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Abstract

We present methods based on Metropolis-coupled Markov chain Monte Carlo (MC3) and
annealed importance sampling (AIS) for estimating the posterior distribution of Bayesian
networks. The methods draw samples from an appropriate distribution of partial orders
on the nodes, continued by sampling directed acyclic graphs (DAGs) conditionally on the
sampled partial orders. We show that the computations needed for the sampling algorithms
are feasible as long as the encountered partial orders have relatively few down-sets. While
the algorithms assume suitable modularity properties of the priors, arbitrary priors can
be handled by dividing the importance weight of each sampled DAG by the number of
topological sorts it has—we give a practical dynamic programming algorithm to compute
these numbers. Our empirical results demonstrate that the presented partial-order-based
samplers are superior to previous Markov chain Monte Carlo methods, which sample DAGs
either directly or via linear orders on the nodes. The results also suggest that the conver-
gence rate of the estimators based on AIS are competitive to those of MC3. Thus AIS is the
preferred method, as it enables easier large-scale parallelization and, in addition, supplies
good probabilistic lower bound guarantees for the marginal likelihood of the model.
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1. Introduction

The Bayesian paradigm to structure learning in Bayesian networks is concerned with the
posterior distribution of the underlying directed acyclic graph (DAG) given data on the
variables associated with the nodes of the graph (Buntine, 1991; Cooper and Herskovits,
1992; Madigan and York, 1995). The paradigm is appealing as it offers an explicit way to
incorporate prior knowledge as well as full characterization of posterior uncertainty about
the quantities of interest, including proper treatment of any non-identifiability issues. How-
ever, a major drawback of the Bayesian paradigm is its large computational requirements.
Indeed, because the number of DAGs grows very rapidly with the number of nodes, exact
computation of the posterior distribution becomes impractical already when there are more
than about a dozen of nodes.

There are two major approaches to handle the posterior distribution of DAGs without
explicitly computing and representing the entire distribution. One is to summarize the pos-
terior distribution by a relatively small number of summary statistics, of which perhaps the
most extensively used is a mode of the distribution, that is, a maximum a posteriori DAG
(Cooper and Herskovits, 1992). Other useful statistics are the marginal posterior probabil-
ities of so-called structural features, such as individual arcs or larger subgraphs (Buntine,
1991; Cooper and Herskovits, 1992; Friedman and Koller, 2003). When the interest is in
how well the chosen Bayesian model fits the data, say in comparison to some alternative
model, then the key quantity is the marginal likelihood of the model—also known as the
integrated likelihood, evidence, or the normalizing constant—which is simply the marginal
probability (density) of the observed data. Provided that the model satisfies certain mod-
ularity conditions, all these statistics can be computed in a dynamic programming fashion,
and thereby avoiding exhaustive traversing through individual DAGs. Specifically, assum-
ing a very basic form of modularity one can find a mode over n-node DAGs in O(2nn2) time
(Koivisto and Sood, 2004; Ott et al., 2004; Singh and Moore, 2005; Silander and Myllymäki,
2006) and the arc posterior probabilities and the marginal likelihood in O(3nn) time (Tian
and He, 2009). Assuming a more convoluted form of modularity, also the latter quantities
can be computed in O(2nn2) time (Koivisto and Sood, 2004; Koivisto, 2006). In practice,
these algorithms scale up to about 25 nodes. For mode finding, there are also algorithms
based on the A∗ search heuristic (Yuan and Malone, 2013) and integer linear programming
(Bartlett and Cussens, 2013), which often can solve even larger problem instances.

The other approach is to approximate the posterior distribution by collecting a sam-
ple of DAGs, each of which assigned a weight reflecting how representative the DAG is of
the posterior distribution. Having such a collection at hand, various quantities, including
the aforementioned statistics, can be estimated by appropriate weighted averages. Princi-
pled implementations of the approach have used the Markov chain Monte Carlo (MCMC)
methodology in various forms: Madigan and York (1995) simulated a Markov chain that
moves in the space of DAGs by simple arc changes such that the chain’s stationary distribu-
tion is the posterior distribution. Friedman and Koller (2003) obtained a significantly faster
mixing chain by operating, not directly on DAGs, but in the much smaller and smoother
space of node orderings, or linear orders on the nodes more formally. The sampler, called
order-MCMC in the sequel, requires the prior to be of a particular form that favors DAGs
that are compatible with many node orderings, thus introducing a “bias.” Ellis and Wong
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(2008) enhanced order-MCMC by presenting a sophisticated sampler based on tempering
techniques, and a heuristic for removing the bias. Also other refinements to Madigan and
York’s sampler have been presented (Eaton and Murphy, 2007; Grzegorczyk and Husmeier,
2008; Corander et al., 2008), however with somewhat more limited advantages over order-
MCMC. More recently, Battle et al. (2010) extended Madigan and York’s sampler in yet
another direction by applying annealed importance sampling (AIS) (Neal, 2001) to sam-
ple fully specified Bayesian networks (i.e., DAGs equipped with the associated conditional
distributions).

While the current MCMC methods for structure learning seem to work well in many
cases, they also leave the following central questions open:

1. Smoother sampling spaces. Can we take the idea of Friedman and Koller (2003) fur-
ther: are there sampling spaces that yield still a better tradeoff between computation
time and accuracy?

2. Arbitrary structure priors. Can we efficiently remove the bias due to sampling node
orderings? Specifically, is it computationally feasible to estimate posterior expecta-
tions under an arbitrary structure prior, yet exploiting the smoother sampling space of
node orderings? (The method of Ellis and Wong (2008) relies on heuristic arguments
and becomes computationally infeasible when the data set is small.)

3. Efficient parallel computation. Can we efficiently and easily exploit parallel computa-
tion, that is, to run the algorithm in parallel on thousands of processors, preferably
without frequent synchronization or communication between the parallel processes.
(Existing MCMC methods are designed rather for a small number of very long runs,
and thus do not enable large-scale parallelization.)

4. Quality guarantees. Can we measure how accurate the algorithm’s output is? For
instance, is it a lower bound, an upper bound, or an approximation to within some
multiplicative or additive term? (Existing MCMC methods offer such guarantees only
in the limit of running the algorithm infinitely many steps.)

In this article, we make a step toward answering these questions in the affirmative.
Specifically, we advance the state of the art by presenting three new ideas, published in
a preliminary form in three conference proceedings (Parviainen and Koivisto, 2010; Ni-
inimäki et al., 2011; Niinimäki and Koivisto, 2013b), and their combination that has not
been investigated prior to the present work. The next paragraphs give an overview of our
contributions.

We address the first question by introducing a sampling space, in which each state is a
partial order on the nodes. Compared to the space of node orderings (i.e., linear orders on
the nodes), the resulting sampling space is smaller and the induced sampling distribution is
smoother. We will also show that going from linear orders to partial orders does not increase
the computational cost per sampled order, as long as the partial orders are sufficiently thin,
that is, they have relatively few so-called downsets. These algorithmic results build on
and extend our earlier work on finding an optimal DAG subject to a given partial order
constraint (Parviainen and Koivisto, 2013).
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To address the second question, we take a somewhat straightforward approach: per
sampled partial order, we draw one or several DAGs independently from the corresponding
conditional distribution, and assign each DAG a weight that compensates the difference
of the structure prior of interest and the “proxy prior” we employ to make order-based
sampling efficient. Specifically, we show that the number of linear extensions (or, topological
sorts) of a given DAG—that we need for the weight—can be computed sufficiently fast in
practice for moderate-size DAGs, even though the problem is #P-hard in general (Brightwell
and Winkler, 1991).

Our third contribution applies both to the third and the fourth question. Motivated
by the desire for accuracy guarantees, we seek a sampler such that we know exactly from
which distribution the samples are drawn. Here, the annealed importance sampling (AIS)
method of Neal (2001) provides an appealing solution. It enables drawing independent and
identically distributed samples and computing the associated importance weights, so that
the expected value of each weighted sample matches the quantity of interest. Due to the
independence of the samples, already a small number of samples may suffice, not only for
producing an accurate estimate, but also for finding a relatively tight, high-confidence lower
bound on the true value (Gomes et al., 2007; Gogate et al., 2007; Gogate and Dechter, 2011).
Furthermore, the independence of the samples renders the approach embarrassingly parallel,
requiring interaction of the parallel computations only at the very end when the independent
samples are collected in a Monte Carlo estimator. We note that Battle et al. (2010) adopted
AIS for quite different reasons. Namely, due to the structure of their model, they had to
sample fully specified Bayesian networks whose posterior distribution is expected to be
severely multimodal, in which case AIS is a good alternative to the usual MCMC methods.

Finally, we evaluate the significance of the aforementioned advances empirically. As
a benchmark we use Friedman and Koller’s (2003) simple Markov chain on the space of
node orderings, however, equipped with the Metropolis-coupling technique (Geyer, 1991)
to enhance the chain’s mixing properties. Our implementation of the Metropolis-coupled
MCMC (MC3) method for the space of node orderings also serves as a proxy of a related
implementation1 of Ellis and Wong (2008). Our experimental study aims to answer two
main questions: First, does the squeezing of the space of linear orders into a space of partial
orders yield a significantly faster mixing Markov chain when we already use the Metropolis
coupling technique to help mixing? This question was left unanswered in our preliminary
work (Niinimäki et al., 2011) that only considered a single simple Markov chain similar
to that of Friedman and Koller (2003). Second, are the Monte Carlo estimators based on
AIS competitive to the MC3-based estimators when we sample partial orders instead of
linear orders? This question was left unanswered in our preliminary work (Niinimäki and
Koivisto, 2013b) that only considered sampling linear orders.

