44 0.49 0.44 0.09 0.21 0.59 0.68 0.45 0.30
BOTSWANA 3.2K 0.74 0.64 0.01 0.66 0.61 0.60 0.29 0.48 0.55 0.72 0.64 0.58
CITESEER 3.3K 0.22 0.39 0.00 0.10 0.07 0.08 0.08 0.10 0.15 0.17 0.27 0.03
WEBKB 4.2K 0.23 0.09 0.00 0.07 0.20 0.07 0.21 0.19 0.12 0.18 0.02 0.13
OUTEX 4.3K 0.67 0.65 0.02 0.66 0.55 0.63 0.50 0.64 0.49 0.82 0.12 0.60
SATIMAGE 4.4K 0.61 0.62 0.00 0.56 0.63 0.53 0.21 0.51 0.67 0.62 0.54 0.31
PHONEME 4.5K 0.82 0.57 0.00 0.81 0.81 0.36 0.58 0.82 0.81 0.81 0.62 0.84
7SECTORS 4.6K 0.21 0.08 0.00 0.04 0.06 0.01 0.04 0.09 0.03 0.10 0.04 0.05
KSC 5.2K 0.57 0.05 0.01 0.58 0.48 0.37 0.18 0.30 0.55 0.59 0.49 0.48
BRUNA 5.6K 0.95 0.74 0.09 0.91 0.88 0.89 0.74 0.87 0.79 0.88 0.83 0.89
OPTDIGITS 5.6K 0.96 0.72 0.00 0.85 0.77 0.77 0.45 0.77 0.72 0.88 0.86 0.95
GISETTE 7.0K 0.65 0.12 0.00 0.00 0.06 0.00 0.03 0.22 0.62 0.54 0.25 0.00
COIL100 7.2K 0.90 0.82 0.16 0.85 0.84 0.78 0.69 0.81 0.44 0.83 0.92 0.85
ZIP 9.3K 0.82 0.46 0.00 0.59 0.61 0.50 0.35 0.59 0.83 0.77 0.78 0.78
TDT2 10K 0.70 0.71 0.74 0.72 0.74 0.71 0.73 0.71 0.61 0.69 0.74 0.64
PENDIGITS 11K 0.83 0.68 0.82 0.76 0.83 0.76 0.81 0.81 0.42 0.76 0.77 0.75
20NG 20K 0.54 0.44 0.52 0.37 0.52 0.38 0.47 0.44 0.08 0.48 0.29 0.13
LETTER 20K 0.49 0.36 0.39 0.45 0.37 0.45 0.41 0.42 0.20 0.43 0.38 0.36
MNIST 70K 0.93 0.39 0.81 0.83 0.84 0.72 0.82 0.80 0.89 0.80 - 0.88
NORB 97K 0.19 0.00 0.01 0.03 0.01 0.02 0.09 0.26 0.00 0.00 - 0.07
ACOUSTIC 99K 0.16 0.17 0.15 0.07 0.15 0.07 0.14 0.09 0.15 0.14 - 0.07
MOCAP 217K 0.38 0.26 0.19 0.22 0.18 0.21 0.17 0.22 0.07 0.30 - 0.14
COVTYPE 581K 0.16 0.08 0.06 0.05 0.06 0.15 0.07 0.04 0.02 0.08 - 0.01

5.1 Comparison with related techniques

5.1.1 Spectral clustering, k-means, and orthogonality constraint

Denote X = [x1, . . . , xN ]T the data matrix (rows to be clustered). The classical k-means
method seeks a clustering such that the sum of squared Euclidean distances between the
samples and their assigned cluster means is minimized. This objective can be be ex-
pressed by using the normalized cluster indicator matrix F defined in Section 2: minF ‖X−
FF TX‖2Fro = ‖X‖2Fro − Tr

(
F TXXTF

)
, where ‖ · ‖Fro is the Frobenius norm (Ding et al.,
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Table 3: The automatically selected number of clusters. Boldface number indicates the
closest (best) to the ground truth (number of classes, in the last column) in each
row. The results marked with a star required computation of more than five days.