The remainder of this article is organized as follows. We begin in Section 2 with an
introduction to some basic properties of graphs and partial orders. The section also contains
some more advanced algorithmic results, which will serve as building blocks of our method
for learning Bayesian networks. In Section 3, we review the Bayesian formulation of the
structure learning problem in Bayesian networks, and also outline the approach of Friedman
and Koller (2003) based on sampling node orderings. In Section 4, we extend the idea of

1. The software used in the work of Ellis and Wong (2008) is not publicly available (W. H. Wong, personal
communication, January 29, 2013).
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sampling node orderings to partial orders and formulate the two sampling methods, MC3

and AIS, in that context. We dedicate Section 5 to the description of fast algorithms for
computing several quantities needed by the samplers. Experimental results are reported in
Section 6. We conclude and discuss directions for future research in Section 7.

2. Partial Orders and DAGs

This section introduces concepts, notation, and algorithms associated with graphs and
partial orders. In later sections, we will apply them as building blocks in the context of
structure learning in Bayesian networks. The content of the first subsection will be needed
already in Section 3. The content of the latter subsections will be needed only in Section 5,
and the reader may wish to skip them on the first read.

2.1 Antisymmetric Binary Relations

We use the standard concepts of graphs and partial orders. Our notation is however some-
what nonstandard, which warrants a special attention. Let N be a finite set, and let
R ⊆ N × N be a binary relation on N . We shall denote an element (u, v) of R by uv for
short. We say that R is

reflexive if u ∈ N implies uu ∈ R ;
antisymmetric if uv, vu ∈ R implies u = v ;

transitive if uv, vw ∈ R implies uw ∈ R ;
total if u, v ∈ N implies uv ∈ R or vu ∈ R .

If R has the first three properties, it is called a partial order. If it has all the four properties,
it is called a total or linear order. The set N is the ground set of the order and the pair
(N,R) is called a linearly or partially ordered set.

We will also consider relations that are antisymmetric but that need not have any other
of the above the properties. We say that R is

acyclic if there are no elements u1, . . . , ul such that
u1 = ul and ui−1ui ∈ R for each i = 2, . . . , l .

Note that acyclicity implies irreflexivity, that is, that uu 6∈ R for all u ∈ N . If R is acyclic,
we call the pair (N,R) a directed acyclic graph (DAG), N its node set, and R its arc set.

When the set N is clear from the context—as it will often be in our applications—we
identify the structure (N,R) with the relation R. We will typically use the letters P , L,
and A for a partial order, linear order, and a DAG, respectively.

The following relationships among the three objects are central in later sections of this
article. Let R and Q be relations on N . We say that Q is an extension of R if simply
R ⊆ Q. If Q is a linear order, then we may also call it a linear extension of R. Note
that in the literature, a linear extension of a DAG is sometimes called a topological sort of
the DAG. Sometimes we will be interested in the number of linear extensions of R, which
we denote by `(R). Furthermore, we say that R and Q are compatible with each other if
they have a common linear extension L ⊇ R,Q. While this relationship is symmetric, in
our applications one of the R,Q will be a partial order and the other one a DAG. Also,
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Figure 1: The Hasse diagram of a partial order on eight nodes (left) and a DAG compatible
with the partial order (right).
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Figure 2: Three DAGs (left) and the Hasse diagrams of four linear orders (right), some
of which are compatible with some of the DAGs. DAG A1 has only one linear
extension: L1. DAG A2 has two linear extensions: L1 and L2. DAG A3 has three
linear extensions: L1, L2 and L3. None of the DAGs is compatible with L4.

we say that Q is the transitive closure of R if Q is the minimal transitive relation that
contains R. Finally, we say that R is the transitive reduction of Q if R is the minimal
relation with the same transitive closure as Q. The transitive reduction of a partial order Q
is sometimes called the covering relation and visualized graphically by means of the Hasse
diagram. Figures 1 and 2 illustrate some of these concepts.

Some of the above described relationships can be characterized locally, in terms of the
in-neighbors of each element of N . To this end we let Rv denote the set of elements that
precede v in R, formally

Rv = {u : uv ∈ R, u 6= v} .

We will call the elements of Rv the parents of v and the set Rv the parent set of v. If R is
a partial order we may call the parents also the predecessors of v. We observe that if Q is
reflexive, then Q is an extension of R if and only if Rv ⊆ Qv for all v ∈ N .
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;

f6g f1g f5g

f1,6g f5,6g f1,5g f5,8g

f1,5,6g f4,5,6g f5,6,8g f1,5,8g

f1,2,3,4,5,6,7,8g

f1,3,4,5,6,7,8gf1,2,3,4,5,6,8gf1,2,3,4,5,6,7g

f1,2,3,4,5,6g f1,3,4,5,6,7g f1,3,4,5,6,8g

f1,3,4,5,6g f1,3,5,6,8g f1,4,5,6,8g

f1,3,5,6g f1,4,5,6g f1,5,6,8g f1,4,5,8g

Figure 3: The covering graph of the downset lattice of the partial order shown in Figure 1.

2.2 Downsets and Counting Linear Extensions

Let P be a partial order on a set N . A subset Y ⊆ N is a downset of P if v ∈ Y and uv ∈ P
imply that u ∈ Y . In the literature downsets are sometimes called also order ideals or just
ideals. We denote the set of downsets by D(P ), or shorter D when there is no ambiguity
about the partial order. The downset lattice of P is the set of downsets ordered by inclusion,
(D,⊆). While we do not define the notion of lattice here, we note that every lattice is a
partially ordered set and thus can be represented by its covering graph, that is, D equipped
with the covering relation. An example of a covering graph is shown in Figure 3. Observe
that in the covering graph a node X is a parent of another node Y if and only if X is
obtained from Y by removing some maximal element of Y , that is, an element of

maxY =
{
u ∈ Y : uv 6∈ P for all v ∈ Y \ {u}

}
.

(Later we may use the notation maxY also for a set Y that is not a downset.)

The following result of Habib et al. (2001) guarantees us an efficient access to the downset
lattice of a given partial order:

Theorem 1 Given a partial order P on an n-element set, the covering graph of the downset
lattice of P can be constructed in O(n|D|) time and space.
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Remark 2 Actually Habib et al. (2001) show a stronger result, namely that the factor n
in the time and space complexity can be reduced to the width of the partial order.

As a first use of these concepts we consider the problem of counting the linear extensions
of a given partial order P on N . Recall that we denote this count by `(P ). It is immediate
that `(P ) equals the number of paths from the empty set ∅ to the ground set N in the
covering graph of the downset lattice of P . Thus, letting F (∅) = 1 and, recursively for
nonempty Y ∈ D,

F (Y ) =
∑
v∈Y

Y \{v}∈D

F
(
Y \ {v}

)
,

we have that F (N) = `(P ). This result is a special case of Lemma 18 that will be given in
Section 5.2. Because the covering graph provides us with an efficient access to the downsets
and their parents in the covering graph, we have the following result:

Theorem 3 Given a partial order P on an n-element set, the number of linear extensions
of P can be computed in O(n|D|) time and space.

This result extends to counting the linear extensions of a given DAG A. Namely, we
observe that `(A) equals the number of linear extensions of the partial order P (A) that is
obtained by taking the transitive closure of A and adding the self-loop vv for each node
v ∈ N . The transitive closure can be computed relatively fast, in O(n3) time, using the
Floyd–Warshall algorithm.

Corollary 4 Given a DAG A on an n-element set, the number of linear extensions of A
can be computed in O

(
n3 + n|D(P (A))|

)
time and O

(
n|D(P (A))|

)
space.

Remark 5 In the worst case the number of downsets is 2n. We are not aware of any
algorithm that would compute the exact number of linear extensions faster than in O(n2n)
time in the worst case. As the problem is #P-complete (Brightwell and Winkler, 1991),
there presumably is no polynomial time exact algorithm for the problem. It is possible to
approximate the count to within any relative error ε > 0, roughly, in O(ε−2n5 log3 n) time
(see Sect. 4 of Bubley and Dyer, 1999). Unfortunately, the large hidden constants and the
large degree of the polynomial render the approximation algorithms impractical even for
moderate values of ε. It is also known that the linear extensions of P can be enumerated
in constant amortized time, which enables counting in O(n2 + `(P )) time (Pruesse and
Ruskey, 1994; Ono and Nakano, 2005). However, the enumeration approach to counting is
not feasible when `(P ) is large.

2.3 Fast Zeta Transforms

Denote by 2N the power set of N and by R the set of real numbers. For a function
ϕ : 2N → R the zeta transform of ϕ over the subset lattice (2N ,⊆) is the function ϕ̂ : 2N → R
defined by

ϕ̂(Y ) =
∑
X⊆Y

ϕ(X) , for Y ⊆ N . (1)
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We shall introduce two computational problems that concern the evaluation of the zeta
transform in restricted settings where the input function is sparse (has a small support) and
also the output function is evaluated only at some subsets. In the inflating zeta transform
problem we are given a partial order P on N , a function ϕ : D → R from the downsets of P
to real numbers, and an arbitrary collection C of subsets of N . The task is to compute the
zeta transform ϕ̂ restricted to C, that is, to compute ϕ̂(Y ) for every Y ∈ C. To make the
formula (1) applicable, we understand that ϕ(X) = 0 for X ∈ 2N \ D. In the deflating zeta
transform problem we are given a partial order P on N , a collection C of subsets of N , and
a function ϕ : C → R. The task is to compute the zeta transform ϕ̂ restricted to D. Again,
we understand that ϕ(X) = 0 for X ∈ 2N \ C. Clearly, the problems coincide if we take
C = D, and the resulting transform is known as the zeta transform over the downset lattice.
In these problems we assume that the input function is given as a list of argument–value
pairs (X,ϕ(X)), where X ranges over the domain of the function (i.e., C or D).