Data set CH-km DB-km gap-km CH-lk DB-lk gap-lk DCD #classes

COIL20 2 31 39∗ 2 2 40∗ 17 20
BOTSWANA 8 4 30∗ 7 4 29 13 14

PHONEME 3 2 10 3 2 9 4 5
CURET 41∗ 79∗ 80∗ 41∗ 77∗ 80∗ 61 61

OPTDIGITS 2 9 20 3 14 20 10 10
COIL100 61∗ 139∗ 140∗ 61∗ 137∗ 140∗ 79 100

MNIST 2 20 20∗ 2 2 20∗ 10 10

Figure 2: Selecting the best number of clusters using NOSAC residual. The red star shows
the smallest NOSAC residual. The vertical blue dot-dashed line shows the ground
truth (number of classes).

2005). The k-means method can be extended to a nonlinear case by replacing XXT with
another kernel matrix.

It is difficult to directly minimize over F in the combinatorial space (Aloise et al., 2009;
Mahajan et al., 2009). A conventional way is to relax F to orthogonal matrix such that
the optimization can be solved by eigendecomposition. This connects k-means or kernel
k-means to spectral clustering (Ding et al., 2005). Despite the closed form solution, the
obtained eigenvectors do not immediately reveal the cluster assignments. Extra effort such
as k-means on the relaxed F rows (Ng et al., 2001) or iterative projection (Yu and Shi, 2003)
is needed to convert the eigenvectors to the cluster indicator matrix. An alternative way is
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to combine orthogonality and nonnegativity such that the relaxed F has only one non-zero
entry in each row and thus indicates the cluster assignments (Ding et al., 2006; Yang and
Oja, 2012b; Yang and Laaksonen, 2007; Yoo and Choi, 2008; Pompili et al., 2013).

However, the orthogonality constraint does not necessarily guarantee balanced clustering
because it does not restrict the magnitudes of the relaxed F rows. Moreover, the orthog-
onality favors Euclidean distance as the approximation error measure for simple update
rules, which is against our requirement of the sparse similarity graph input.

In contrast, our relaxation employs doubly stochasticity of the relaxed FF T (i.e. A or
B), which ensures that each cluster has unitary (soft) normalized graph volume3 when
combined with the nonnegativity constraint. Furthermore, although we do not explicitly
use the orthogonality, in practice the resulting relaxed F (i.e. U) contains only one or a
few significant non-zero entries in each row for clustered data. Therefore the best DCD
objective is close to the discrete NOSAC residual by which we can select the number of
clusters (see Section 4.2). This cannot be done in k-means or spectral clustering.

5.1.2 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) seeks nonnegative low-rank factorization of an
input data matrix (Lee and Seung, 1999, 2001). Variants of NMF have been proposed
for similarity-based clustering. For example, Ding et al. (2008) imposed nonnegativity
to spectral clustering; Ding et al. (2006); Yang and Oja (2012b); Yang and Laaksonen
(2007); Yoo and Choi (2008); Pompili et al. (2013) proposed using both nonnegativity and
orthogonality on the factorizing matrices; He et al. (2011) used the symmetric NMF for the
low-rank factors.

Probabilistic clustering is a natural way to relax the hard clustering problem. Recently
Arora et al. (2011, 2013) introduced stochasticity for clustering, by using a left stochastic
matrix in symmetric NMF. However, their method, called LSD, is restricted to the Euclidean
distance. In addition, LSD does not prevent imbalanced clustering.

Our method has two major differences from LSD. First, our decomposition involves a
normalizing factor which emphasizes balanced clusterings. Second, we use Kullback-Leibler
divergence which is more suitable for sparse graph input or curved manifold data. This also
enables us to make use of the Dirichlet and multinomial conjugacy pair to achieve more
accurate clusterings.

5.1.3 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (PLSA, also known as PLSI especially in information
retrieval) is a statistical technique for the analysis of two-mode and co-occurrence data.
When PLSA applies to similarity-based clustering (Hofmann, 1999), it maximizes the log-
likelihood

∑N
i=1

∑N
j=1 Sij log

∑r
k=1 P (k)P (i|k)P (j|k). Compared to the DCD objective, we

can see that the major difference is in the decomposition form within the logarithm: PLSA
learns the cluster prior P (k) and the conditional likelihood of data points P (i|k); while in
DCD we assume uniform prior P (i) and learn the conditional likelihood of clusters P (k|i).

3. For the kth cluster, the soft cluster volume is
∑N

i=1

∑N
j=1

WikWjk∑N
v=1 Wvk

and soft cluster size is
∑N

i=1Wik.
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There are several reasons why the DCD decomposition is more beneficial than PLSA
for cluster analysis. First, P (k|i) in DCD is the direct answer to the probabilistic clustering
problem, while the PLSA quantities are not. Second, in PLSA

∑r
k=1 P (k)P (i|k)P (j|k) =

P (i, j) is a joint probability matrix; it is not necessarily doubly stochastic and may not
guarantee that each cluster has the same normalized graph volume, as DCD does. Third,
DCD achieves a good balance in terms of the number of parameters, as it contains N×(r−1)
free parameters while in PLSA there are N × r− 1; this difference can be large when there
are only few clusters (e.g. r = 2 or r = 3).

Both methods can be improved by using Dirichlet priors. In DCD the prior is only
used in initialization and the prior parameter is chosen according to the smallest NOSAC
residual. We find that this strategy is better than the conventional hyper-parameters tuning
techniques in the topic model literature (e.g., Minka, 2000; Asuncion et al., 2009).

5.1.4 Doubly stochastic matrix projection

Normalizing a matrix to be doubly stochastic has been used to improve cluster analysis,
but mainly on the input similarity matrix. The normalization dates back to the Sinkhorn-
Knopp procedure (Sinkhorn and Knopp, 1967) or iterative proportional fitting procedure
(Bishop et al., 1975). Zass and Shashua (2006) proposed to improve spectral clustering by
replacing the original similarity matrix by its closest doubly stochastic similarities under
L1 or Frobenius norm. Wang et al. (2012) generalized the projection to the family of
Bregman divergences. Note that the normalized matrix in general requires O(N2) memory
if Frobenius norm projection is used.

In contrast, our method has three major differences: 1) it imposes the doubly stochas-
ticity constraint on the approximating matrix instead of the input similarity matrix; 2) the
doubly stochastic matrix must be low-rank; in practice we need only O(N × r) memory;
3) our DCD decomposition equivalently fulfills the doubly stochastic requirement, and thus
no extra normalization is needed.

5.1.5 Clusterability

Clusterability or clustering tendency measures how “strong” or “conclusive” is the clustering
structure of a given data set (Ackerman and Ben-David, 2009). The research dates back
to Hopkins index for spatial randomness test (Hopkins and Skellam, 1954). Other notions
include, for example, center perturbation clusterability (Ben-David et al., 2002), worst pair
ratio clusterability (Epter et al., 1999), separability clusterability (Ostrovsky et al., 2006),
variance ratio clusterability (Ostrovsky et al., 2006), strict separation clusterability (Balcan
et al., 2008), and target clusterability (Balcan et al., 2009). Ackerman and Ben-David
(2009) gave a survey and comparison on the above clusterability notions.

These clusterability criteria, however, suffer from one or more of the following draw-
backs: 1) they are defined over k-partitions with a fixed k and therefore cannot be used
for clusterings with various k values; 2) they are restricted to center-based clustering meth-
ods and might not work for curved clusters; and 3) they employ minimum within-cluster
distances and maximum between-cluster distances, which is sensitive to outlier data points.

In contrast, our NOSAC criterion does not have the above drawbacks. NOSAC is defined
over all partitions, including those with a different number of clusters. The partitions can
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Table 4: Clustering performance using approximated KNN: (top) purities and (bottom)
NMIs. Boldface numbers indicate the best in each row. “-” means out-of-memory
error.