We begin with the problem of computing a zeta transform over the downset lattice:

Theorem 6 Given a partial order P on an n-element set and a function ϕ : D → R, the
zeta transform of ϕ over the downset lattice (D,⊆) can be computed in O(n|D|) time and
space.

To prove this result we consider the following algorithm. First construct the covering
graph of the downset lattice and associate each downset Y with the value ϕ0(Y ) = ϕ(Y ).
Then find an ordering v1, . . . , vn of the elements of N such that vivj ∈ P implies i ≤ j.
Next, for each downset Y and for each i = 1, . . . , n, let

ϕi(Y ) = ϕi−1(Y ) +

{
ϕi−1(Y \ {vi}) if vi ∈ Y and Y \ {vi} ∈ D ,
0 otherwise .

Finally return the values ϕn(Y ) for Y ∈ D. We can show that the algorithm is correct:

Lemma 7 It holds that ϕn(Y ) = ϕ̂(Y ) for all Y ∈ D.

The proof of this lemma and Lemmas 9–11 below are given in the appendix.
To complete the proof of Theorem 6, it remains to analyze the time and space require-

ments of the algorithm. The time and space requirement of constructing the covering graph
are within the budget by Theorem 1. Finding a valid ordering takes O(n2) time and space
using standard algorithms for topological sorting. Finally, for each Y ∈ D, running the n
steps and storing the values ϕi(Y ) takes O(n) time and space, thus O(n|D|) in total. Note
that the covering graph representation enables constant-time accessing of the downsets
Y \ {vi} for a given downset Y .

Let us then turn to the two more general problems.

Theorem 8 The deflating zeta transform problem and the inflating zeta transform problem
can be solved in O(n2|C|+ n|D|) time and O(n|C|+ n|D|) space.

We prove first the claim for the deflating zeta transform problem. We develop our
algorithm in two stages so as to split the sum in the zeta transform into two nested sums:
the outer sum will be only over the downsets X of P , while the inner sum will gather the
needed terms for each X.

9
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The key concept is the tail of a downset Y , which we define as the set interval

TY = {X : maxY ⊆ X ⊆ Y } .

The following lemma shows that the tails are pairwise disjoint.

Lemma 9 Let Y and Y ′ be distinct downsets. Then the tails TY and TY ′ are disjoint.

We also have that each subset of the ground set belongs to some tail:

Lemma 10 Let X ⊆ N . Let Y = {u : uv ∈ P, v ∈ X}, that is, the downward-closure of
X. Then Y ∈ D and X ∈ TY .

Lemmas 9 and 10 imply that for any downset S ∈ D the tails
{
TY : Y ∈ D ∩ 2S

}
partition the power set 2S . This allows us to split the zeta transform into two nested
summations. Let

β(Y ) =
∑
X∈TY

ϕ(X) , for Y ∈ D .

Now

ϕ̂(Y ) = β̂(Y ) =
∑
X⊆Y
X∈D

β(X) , for Y ∈ D .

Our algorithm computes ϕ̂ in two stages: first, given ϕ, it evaluates β at all downsets of P ;
second, given β, it evaluates ϕ̂ at all downsets of P . We have already seen how the second
stage can be computed within the claimed time and space budget (Theorem 6).

The first stage is computationally relatively straightforward, since each X ∈ C con-
tributes to exactly one term β(Y ). Specifically, we can compute the function β by initial-
izing the values β(Y ) to zero, then considering each X ∈ C in turn and incrementing the
value β(Y ) by ϕ(X) for the unique downset Y satisfying X ∈ TY . Using the observation
that Y is the downward-closure of X, as given by Lemma 10, the set Y can be found in
O(n2) time. This completes the proof of the first claim of Theorem 8.

Consider then the inflating zeta transform problem. We use the same idea as above,
however, reversing the order of the two stages. Specifically, the algorithm first computes
the zeta transform over the downset lattice D, resulting in the values ϕ̂(Y ) for all Y ∈ D.
Then, the algorithm extends the output function to the domain C using the observation
that the zeta transform is piecewise constant, that is, for any Z ⊆ N we have ϕ̂(Z) = ϕ̂(Y )
for a unique downset Y :

Lemma 11 Let Z ⊆ N . Then D ∩ 2Z = D ∩ 2Y , where the set Y ∈ D is given by

Y = {v ∈ Z : if uv ∈ P , then u ∈ Z} ;

in words, Y consists of all elements of Z whose predecessors also are in Z.

Clearly the set Y can be constructed in O(n2) time for a given set Z. This completes the
proof of Theorem 8.
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Remark 12 The zeta transforms studied in this subsection have natural “upward-variants”
where the condition X ⊆ Y is replaced by the condition X ⊇ Y . The presented results
readily apply to these variants, by complementation. Indeed, letting P be a partial order
on N and denoting by Ȳ the complement N \ Y and by P̄ the reversed partial order
{vu : uv ∈ P}, we have the equivalences

X ⊇ Y ⇐⇒ X̄ ⊆ Ȳ and Y ∈ D(P ) ⇐⇒ Ȳ ∈ D(P̄ ) .

Thus an upward-variant can be solved by first complementing the arguments of the in-
put function, then solving the “downward-variants”, and finally complementing back the
arguments of the output function.

2.4 Random Sampling Variants

The above described zeta transform algorithms compute recursively large sums of nonneg-
ative weights ϕ(Z) each corresponding to a subset Z ⊆ N . Later we will also need a way
to draw independent samples of the subsets Z ⊆ Y , proportionally to the weights. Coin-
cidentally, the introduced summation algorithms readily provide us an efficient way to do
this: for each sample we only need to stochastically backtrack the recursive steps.

We illustrate this generic approach to extend a summation algorithm into a sampling
algorithm by considering the deflating zeta transform problem. Suppose we are given a
partial order P on N , a collection of C of subsets of N , and a function ϕ : C 7→ R. As
an additional input we now also assume a downset Y ∈ D. We consider the problem of
generating a random subset Z ∈ C ∩ 2Y proportionally to ϕ(Z). We show next that this
problem can be solved in O(n) time, provided that the deflating zeta transform has been
precomputed and the intermediate results are stored in memory.

In the first stage the algorithm backtracks the zeta transform over the downset lattice,
as follows. Let Yn = Y . For i = n, n− 1, . . . , 1,

if Yi \ {vi} ∈ D, then with probability βi−1(Yi \ {vi})
/
βi(Yi) let Yi−1 = Yi \ {vi};

otherwise let Yi−1 = Yi.

By the proof of Theorem 6, the resulting set Y1 is a random draw from the subsets in D∩2Y

proportionally to β(Y1). This first stage takes clearly O(n) time.

In the second stage the algorithm generates a random set X ∈ TY1 proportionally to
ϕ(X). In this case, the number of alternative options is not constant, and we need an
efficient way to sample from the respective discrete probability distribution. A particularly
efficient solution to this subproblem is known as the Alias method (Walker, 1977; Vose,
1991):

Theorem 13 (Alias method) Given positive numbers q1, q2, . . . , qr, one can in O(r) time
construct a data structure, which enables drawing a random i ∈ {1, . . . , r} proportionally to
qi in constant time.

We can view the list of the terms ϕ(X), for X ∈ TY1 , as an intermediate result, which
has been precomputed and stored in memory using the Alias method. Thus the second
stage takes only O(1) time.
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3. Bayesian Learning of Bayesian Networks

In this section we review the Bayesian approach to structure learning in Bayesian networks.
Our emphasis will be on the notion of modularity of the various components of the Bayesian
model. From the works of Friedman and Koller (2003) and Koivisto and Sood (2004) we also
adopt the notion of order-modularity that is central in the partial-order-MCMC method,
which we introduce in the next section.

3.1 The Bayesian Approach to Structure Learning

We shall consider probabilistic models for n attributes, the vth attribute taking values in a
set Xv. We will also assume the availability of a data set D consisting of m records over
the attributes. We denote by Dj

v the datum for the vth attribute in the jth record. We will
denote by N the index set {1, . . . , n}, and often apply indexing by subsets. For example, if
S ⊆ N , we write Dj

S for {Dj
v : v ∈ S} and simply Dj for Dj

N .
We build a Bayesian network model for the data a priori, before seeing the actual data.

To this end, we treat each datum Dj
v as a random variable with the state space Xv. We

model the random vectors Dj = (Dj
1, . . . , D

j
n) as independent draws from an n-variate

distribution θ which is Markov with respect to some directed acyclic graph G = (N,A),
that is,

θ(Dj) =
∏
v∈N

θ(Dj
v |D

j
Av

) . (2)

Recall that Av = {u : uv ∈ A} denotes the set of parents of node v in G. We call the pair
(G, θ) a Bayesian network, G its structure, and θ its parameter. As our interest will be
in settings where the node set N is considered fixed, whereas the arc set A varies, we will
identify the structure with the arc set A and drop G from the notation.

Because our interest is in learning the structure from the data, we include the Bayesian
network in the model as a random variable. Thus we compose a joint distribution p(A, θ,D)
as the product of a structure prior p(A), a parameter prior p(θ | A), and the likelihood
p(D |A, θ) =

∏
j θ(D

j). Once the data D have been observed, our interest is in the structure
posterior p(A |D), which, using Bayes’s rule, is obtained as the ratio p(A)p(D |A)/p(D),
where p(D |A) is the structure likelihood and p(D) the marginal likelihood. Note that as the
parameter θ is not of direct interest, it is marginalized out. With suitable choices of the
parameter prior, the marginalization can be carried out analytically; we will illustrate this
below in Example 1.