Data set N DCD k-means Ncut PNMF NSC ONMF PLSI LSD 1-Spec LSC SSC MTV

TDT2 10K 0.87 0.86 0.20 0.89 0.89 0.84 0.73 0.87 0.54 0.85 0.88 0.79
PENDIGITS 11K 0.90 0.71 0.12 0.70 0.63 0.61 0.36 0.58 0.43 0.78 0.83 0.77
20NG 20K 0.61 0.39 0.06 0.39 0.45 0.28 0.17 0.34 0.06 0.50 0.17 0.21
LETTER 20K 0.36 0.29 0.05 0.35 0.24 0.33 0.16 0.26 0.10 0.35 0.33 0.26
MNIST 70K 0.96 0.48 0.11 0.68 0.63 0.58 0.40 0.70 0.78 0.87 - 0.92
NORB 97K 0.41 0.22 0.30 0.25 0.30 0.25 0.30 0.38 0.30 0.20 - 0.30
ACOUSTIC 99K 0.59 0.60 0.50 0.54 0.50 0.54 0.50 0.52 0.55 0.57 - 0.53
MOCAP 217K 0.29 0.21 0.05 0.20 0.07 0.19 0.06 0.17 0.06 0.25 - 0.09
COVTYPE 581K 0.55 0.49 0.51 0.50 0.51 0.50 0.51 0.49 0.49 0.49 - 0.49

Data set N DCD k-means Ncut PNMF NSC ONMF PLSI LSD 1-Spec LSC SSC MTV

TDT2 10K 0.71 0.71 0.08 0.71 0.74 0.68 0.62 0.70 0.63 0.69 0.74 0.66
PENDIGITS 11K 0.87 0.68 0.00 0.69 0.57 0.61 0.25 0.58 0.55 0.76 0.77 0.78
20NG 20K 0.54 0.44 0.00 0.38 0.53 0.26 0.11 0.27 0.08 0.48 0.29 0.13
LETTER 20K 0.48 0.36 0.00 0.44 0.28 0.42 0.18 0.37 0.18 0.43 0.38 0.35
MNIST 70K 0.91 0.39 0.00 0.68 0.61 0.65 0.32 0.70 0.82 0.80 - 0.87
NORB 97K 0.22 0.00 0.13 0.05 0.13 0.05 0.09 0.18 0.16 0.00 - 0.10
ACOUSTIC 99K 0.14 0.17 0.00 0.05 0.03 0.06 0.04 0.07 0.15 0.14 - 0.09
MOCAP 217K 0.37 0.26 0.00 0.21 0.05 0.19 0.03 0.19 0.06 0.30 - 0.07
COVTYPE 581K 0.16 0.08 0.06 0.04 0.06 0.04 0.07 0.04 0.03 0.08 - 0.01

be obtained from any clustering methods, not necessarily center-based. Moreover, we use
matrix divergences instead of only minimum or maximum of individual distances, which
provides a more robust measure against outliers.

5.2 Input similarities

The inputs to DCD are the pairwise similarities between data items, for example the sym-
metrized and binarized KNN graph used in Section 4. Naive implementation of KNN
requires O(N2) computational cost. There exist accelerated algorithms taking advantage of
the fact that it is often not necessary to calculate all pairs but only those in local neighbor-
hoods. We have used a simple implementation with a vantage-point index (Yianilos, 1993),
where we slightly modified the code to admit sparse data and with interface to Matlab.
For MNIST where N = 70, 000, the accelerated KNN (with K = 10) algorithm requires in
practice only about 7 minutes to completion..

Exact KNN by the above acceleration is still expensive for even larger data sets. In
practice, we find that using highly accurate approximated KNN is enough for maintaining
the DCD performance. Table 4 shows the comparison for large-scale data sets (N > 10, 000)
using the Fast Library of Approximated Nearest Neighbors (FLANN; Muja and Lowe, 2014).
We can see that the resulting DCD purities and NMIs are close to those with exact KNN,
and that the accuracy gains over the other compared methods mostly remain. By using
FLANN, we can obtain the similarities for DCD much faster; for example, FLANN takes
about 30 seconds for MNIST with K = 10.

KNN is not the only choice of input similarities. There are other more advanced neigh-
borhood descriptors which could further improve DCD, for example, Entropy Affinities
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which locally scales the spherical Gaussian kernels such that the neighborhoods around
every data point have the same given entropy (Vladymyrov and Carreira-Perpiñán, 2013),
Sparse Manifold Clustering and Embedding that learns a sparse coding with respect to local
manifold geometry and cluster distribution (Elhamifar and Vidal, 2011), and AnchorGraph
which learns the low-rank sparse coding with a set of pre-clustered landmarks (Liu et al.,
2010). Other approaches such as metric learning (e.g., Kulis, 2013) could also be applied
to obtain better input similarities.