Various quantities that are central in structure discovery, as well as in prediction of yet
unobserved data, can be cast as the posterior expectation

E(f |D) =
∑
A

f(A)p(A |D) (3)

of some function f that associates each structure A with a real number, or more generally, an
element of a vector space. For example, if we let f be the indicator function of the structures
where s is a parent of t, then E(f |D) equals the posterior probability that st ∈ A. For
another example, define f in relation to the observed data D and to unobserved data D′

as the conditional distribution p(D′ |D,A). Then E(f |D) equals the posterior predictive

12



Structure Discovery by Sampling Partial Orders

distribution p(D′ |D). Note that in this instantiation we allowed the function f depend on
the observed data D, which is only implicitly enabled in the expression (3). The marginal
likelihood p(D) is yet another variant of (3), obtained as the prior expectation E(f) of the
function f(A) = p(D |A). We will generally refer to the function f of interest as the feature.

3.2 Modularity and Node Orderings

From a computational point of view, the main challenge is to carry out the summation
over all possible structures A, either exactly or approximately. As the number of possible
structures grows very rapidly in the number of nodes, the hope is in exploiting the properties
of both the posterior distribution and the feature. Here, a central role is played by functions
that are modular in the sense that they factorize into a product of “local” factors, one term
per pair (v,Av), in concordance with the factorization (2).

We define the notion of modularity so that it applies equally to features, structure prior,
and structure likelihood. Let ϕ be a mapping that associates each binary relation R on N
with a real number. We say that ϕ is modular if for each node v there exists a mapping ϕv
from the subsets of N \ {v} to real numbers such that ϕ(R) =

∏
v∈N ϕv(Rv). We call the

functions ϕv the factors of ϕ.

In what follows, the relation R will typically be the arc set of a DAG. For example,
the indicator function for a fixed arc st mentioned above is modular, with the factors fv
satisfying fv(Av) = 0 if v = t and s 6∈ At and fv(Av) = 1 otherwise.

Modular structure priors can take various specific forms. For example, a simple prior is
obtained by assigning each node pair uv a real number κuv > 0 and letting the prior p(A)
be proportional to κ(A) =

∏
uv∈A κuv. Such prior allows giving separate weight for each

arc according to its prior plausibility. The uniform prior is a special case where κuv = 1
for all node pairs uv. Note that proportionality guarantees modularity, since the n factors
of the prior can absorb the normalizing constant c =

∑
A κ(A), for example, by setting

the vth factor to κv(Av)c
−1/n. Another example is the prior proposed by Heckerman et al.

(1995), that penalizes the distance between A and a user-defined prior DAG A0. This can be
obtained by letting p(A) be proportional to

∏
v∈N κv(Av) where κv(Av) = δ|(Av∪A0

v)\(Av∩A0
v)|

and 0 < δ ≤ 1 is a user-defined constant that determines the penalization strength. Modular
structure priors also enable a straightforward way to bound the indegrees of the nodes.
Indeed, we often consider the case where p(A) vanishes if there exists a node v for which
|Av| exceeds some fixed maximum indegree, denoted by k. Note, however, that modular
structure priors do not allow similar controlling of the outdegrees of the nodes. For a node
v we will call a set S a potential parent set if the prior does not vanish when S is the parent
set of v, that is, p(A) > 0 for some structure A with Av = S. Specifically, if p is modular,
then S is a potential parent set of v if and only if pv(S) > 0.

The following example describes a frequently used modular structure likelihood (Bun-
tine, 1991; Heckerman et al., 1995):

Example 1 (Dirichlet–multinomial likelihood) Suppose that each set Xv is finite. Con-
sider a fixed structure A ⊆ N×N . For each node v and its parent set Av, let the conditional
distribution of Dj

v given Dj
Av

= y be categorical with parameters θv·y = {θvxy : x ∈ Xv}.
Define a distribution θ of Dj as the product of the conditional distributions and observe
that (A, θ) is a Bayesian network. Assign each set of parameters θv·y a Dirichlet prior with
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parameters rvxy > 0, for x ∈ Xv, and compose the prior p(θ |A) by assuming independence

of the components. Let mvxy denote the number of data records j where Dj
v = x and

Dj
Av

= y. Then

p(D |A) =

∫
p(θ |A)p(D |A, θ)dθ

=
∏
v∈N

∏
y∈XAv

Γ(rv·y)

Γ(rv·y +mv·y)

∏
x∈Xv

Γ(rvxy +mvxy)

Γ(rvxy)
,

where rv·y and mv·y are the sums of the numbers rvxy and mvxy, respectively, and Γ is the
gamma function. In an important special case, each parameter rvxy is set to a so-called
equivalent sample size α ≥ 0 divided by the number of joint configurations of x and y (i.e.,
by |Xv| if Av is empty and by |Xv||XAv | otherwise).

By a modular model we will refer to a Bayesian model, where both the structure likeli-
hood and the structure prior are modular. We will assume that such a model is represented
in terms of the factors λv and κv of a likelihood λ and an unnormalized prior κ, respectively.
In our empirical study we have used the following simple model:

Example 2 (uniform Dirichlet–multinomial model, UDM) In this modular model,
the structure prior is specified by letting κv(Av) = 1 if |Av| ≤ k, and κv(Av) = 0 other-
wise. The likelihood is the Dirichlet–multinomial likelihood with the equivalent sample size
parameter set to 1 (see Example 1). The maximum indegree k is a parameter of the model.

For a demonstration of the computational benefit of modularity, let us consider the
probability (density) of the data D conditioning on the constraint that the unknown DAG
A is compatible with a given linear order L on the nodes. We may express this compatibility
constraint by writing simply L, and hence the quantity of interest by p(D |L). Write first

p(D |L) =
∑
A

p(A,D |L) =

∑
A⊆L p(A)p(D |A)∑

A⊆L p(A)
=

∑
A⊆L κ(A)λ(A)∑

A⊆L κ(A)
.

Here the last equality holds because the normalizing constants of the prior cancel out.
Then we use the key implication of the constraint A ⊆ L, namely, that the set of possible
structures A decomposes into a Cartesian product of the sets of potential parent sets Av
for each node v (Buntine, 1991; Cooper and Herskovits, 1992):

p(D |L) =
∏
v∈N

∑
Av⊆Lv

κv(Av)λv(Av)

/∏
v∈N

∑
Av⊆Lv

κv(Av) . (4)

This factorization enables independent processing of the parent sets for each node, which
amounts to significant computational savings compared to exhaustive enumeration of all
possible structures. A similar factorization can be derived for the conditional posterior
expectation E(f |D,L) of a modular feature f .

Motivated by the savings, Friedman and Koller (2003) addressed the unconstrained
setting where no node ordering is given. They proposed averaging E(f |D,L) over a sample
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of linear orders drawn from a distribution that is proportional to the marginal likelihood
p(D | L), as we will describe in the next subsection. For exact averaging over all linear
orders, Koivisto and Sood (2004) gave exponential-time dynamic programming algorithm.
We will obtain that algorithm as a special case of the algorithm we give in Section 5.

When the modularity is exploited as described above, the actual joint model of the
data and structures does not remain modular. This is essentially because some DAGs are
consistent with fewer linear orders than other DAGs. We will discuss this issue further at
the end of the next subsection. To characterize the model, for which the node-ordering
based methods work correctly, we follow Koivisto and Sood (2004) and call a model order-
modular if the likelihood function is modular and the structure prior p(A) is proportional
to κ(A)

∑
L⊇A µ(L), for some modular functions κ and µ. Thus an order-modular model

can be interpreted as a “modular” joint model for the structure A and the linear order L.
Note, that if µ(L) > 0 for all linear orders L, then the support of such a prior contains the
same DAGs as the support of the corresponding modular prior determined by κ. We will
also use the terms order-modular prior and order-modular posterior in an obvious manner.

Example 3 (order-modular UDM) In this model, the structure likelihood and the fac-
tors κv are as in a modular UDM (see Example 2), and the maximum indegree k is a
parameter of the model. The difference to the modular UDM is that we specify instead an
order-modular prior by letting µ(L) = 1 for all linear orders L on N . Thus the prior p(A)
is proportional to κ(A)`(A).

3.3 Sampling-based Approximations

We next review the basic sampling-based approaches for structure learning in Bayesian
networks. For a broader introduction to the subject in the machine learning context, we
refer to the survey by Andrieu et al. (2003).

Importance sampling methods provide us with a generic approach to approximate the
expectation E(f |D) by a sample average

1

T

T∑
t=1

f(At)p(At |D)

q(At)
, A1, A2, . . . , AT ∼ q(A) , (5)

where q(A) is some appropriate sampling distribution. It would be desirable that (i) q(A)
is as close to the function |f(At)p(At |D)| as possible, up to a multiplicative constant, and
(ii) that the samples At are independent. In order to compute the average we also need, for
any given sample At, (iii) an access to the value q(At) either exactly or up to a small error.
If the function q can be evaluated only up to a constant factor, then one typically uses
the self-normalized importance sampling estimate, which is obtained by dividing the sample
average (5) by the sample average of 1/q(At). In practice, it is possible to simultaneously
satisfy only some of the desiderata (i–iii).

The structure-MCMC method of Madigan and York (1995), in particular, draws the
samples by simulating a Markov chain whose stationary distribution is p(A |D). Thus, while
the sampling distribution tends to p(A |D) in the limit, after a finitely many simulation steps
there is no guarantee about the quality of the sampling distribution. Furthermore, since the
samples are dependent, their number has to be relatively large to obtain the efficiency that
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could be obtained with a smaller number of independent samples. Finally, the computation
of q(At) is avoided by assuming it to be a good approximation to p(At |D) and thus canceling
in the estimator. The performance of structure-MCMC depends crucially on the mixing
rate of the Markov chain, that is, how fast the chain “forgets” its initial state so that the
draws will be (approximately) from p(A |D). The main shortcoming of structure-MCMC is
that the chain may get easily trapped at small regions near local maxima of the posterior.

The order-MCMC method of Friedman and Koller (2003), which we already mentioned
in the previous subsection, aims at better performance by sampling node orderings from
a distribution that is proportional to p(D | L). Compared to the space of DAGs, the
space of node orderings is not only significantly smaller but it also smoothens the sampling
distribution, because for any L the marginal likelihood p(D |L) is a sum over exponentially
many DAGs. The resulting estimator becomes

1

T

T∑
t=1

E(f |D,Lt) , L1, L2, . . . , LT ∼ p′(L |D) ,

where p′(L |D) ∝ p(D |L)p′(L) is obtained via p(D |L) by re-modelling the n! possible node
ordering constraints L as mutually exclusive events, assigned with a uniform prior, p′(L).
In cases where exact computation of the expectation E(f |D,Lt) is not feasible, it can, in
turn, be approximated by a single evaluation at a sampled DAG,

f(At) , At ∼ p(A |D,Lt) ,

or, more accurately, by an average over several independent samples from p(A | D,Lt).
Importantly, the latter sampling step, if needed, is again computationally easy thanks to
the fixed node ordering. Thus the difficulty of sampling only concerns the sampling of node
orderings. Friedman and Koller (2003) showed that simple local changes, namely swaps
of two nodes, yield a Markov chain that mixes relatively fast in their sets of experiments.
We omit a more detailed description of the order-MCMC method here, as the method is
obtained as a special instantiation of the method we will introduce in Section 4.

The innocent-looking treatment of node ordering constraints as mutually exclusive
events, however, introduces a “bias” to the estimator. Indeed, it is easy to see that the
samples At will be generated from the distribution∑

L⊇A
p′(L |D)p(A |D,L) ∝ p(A |D)`(A) .

In other words, compared to sampling from the true posterior p(A |D), sampling via node
orderings favors DAGs that are compatible with larger numbers of linear orders. But also a
different interpretation is valid: the DAGs are sampled from the correct posterior under a
modified (order-modular) model where the original, modular structure prior p(A) is replaced
by the order-modular prior that is proportional to p(A)`(A) (as in Example 3). Oftentimes,
the modularity of the structure prior is preferred, as it can express priors that are uniform
over all DAGs (subject to a maximum indegree constraint). That being said, Friedman and
Koller (2003) give supportive arguments also for the other viewpoint.
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4. Sampling Partial Orders

Our key idea is to extend the order-MCMC of Friedman and Koller (2003) by replacing
the state space of node orderings by an appropriately defined space of partial orders on the
nodes. Throughout this section we will denote (perhaps counter to the reader’s anticipation)
by π′ the modular posterior distribution and by π its “biased” order-modular counterpart
that arises due to treating node orderings as mutually exclusive events. Our goal is to
perform Bayesian inference under the modular posterior π′. Because our approach is to
sample from the order-modular posterior π, we obtain, as a by-product, also an inference
method for order-modular models. When needed, we will refer to the underlying modular
model by p′ and to the induced order-modular model by p.

4.1 Sampling Spaces of Partial Orders

We will consider sampling from a state space that consists of partial orders on the node set
N . We will denote the state space by P. The idea is that the states in P partition the set
of all linear orders on N . To this end, we require P to be an exact cover on N , that is, every
linear order on N must be an extension of exactly one partial order P in P. Examples 4
and 5 below illustrate the concept and also introduce the notion of a bucket order, which
is central in our implementation of the proposed methods.

Example 4 (bucket orders) A partial order B is a bucket order if the ground set admits
a partition into pairwise disjoint sets, B1, B2, . . . , Bh, called the buckets, such that uv ∈ B if
and only if u = v or u ∈ Bi and v ∈ Bj for some i < j. Intuitively, the order of elements in
different buckets is determined by the buckets’ order, while within each bucket the elements
are incomparable. We say that the bucket order is of type (b1, b2, . . . , bh), when bi is the size
of Bi. We call the bucket order a balanced bucket order with a maximum bucket size b if
b = b1 = b2 = · · · = bh−1 ≥ bh. Furthermore, we call two bucket orders reorderings of each
other if they have the same ground set and they are of the same type. It is immediate that
the set (equivalence class) of reorderings of a bucket order P constitute an exact cover on
their common ground set (Koivisto and Parviainen, 2010). For a later reference, we also
note that the number of downsets of the bucket order is 1 +

∑
i(2

bi − 1).

The next example gives a straightforward extension of bucket orders.

Example 5 (parallel bucket orders) A partial order P is a parallel composition of bucket
orders, or parallel bucket order for short, if P can be partitioned into r bucket orders
B1, B2, . . . , Br on disjoint ground sets. We call two parallel bucket orders P and Q reorder-
ings of each other if their bucket orders can be labelled as P 1, P 2, . . . , P r and Q1, Q2, . . . , Qr

such that each P j is a reordering of Qj . It is known that the set (equivalence class) of re-
orderings of a parallel bucket order P is an exact cover on their common ground set (Koivisto
and Parviainen, 2010). Compared to bucket orders, parallel bucket orders make it possible
to obtain better time–space tradeoffs in the context of exact structure discovery. However,
our preliminary calculations (Niinimäki et al., 2011) show that parallel bucket orders are
unlikely to yield substantive advantages in the sampling context.

Because the methods we shall consider are based on local moves in the sampling space,
we equip the sampling space with a neighborhood structure. Formally, a neighborhood
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Figure 4: All reorderings of a bucket order of type (2, 2) on the node set {1, 2, 3, 4}. Ad-
jacency in the swap neighborhood is indicated by arrows labeled by the corre-
sponding swap operation. Each bucket order is visualized using a Hasse diagram,
with rectangles indicating individual buckets.
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Figure 5: Three adjacent states in the space of reorderings of a bucket order of type (3, 3, 2).

structure on P is just a graph on P, the adjacency relation specifying the neighborhood
relation. Here, we do not make an attempt to give any specific neighborhood structure that
would be appropriate for an arbitrary exact cover P. Instead, we continue with an example:

Example 6 (swap neighborhood) Let P be a (parallel) bucket order on N , and let P
the set of reorderings of P . The swap neighborhood on P is a graph in which the vertex set
consists of the reorderings P and two members Q,R ∈ P are adjacent if Q is obtained from
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Figure 6: There are in total six linear orders on the node set {1, 2, 3} and three reorderings
of a bucket order of type (2,1). As shown in the figure, the probability of each
bucket order is the sums of the probabilities of its linear extensions. Observe,
how the bucket orders form an exact cover and hence partition the set of linear
orders into three disjoint subsets.

R by swapping two nodes s, t ∈ N , more formally:

uv ∈ R ⇐⇒ σ(u)σ(v) ∈ Q ,

where σ is the transposition N → N that swaps s and t. Clearly, the swap neighborhood is
connected. See Figures 4 and 5 for an illustration of bucket orders and swap neighborhoods.

For each partial order P in an exact cover P, the posterior probability π(P ) is obtained
simply as the sum of the posterior probabilities π(L) of all linear extensions L of P . This
is illustrated in Figure 6. Note that the choice of the state space P does not affect the
posterior π and consequently leaves the bias untouched. The correction of the bias will be
taken care of separately, as shown in the next subsection.

4.2 Partial-Order-MCMC and Bias Correction

The basic partial-order-MCMC method has three steps. It first samples states from P along
a Markov chain whose stationary distribution is π. Then it draws a DAG from each sampled
partial order. Finally, it estimates the posterior expectation of the feature in interest by
taking a weighted average of the samples. In more detail, these steps are as follows:

1. Sample partial orders along a Markov chain using the Metropolis–Hastings algorithm.
Start from a random partial order P 1 ∈ P. To move from state P t to the next state,
first draw a candidate state P ? from a proposal distribution q(P ? |P t). Then accept
the candidate with probability

min

{
1,
π(P ?)q(P t |P ?)
π(P t)q(P ? |P t)

}
,

and let P t+1 = P ?; otherwise let P t+1 = P t. This produces a sample of partial orders
P 1, P 2, . . . , P T . Each move constitutes one iteration of the algorithm.

2. Sample DAGs from the sampled partial orders. For each sampled partial order P t,
draw a DAG At compatible with P t from the conditional posterior distribution
π(At |P t). This produces a sample of DAGs A1, A2, . . . , AT .
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3. Estimate the expected value of the feature by a weighted sample average. Return

fMCMC =
∑
t

f(At)

`(At)

/∑
t

1

`(At)

as an estimate of Eπ′(f). Recall that `(At) is the number of linear extensions of At.

Several standard MCMC techniques can be applied to enhance the method in practice.
Specifically, it is computationally advantageous to thin the set of samples P t by keeping
only, say, every 100th sample. Also, it is often a good idea to start collecting the samples
only after a burn-in period that may cover, say, as much as 50% of the total allocated
running time. On the other hand, we can compensate these savings in step 2 of the method
by drawing multiple, independent DAGs per sampled partial order P t, which can improve
considerably the estimate obtained in step 3. We will consider these techniques in more
detail in the context of our empirical study in Section 6.

It is worth noting that access to the exact posterior probabilities π(P t) are not needed
in step 1. It suffices that we can evaluate a function g that is proportional to π. An
appropriate function is given by

g(P t) =
∑
L⊇P t

∑
A⊆L

p′(A,D) . (6)

We will see later that the modularity of the model p′ enables fast computation of g(P t).
We can show that under mild conditions on the proposal distribution q, the Markov

chain constructed in step 1 converges to the target distribution π(P ), and consequently, the
estimate fMCMC tends to Eπ′(f) as the number of samples T grows. In the next paragraphs
we justify these two claims.