6. Conclusions

We have presented a new clustering method based on low-rank approximation with two
major contributions: 1) a clusterability criterion which can be used for learning both clus-
ter assignments and the number of clusters; 2) a relaxed formulation with novel low-rank
doubly stochastic matrix decomposition which allows efficient optimization, as well as its
multiplicative majorization-minimization algorithm. Experimental results showed that our
method works robustly for various selected data sets and can substantially improve cluster-
ing accuracy for large manifold data sets.

There are also some other generic characteristics which affect clustering performance.
In the learning objective, there is the possibility of using other information divergences as
the approximation error measure, including the matrix-wise and non-separable divergences
(e.g., Cichocki et al., 2009; Dhillon and Tropp, 2007; Dikmen et al., 2015). In optimiza-
tion, currently the multiplicative algorithm runs in batch mode. In the future we aim to
develop even more scalable implementations such as streaming mini-batches of similarities
and distributed computing. In this way DCD can be applicable to even bigger data sets
and further improve clustering accuracy. In implementation, our practice indicates that
initialization could play an important role because most current algorithms are only local
optimizers. Using Dirichlet prior is only one way to smooth the objective function space.
It is an open question whether other priors or regularization techniques could in general
achieve better initializations.
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Appendix A. Proof of Theorem 1

Proof 1) Given a matrix B ∈ B and its corresponding W , let Uik = Wik/
√∑N

v=1Wvk.

Then B = UUT and

N∑
j=1

Bij =

N∑
j=1

r∑
k=1

WikWjk∑N
v=1Wvk

=

r∑
k=1

Wik
∑N

j=1Wjk∑N
v=1Wvk

=
∑
k

Wik = 1. (20)
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That is, B ∈ A. Therefore B ⊆ A.

2) Given a matrix A ∈ A and its corresponding U , let W = UE, where E is diagonal
and Ekk =

∑N
v=1 Uvk. Using

∑N
j=1Aji = 1, we have

1 =
N∑
j=1

Aji (21)

=

N∑
j=1

(
UUT

)
ji

(22)

=
N∑
j=1

(
UE−1EUT

)
ji

(23)

=

N∑
j=1

r∑
k=1

(
UE−1

)
jk

(
EUT

)
ki

(24)

=
N∑
j=1

r∑
k=1

Ujk∑N
v=1 Uvk

Wik (25)

=
r∑

k=1

∑N
j=1 Ujk∑N
v=1 Uvk

Wik (26)

=

r∑
k=1

Wik. (27)

Using
∑N

t=1Wtk =
∑N

t=1 Utk
∑N

v=1 Uvk, we have

Aij =

r∑
k=1

UikUjk =

r∑
k=1

Wik∑N
t=1 Utk

Wjk∑N
v=1 Uvk

=

r∑
k=1

WikWjk∑N
v=1Wvk

(28)

That is, A ∈ B. Therefore B ⊇ A.

Appendix B. Proof of Theorem 2

Proof We use W and W̃ to distinguish the current estimate and the variable, respectively.

(Majorization)
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Let φijk =
WikWjk∑N
v=1Wvk

(
r∑
l=1

WilWjl∑N
v=1Wvl

)−1
.

L(W̃ , λ) ≤−
N∑
i=1

N∑
j=1

r∑
k=1

Sijφijk

[
log W̃ik + log W̃jk − log

∑
v

W̃vk

]
(29)

− (α− 1)
N∑
i=1

r∑
k=1

log W̃ik +
N∑
i=1

r∑
k=1

λiW̃ik + C1 (30)

≤−
N∑
i=1

N∑
j=1

r∑
k=1

Sijφijk

[
log W̃ik + log W̃jk −

∑N
v=1 W̃vk∑N
v=1Wvk

]
(31)

− (α− 1)
N∑
i=1

r∑
k=1

log W̃ik +

N∑
i=1

r∑
k=1

λiW̃ik + C2 (32)

≤−
N∑
i=1

N∑
j=1

r∑
k=1

Sijφijk

[
log W̃ik + log W̃jk −

∑N
v=1 W̃vk∑N
v=1Wvk

]
(33)

− (α− 1)
N∑
i=1

r∑
k=1

log W̃ik +
N∑
i=1

r∑
k=1

λiW̃ik (34)