For the first claim it suffices to show that the chain is irreducible, that is, from any
state P the chain can reach any other state P ? with some number of moves (with a positive
probability). In principle, this condition would be easily satisfied by a proposal distribution
q(P ? | P ) whose support is the entire P for every P . From a practical point of view,
however, it is essential for good mixing of the chain to have a proposal distribution that
concentrates the proposes locally to a few neighbors of the current state P . In that case
it is crucial to show that the induced neighborhood graph on P is strongly connected,
thus implying irreducibility of the chain. In the order-MCMC method, connectedness was
obtained because any two node orderings can be reached from each other by some number
of swaps of two nodes. It is easy to see that this proposal distribution applies to partial
orders as well, only noting that some swaps of nodes may result in partial orders that are
outside the fixed state space P and must thus be rejected (or avoid proposing). Rather than
pursuing the issue in full generality, we extend the swap proposal for the sampling space of
parallel bucket orders:

Example 7 (swap proposal for parallel bucket orders) Consider the set of reorder-
ings P and the swap-neighborhood described in Example 6. For any P ∈ P, let the condi-
tional proposal distribution q(P ? | P ) be uniform over the neighbors P ? of P (and vanish
otherwise). Note that it is possible to sample directly from this conditional distribution by
drawing two nodes s, t that belong to the same part but different buckets in the partition
of N , uniformly at random, and proposing the swap of s and t.
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We then turn to the second claim that the estimate tends to the posterior expectation
of the feature. We investigate the behavior of the estimate fMCMC. By the properties of
the Markov chain we may assume that the P 1, P 2, . . . , P T are an ergodic sample from
π(P ), that is, any sample average tends to the corresponding expected value as T grows.
Consequently, the A1, A2, . . . , AT are an ergodic sample from the biased posterior

π(A) =
∑
P∈P

π(P )π(A |P ) =
∑
P∈P

∑
L⊇P

π(P,L,A) =
∑
L

π(L,A) ∝ π′(A)`(A) .

Here the last equation holds because P is an exact cover on N ; and the last proportionality
holds because π(L,A) vanishes if L is not an extension of A, and is otherwise proportional
to π′(A). The ergodicity now guarantees that the average of the 1/`(At) tends to the
expectation Eπ(1/`(At)) = 1/c, where

c =
∑
A

π′(A)`(A) , (7)

and that the average of the f(At)/`(At) tends to the ratio Eπ′(f)/c. This implies that
fMCMC approaches Eπ′(f) as the number of samples T grows.

The computational complexity of partial-order-MCMC is determined, in addition to the
number of samples T , by the complexity of the problems solved for each sampled partial
order P t and DAG At. These problems—of which analysis we postpone to Section 5—are:

(a) Unnormalized posterior: Compute g(P t) for a given P t.

(b) Sample DAGs: Draw a DAG At from π(At |P t) for a given partial order P t .

(c) Number of linear extensions: Compute `(At) for a given DAG At.

We will see that problems (a) and (b) can be solved in time that scales, roughly, as C+ |D|,
where C is the total number of potential parent sets and |D| is the number of downsets of
the partial order P t.

The problem (c) of counting the linear extensions was already discussed in Section 2,
Corollary 4. We note that if the target model is order-modular, then there is no need to
compute the terms `(At), as no bias correction is needed. Moreover, for an order-modular
model also the DAG sampling step can be avoided if the interest is in a modular feature f .
Namely, then the estimate is obtained simply as an average of the conditional expectations
Eπ(f |P t), which gives us one more problem to solve:

(a’) Expectation of a modular feature: Compute Eπ(f |P t) for a given partial order P t.

We will see in Section 5 that this problem can be computed in almost the same way as the
unnormalized posterior probability of P t, which justifies the label (a’).

4.3 Metropolis-coupled Markov Chain Monte Carlo (MC3)

Tempering techniques can enhance mixing of the chain and, as a byproduct, they also offer
a good estimator for the marginal likelihood p(D). Here we consider one such technique,
Metropolis-coupled MCMC (MC3) (Geyer, 1991). In MC3, several Markov chains, indexed
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by 0, 1, . . . ,K, are simulated in parallel, each chain i having its own stationary distribution
πi. The idea is to take π0 as a “hot” distribution, for example, the uniform distribution,
and then let the πi be increasingly “cooler” and closer approximations of the posterior π,
putting finally πK = π. Usually, powering schemes of the form

πi ∝ πβi , 0 ≤ β0 < β1 < · · · < βK = 1

are used. For instance, Geyer and Thompson (1995) suggest harmonic stepping, βi =
1/(K + 1− i); in our experiments we have used linear stepping, βi = i/K.

In addition to running the chains in parallel, every now and then we propose a swap
of the states Pi and Pj of two randomly chosen chains i and j = i + 1. The proposal is
accepted with probability

min

{
1,
πi(Pj)πj(Pi)

πi(Pi)πj(Pj)

}
.

We note that each πi needs to be known only up to some constant factor, that is, it suffices
that we can efficiently evaluate a function gi that is proportional to πi. By using samples
from the coolest chain only, an estimate of the expectation Eπ′(f), which we denote by fMC3,
is obtained by following steps 2 and 3 of the partial-order-MCMC method. In Section 4.5
we will show that, by using samples from all chains, we can also get good estimates of the
marginal likelihood p′(D). This technique is a straightforward extension of the technique
for estimating p(D).

4.4 Annealed Importance Sampling (AIS)

AIS produces independent samples of partial orders P 1, P 2, . . . , P T and associated impor-
tance weights w1, w2, . . . , wT . Like in MC3, a sequence of distributions π0, π1, . . . , πK is
introduced, such that sampling from π0 is easy, and as i increases, the distributions πi pro-
vide gradually improving approximations to the posterior distribution π, until finally πK
equals π. In our experiments we have used the same scheme as for MC3, however, with a
much larger value of K. For each πi we assume the availability of a corresponding function
gi that is proportional to πi and that can be evaluated fast at any given point.

To sample P t, we first sample a sequence of partial orders P0, P1, . . . , PK−1 along a
Markov chain, starting from π0 and moving according to suitably defined transition kernels
τi, as follows:

Generate P0 from π0.

Generate P1 from P0 using τ1.
...

Generate PK−1 from PK−2 using τK−1.

The transition kernels τi are constructed by a simple Metropolis–Hastings move: At state
Pi−1 a candidate state P? is drawn from a proposal distribution q(P? |Pi−1); the candidate
is accepted as the state Pi with probability

min

{
1,

gi(P?)q(Pi−1 |P?)
gi(Pi−1)q(P? |Pi−1)

}
,
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and otherwise Pi is set to Pi−1. It follows that the transition kernel τi leaves πi invariant.
Finally, we set P t = PK−1 and assign the importance weight as

wt =
g1(P0)

g0(P0)

g2(P1)

g1(P1)
· · · gK(PK−1)

gK−1(PK−1)
.

We then generate a DAG At from each P t as in step 2 of the partial-order-MCMC
method. An estimate of Eπ′(f) is given by

fAIS =
∑
t

wtf(At)

`(At)

/∑
t

wt

`(At)
. (8)

To see that this self-normalized importance sampling estimate is consistent, we examine
separately the expected values of the numerator and the denominator, and show that their
ratio equals Eπ′(f). To this end, consider a fixed t and any function h of partial orders.
Denote by q the joint sampling distribution of the partial orders P t0, P

t
1, . . . , P

t
K and the

DAG At. The general result of Neal (2001) implies the following: Let ρ denote the ratio of
the normalizing constants of gK and g0. Then

Eq
(
wth(P tK)

)
= ρ · Eπ

(
h(P tK)

)
and Eq

(
wt
)

= ρ .

Using the fact that Eq
(
wt h′(At)

)
= Eq

(
wt Eq(h′(At) |P t0, . . . , P tK)

)
= Eq

(
wt Eπ(h′(At) |P tK)

)
and applying the above result with a particular choice of the functions h and h′ yields

Eq
(
wt · f(At)

`(At)

)
= Eq

(
wt · Eπ

(
f(At)

`(At)

∣∣∣∣P tK)) = ρ · Eπ
(
f(At)

`(At)

)
=
ρ

c
· Eπ′

(
f(At)

)
,

where c is, as given before in (7), the normalizing constant of π′(A)`(A). From this we also
see that the expected value of each term in the denominator in (8) equals ρ/c. Thus the
ratio of the expectations is Eπ′(f) as desired.

4.5 Estimating the Marginal Likelihood

We now turn to the estimation of the marginal likelihood p′(D) using samples produced
by either MC3 or AIS. We will view p′(D) as the normalizing constant of the function
g′(A) = p′(A,D), and denote the constant by c′ for short. We will estimate c′ indirectly, by
estimating a ratio ρ′ = c′/c0, where c0 is another normalizing constant that we can compute
exactly. In fact, c0 will be the normalizing constant g0/π0, and in general, we will denote
by ci the normalizing constant gi/πi.

With a sample generated by MC3, our estimate for the marginal likelihood is obtained,
in essence, as a product of estimates of the ratios ci+1/ci, as given by

ρ′MC3 =
K−1∏
i=0

(
1

T

∑
t

gi+1

(
P ti
)

gi
(
P ti
) )( 1

T

∑
t

1

`(At)

)
.

To see that the estimate is asymptotically unbiased, observe first that

Eπi

(
gi+1

(
P ti
)

gi
(
P ti
) ) =

ci+1

ci
and Eπ

(
1

`(At)

)
=

c′

cK
.
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Here the former equation is easy to verify. For the latter we recall that Eπ
(
1/`(At)

)
= 1/c

and write the normalizing constant of gK = g using (6) as

cK =
∑
P

g(P ) =
∑
L

∑
A⊆L

p′(A,D) = p′(D)
∑
A

π′(A)`(A) = c′c .

Now, if the estimates were independent and, moreover, the samples P ti were exactly from
πi, then ρ′MC3 would be an unbiased estimate of the marginal likelihood. While neither
condition is satisfied in our case, the ergodicity of the chains guarantees that each estimate,
and thereby their product, is asymptotically unbiased.

With a sample generated by AIS, our estimate for the marginal likelihood is

ρ′AIS =
1

T

∑
t

wt

`(At)
.

It is not difficult to see that this estimate is unbiased. Namely, we have already seen that
the expected value of this estimate is ρ/c, where ρ = cK/c0. Because we just showed that
1/c = c′/cK , we obtain ρ/c = c′/c0 = ρ′, as desired.

The AIS-based estimate has two main advantages over the MC3-based estimate. One is
that we can use a fairly large number of steps K in AIS, which renders the estimate more
accurate. In MC3 we have to use a much smaller K to reserve time for simulating each
chain a large number of steps. A smaller K is expected to yield less accurate estimates. The
other advantage of the AIS-based estimate stems from the unbiasedness and independence
of the samples. Indeed, these two properties allow us to compute high-confidence lower
bounds for the marginal likelihood. We will make use the following elementary theorem; for
variations and earlier uses in other contexts, we refer to the works of Gomes et al. (2007)
and Gogate and Dechter (2011).

Theorem 14 (lower bound) Let Z1, Z2, . . . , Zs be independent nonnegative random vari-
ables with mean µ. Let 0 < δ < 1. Then, with probability at least 1− δ, we have

δ1/s min{Z1, Z2, . . . , Zs} ≤ µ .

Proof By Markov’s inequality, Zi > δ−1/sµ with probability at most δ1/s, for each i.
Taking the product gives that min{Z1, Z2, . . . , Zs} > δ−1/sµ with probability at most δ. To
complete the proof, multiply both sides by δ1/s and consider the complement event.

We apply this result by dividing our T samples into s bins of equal size and letting Zi
be the estimate of the marginal likelihood based on the samples in the ith bin. There is a
tradeoff in choosing a good value of s. Namely, to obtain good individual estimates Zi, we
would like to set s as small as possible. On the other hand, we would like to use a large s
in order to have a slack factor δ1/s as close to 1 as possible. The following examples show
two different ways to address this tradeoff.

Example 8 (slack-2 lower bound) Put δ = 2−5 = 0.03125 and s = 5. Then δ1/s = 1/2.

Example 9 (square-root lower-bounding scheme) Put δ = 2−5 and s = b
√
T c for T

samples. Then δ1/s grows with T , being 2−1, 2−1/2, 2−1/4 at T = 25, 100, 400, respectively.
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5. Per-Sample Computations

In the previous section we encountered a number of computational problems associated with
each sampled partial order and DAG (see the end of Section 4.2). In this section we give
algorithms to solve those problems. We begin by formulating the computational problems
and stating the main results in Section 5.1. The proofs are given in Sections 5.2–5.4. Finally,
in Section 5.5 we discuss the possibility to reduce the time and space requirements in certain
special cases that are relevant for the present applications.

5.1 Problems and Results

We shall derive solutions to the computational problems (a), (b), and (a’) of Section 4.2
as specific instantiations of slightly more abstract problems concerning modular functions.
Recall that the problem (c) was already discussed in Section 2.

We abstract the core algorithmic problem underlying problems (a) and (a’) as what we
call the DAG-extensions (DAGE) problem, defined as follows. As input we are given a
modular function ϕ that associates each DAG on N with a real number. We assume that
each factor ϕv, for v ∈ N , is given explicitly as a list of argument–value pairs (X,ϕv(X))
where X runs through some collection Cv of subsets of N \ {v}. We further assume that
the factor vanishes outside this collection. As input we are also given a partial order P on
N . Our task is to compute the value ϕ(P ) defined by

ϕ(P ) =
∑
L⊇P

∑
A⊆L

ϕ(A) .

We denote by C the sum of the sizes |Cv|, and by D the set of downsets of P .
Problems (a) and (a’) reduce to the DAGE problem: We obtain the unnormalized

posterior probability g(P ) as ϕ(P ) by letting ϕ(A) = κ(A)λ(A). The collections Cv consists
of the potential parent sets of node v. Similarly, we obtain the expectation Eπ(f |P ) of a
modular feature f as a ratio ϕf (P )/g(P ) by letting ϕf (A) = f(A)κ(A)λ(A).

In the next subsection we prove:

Theorem 15 (DAG-extensions) Given a partial order P on N and a modular function
ϕ over N , we can compute ϕ(P ) in O

(
n2(C + |D|)

)
time and O

(
n(C + |D|)

)
space.

To address problem (b), we define the DAG sampling problem as follows. Our input is
as in the DAGE problem, except that we are also given a number T . Our task is to sample
T independent DAGs from a distribution that is proportional to ϕ(A)`(A ∪ P ). Observe
that ϕ(P ) can be written as a sum of ϕ(A)`(A ∪ P ) over all DAGs A on N . Problem (b)
reduces to the DAG sampling problem in an obvious manner.

In Section 5.3 we prove:

Theorem 16 (DAG sampling) Given a partial order P on N , a modular nonnegative
function ϕ over N , and a number T > 0, we can draw T independent DAGs A on N
proportionally to ϕ(A)`(A ∪ P ) in O

(
n2(C + |D|+ T )

)
time and O

(
nC + n2|D|

)
space.

We also consider the following variant of the DAGE problem, which we call the arc
probabilities problem. Our input is as in the DAGE problem. For a pair of nodes s, t ∈ N ,
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define ϕst as the modular function obtained from ϕ by setting each factor as

ϕstv (Av) ≡
{

0 if t = v and s /∈ Av ,
ϕv(Av) otherwise .

Our task is to compute the values ϕst(P ) for all node pairs st. This problem models the
task of computing the posterior probabilities of all arcs: we see that ϕst(P )/g(P ) equals
Eπ(f) when we set ϕ(A) = κ(A)λ(A), and f(A) = 1 if st ∈ A and f(A) = 0 otherwise.

In Section 5.4 we prove:

Theorem 17 (arc probabilities) Given a partial order P on N and a modular function
ϕ over N , we can compute the values ϕst(P ) for every pair of two nodes s, t ∈ N simulta-
neously in O

(
n2(C + |D|)

)
time and O

(
n(C + |D|)

)
space.

5.2 Proof of Theorem 15

We prove Theorem 15 by giving an algorithm that evaluates ϕ(P ) in the claimed time and
space. The algorithm consists of two phases, which stem from the sum–product expression

ϕ(P ) =
∑
L⊇P

∏
v

αv(Lv) , where αv(Lv) =
∑

Av⊆Lv

ϕv(Av) . (9)

This expression is obtained by applying the same decomposition that was used to obtain
factorization (4). In the first phase of the algorithm, we compute the values αv(Lv) for each
v ∈ N and every relevant subset Lv ⊆ N \ {v}—we will see that only the downsets of P
can be relevant. In the second phase, we compute the sum over all linear extensions of P
by dynamic programming across the downsets of P , now assuming efficient access to each
(precomputed) value αv(Lv).

Let us first consider the first phase for a fixed node v. We observe that the problem of
computing the values αv(Y ) for all downsets v 6∈ Y ∈ D reduces trivially to the deflating
zeta transform problem, and can thus, by Theorem 8, be solved in O(n2|Cv| + n|D|) time
and O(n(|Cv|+ |D|)) space. Summing the time bounds over the n nodes yields a time bound
of O(n2(C + |D|) in total. Because the working space can be reused for different nodes v,
the space requirement is dominated by the input and the output size, which is O(n(C+ |D|)
in total.

Consider then the second phase. Define the function F from D to real numbers by
letting F (∅) = 1 and for nonempty Y ∈ D recursively:

F (Y ) =
∑
v∈Y

Y \{v}∈D

αv
(
Y \ {v}

)
F
(
Y \ {v}

)
. (10)

Lemma 18 below shows that F (N) = ϕ(P ). Thus ϕ(P ) can be evaluated in O(n|D|) time
and space using the covering graph of the downset lattice (Theorem 1).

Lemma 18 We have F (N) = ϕ(P ).
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Proof For any subset Y ⊆ N denote by P [Y ] the induced partial order {xy ∈ P : x, y ∈ Y }.
We show by induction on the size of Y that

F (Y ) =
∑

L⊇P [Y ]

∏
v∈Y

αv(Lv) ,

where the sum is over all linear extensions of P [Y ].

For the base case, consider an arbitrary singleton Y = {v} ∈ D. From the definition we
get that F (Y ) = αv(∅)F (∅) = αv(∅). Likewise, the induction claim evaluates to F (Y ) =
αv(∅), as P [Y ] = {vv}.

For the induction step, let ∅ 6= Y ∈ D. We write the induction claim as∑
L⊇P [Y ]

∏
v∈Y

αv(Lv) =
∑

u∈maxY

αu
(
Y \ {u}

) ∑
L′⊇P [Y \{u}]

∏
v∈Y \{u}

αv(L
′
v)

=
∑
u∈Y

Y \{u}∈D

αu
(
Y \ {u}

)
F
(
Y \ {u}

)
,

which equals F (Y ) by the recursive definition (10).