+
N∑
i=1

r∑
k=1

(
1

ai
+

α

Wik

)
Wik

(
W̃ik

Wik
− log

W̃ik

Wik
− 1

)
+ C2 (35)

def
=G(W̃ ,W ), (36)

where

C1 =

N∑
i=1

N∑
j=1

r∑
k=1

Sijφijk log φijk, (37)

C2 =C1 +
N∑
i=1

N∑
j=1

r∑
k=1

Sijφijk

(
log

N∑
v=1

Wvk − 1

)
(38)

are constants irrelevant to the variable W̃ . The first two inequalities follow the CCCP
majorization (Yang and Oja, 2011) using the convexity and concavity of − log() and log(),
respectively. The third inequality is called “moving term” technique used in multiplicative
updates (Yang and Oja, 2010). It adds the same constant 1

ai
+ α

Wik
to both numerator and

denominator in order to guarantee that the updated matrix entries are positive, which is
implemented by using the inequality x ≥ 1 + log x for x > 0. All the above upper bounds
are tight at W̃ = W , i.e. G(W,W ) = L(W,λ).
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(Minimization)

∂G

∂W̃ik

=∇+
ik −

α

Wik
− Wik

W̃ik

(
∇−ik −

α

Wik

)
(39)

+ λi +

(
1

ai
+

α

Wik

)
Wik

(
1

Wik
− 1

W̃ik

)
(40)

=− Wik

W̃ik

(
∇−ik +

1

ai

)
+

(
∇+
ik +

bi
ai

)
. (41)

Setting the gradient to zero gives

W new
ik = Wik

∇−ik + 1
ai

∇+
ik + bi

ai

(42)

Multiplying both numerator and denominator by ai gives the last update rule in Algorithm
1. Therefore, L(W new, λ) ≤ G(W new,W ) ≤ L(W,λ).
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M. Vladymyrov and M. Carreira-Perpiñán. Entropic affinities: properties and efficient
numerical computation. In International Conference on Machine Learnin (ICML), pages
477–485, 2013.

F. Wang, P. Li, A. König, and M. Wan. Improving clustering by learning a bi-stochastic
data similarity matrix. Knowledge Information Systems, 32(2):351–382, 2012.

Z. Yang and J. Laaksonen. Multiplicative updates for non-negative projections. Neurocom-
puting, 71(1-3):363–373, 2007.

Z. Yang and E. Oja. Linear and nonlinear projective nonnegative matrix factorization.
IEEE Transaction on Neural Networks, 21(5):734–749, 2010.

Z. Yang and E. Oja. Unified development of multiplicative algorithms for linear and
quadratic nonnegative matrix factorization. IEEE Transactions on Neural Networks,
22(12):1878–1891, 2011.

24



Low-Rank Doubly Stochastic Matrix Decomposition for Cluster Analysis

Z. Yang and E. Oja. Clustering by low-rank doubly stochastic matrix decomposition. In
International Conference on Machine Learning (ICML), pages 831–838, 2012a.

Z. Yang and E. Oja. Quadratic nonnegative matrix factorization. Pattern Recognition, 45
(4):1500–1510, 2012b.

Z. Yang, Z. Yuan, and J. Laaksonen. Projective non-negative matrix factorization with
applications to facial image processing. International Journal on Pattern Recognition
and Artificial Intelligence, 21(8):1353–1362, 2007.

P. Yianilos. Data structures and algorithms for nearest neighbor search in general met-
ric spaces. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 311–321, 1993. We have modified and used the code in
http://stevehanov.ca/blog/index.php?id=130.

J. Yoo and S. Choi. Orthogonal nonnegative matrix factorization: Multiplicative updates
on Stiefel manifolds. In Intelligent Data Engineering and Automated Learning (IDEAL),
pages 140–147, 2008.

S. Yu and J. Shi. Multiclass spectral clustering. In IEEE International Conference on
Computer Vision (ICCV), pages 313–319, 2003.

R. Zass and A. Shashua. Doubly Stochastic Normalization for Spectral Clustering. In
Advances in Neural Information Processing Systems (NIPS), 2006.

Z. Zhu, Z. Yang, and E. Oja. Multiplicative updates for learning with stochastic matrices.
In Scandinavian Conferences on Image Analysis (SCIA), pages 143–152, 2013.

25

http://stevehanov.ca/blog/index.php?id=130