5.3 Proof of Theorem 16

Consider the following algorithm. First solve the corresponding instance of the DAGE
problem as described in the proof of Theorem 15. Store the intermediate results in the way
described in Section 2.4. This takes O

(
n2(C + |D|)

)
time and O

(
nC + n2|D|

)
space. (Now

we do not reuse the space.)

Then, to generate one of the T independent samples, do the following:

1. Generate a random linear extension L ⊇ P proportionally to
∏
v αv(Lv) by stochas-

tically backtracking the recurrence (10). Using the Alias method (Theorem 13) this
takes only O(n) time and space, since there are n recursive steps.

2. For each node v ∈ N , generate a random parent set Av ∈ Cv ∩ 2Lv by stochastically
backtracking the deflating zeta transform as described in Section 2.4. This takes
O(n2) time and space by the arguments given in Section 2.4.

3. Output the obtained DAG A.

Thus the algorithm has the claimed complexity in total.

5.4 Proof of Theorem 17

We will derive an algorithm that solves the problem in the claimed time and space. The
algorithm extends the forward–backward algorithm of Koivisto (2006) to accommodate the
partial order constraint.

Let the functions αv, for each node v ∈ N , be as defined in the proof of Theorem 15.
Define the “forward” function F : D → R as in definition (10), that is, by letting F (∅) = 1
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and, recursively,

F (Y ) =
∑
v∈Y

Y \{v}∈D

F
(
Y \ {v}

)
αv
(
Y \ {v}

)
, for ∅ ⊂ Y ∈ D .

Likewise, define the “backward” function B : D → R by letting B(N) = 1 and, recursively,

B(Y ) =
∑

v∈N\Y
Y ∪{v}∈D

αv
(
Y
)
B
(
Y ∪ {v}

)
, for N ⊃ Y ∈ D .

Furthermore, for each node t ∈ N , let

γt(At) =
∑
Y ∈D
Y⊇At

F
(
Y
)
B
(
Y ∪ {t}

)
, for At ∈ Ct .

Lemma 19 It holds that

ϕst(P ) =
∑

s∈At∈Ct

ϕt(At) γt(At) . (11)

Proof Consider a fixed pair of nodes s, t ∈ N . Starting from (9), write

ϕst(P ) =
∑
L⊇P

 ∑
At⊆Lt

ϕstt (At)

∏
v 6=t

αv(Lv) =
∑

At⊆N\{t}

ϕstt (At)

Denote by γ′t(At).︷ ︸︸ ︷∑
L⊇P

Lt⊇At

∏
v 6=t

αv(Lv) .

Note, that ϕstt (At) vanishes unless s ∈ At and otherwise equals ϕt(At), which in turn
vanishes unless At ∈ Ct. Thus, it remains to show that the just-introduced function γ′t
equals γt. To see this, we split the sum over L ⊇ P and Lt ⊇ At into two nested sums
that first iterate over Lt ⊇ At such that Lt ∈ D and then over Lv for v 6= t. Furthermore,
once Lt is fixed in the outer sum, then the inner sum must have Lv ⊂ Lt for v ∈ Lt and
Lv ⊇ Lt ∪ {t} for v ∈ N \ (Lt ∪ {t}). The inner sum can thus be split into two independent
sums, as follows:

γ′t(At) =
∑

Lt⊇At
Lt∈D

 ∑
L′⊇P [Lt]

∏
v∈Lt

αv(L
′
v)

 ∑
L′⊇P [N\Lt+]

∏
v∈N\Lt+

αv(L
′
v ∪ Lt+)

 ,

where Lt+ is a shorthand for Lt ∪ {t}. To complete the proof, we have to show that

F (Lt) =
∑

L′⊇P [Lt]

∏
v∈Lt

αv(L
′
v)

and

B(Lt+) =
∑

L′⊇P [N\Lt+]

∏
v∈N\Lt+

αv(L
′
v ∪ Lt+) .
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The first equation follows directly from the proof of Lemma 18. The proof for the second
equation is analogous, and is thus not repeated here.

We arrive at the following algorithm:

Algorithm AllArcs
Input: partial order P on N and ϕv(Av) for (v,Av) ∈ N × Cv.
Output: ϕst(P ) for all pairs s, t ∈ N .

1. Compute αv(Y ) for all (v, Y ) ∈ N ×D.

2. Compute F (Y ) and B(Y ) for all Y ∈ D.

3. For each t ∈ N :

(a) Compute γt(At) for all At ∈ Ct.

(b) For each s ∈ N \ {t}:

Compute ϕst(P ) using (11).

The complexity of the first two steps is clearly within the claimed budget—these steps
are essentially the same as in our algorithm for the DAGE problem.

Step 3a is the upward-variant of the inflating zeta transform problem and can thus,
by Theorem 8 and Remark 12, be solved in O(n2|Ct| + n|D|) time, for each t. This gives
O(n2(C + |D|)) time in total. The space requirement is, again, clearly within the claimed
budget, since the same space can be reused for different nodes t.

Step 3b takes only O(n|Ct|) time for each t, thus O(nC) in total. The additional space
requirement is negligible.

5.5 Special Cases: Regular Parent Set Collections and Bucket Orders

We have formulated our results in a very general setting where (i) the collections Cv of
potential parent sets can be arbitrary for each node v, and (ii) the partial order P can be
arbitrary. In our bounds for the time and space requirements we have paid a relatively high
cost for this generality: in many cases we obtained a running time bound of O(n2(C+ |D|)).

It appears that these bounds can be reduced significantly if we restrict (i’) the parent set
collections to all sets of size at most some maximum indegree k, and (ii’) the partial orders
to bucket orders. This restricted setting was, in fact, considered already by Koivisto and
Sood (2004, Theorem 12), who showed that (using our terminology) the DAGE problem can
be solved in O(C+n2b) time, when the maximum bucket size is b. We note that this bound
hides a factor that is linear in k. For the term that depends on the number of downsets,
the improvement is thus from about n2(n/b)2b to n2b, assuming a balanced bucket order
(see Example 4). We have observed that in this restricted setting similar improved bounds
can be obtained also for the DAG sampling problem and for the arc probabilities problem
(we omit details).
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6. Experimental Results

We have implemented the proposed partial-order-MCMC method, including the extensions
based on MC3 and AIS, for the special case of bucket orders (see Examples 4–7).2 We will
refer to these three variants of the methods simply as MCMC, MC3, and AIS. This section
reports experimental results on a selection of data sets of different characteristics. Details of
the data sets and the employed Bayesian models are given in Section 6.1. Implementation
details of the computational methods are given in Section 6.2.

We aim to answer four main questions: Does sampling partial orders provide us with
a significant advantage over sampling linear orders? How accurate is AIS as compared to
MC3? Does the bias correction approach (i.e., scaling by the number of linear extensions)
work in practice? How well can we estimate and lower bound the marginal likelihood of the
model? We address these questions in Sections 6.3–6.6, respectively.

6.1 Data Sets, Model Parameters, and Features of Interest

Table 1 lists the data sets used in our experiments. The Flare, German, Mushroom, and
Spambase data sets are obtained from the UCI Machine Learning Repository (Lichman,
2013). The Alarm data set was generated from the Alarm network (Beinlich et al., 1989).
Of the Mushroom data set we used both the whole data set and a subsample consisting
of 1000 randomly selected records of the data set. We will refer to these two versions as
Mushroom-8124 and Mushroom-1000. The data set with the fewest attributes, Flare, was
used only for examining the performance of the bias correction method of Ellis and Wong
(2008).

For each data set we employed the modular and the order-modular uniform Dirichlet–
multinomial model described in Examples 2 and 3. In these models we set the maximum
indegree parameter k to 4 for all data sets, except for Spambase, for which we set the value
to 3 in order to keep the per-sample computations feasible.

We focus on the estimation of the arc posterior probabilities and the marginal likelihood
of the model. For comparison purposes, we also computed exact values of these quantities
on the Flare, German, and Mushroom data sets using the algorithms of Koivisto and Sood
(2004; 2006) and Tian and He (2009).

6.2 Implementation Details

We made the following implementation choices in the MCMC method:

Sampling space. The sampling space was set to the balanced bucket orders of maximum
bucket size b (see Example 4). Separately for each data, we set the parameter b to
a value as large as possible, subject to the condition that its impact to the running
time is no more than about 2 times the impact of the terms that do not depend on b.
Table 1 shows the obtained values. Note that linear orders correspond to the special
case of b = 1.

Proposal distribution. We employed swap proposals, as described in Example 7.

2. The program BEANDisco, written in C++, is publicly available at
www.cs.helsinki.fi/u/tzniinim/BEANDisco/.
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Number of iterations
Name n m k b CPU time Linear orders Bucket orders

Flare 13 1066 4 – 1 d 6.1× 108 –
German 20 1000 4 7 4 d 2.4× 108 1.0× 108

Mushroom 22 8124 4 7 4 d 1.9× 108 9.6× 107

Spambase 58 4601 3 9 4 d 1.5× 107 9.6× 106

Alarm 37 1000 4 10 4 d 1.0× 107 6.3× 106

Table 1: Data sets and basic parameters used in the experiments. Abbreviations: number
of attributes n, number of data records m, maximum indegree k, maximum bucket
size b.

Burn-in iterations. Always 50% of the samples were treated as burn-in samples that were
not included in the estimates of the quantities of interest.

Thinning. We included only every 1024th of the visited states in the final sample.

Number of DAG samples. Per sampled partial order (after thinning), we draw as many
independent DAGs as was possible within 25% of the time needed for sampling the
partial order (i.e., 1024 partial orders due to thinning). In order to ensure that the
varying per-DAG processing time does not cause any bias, the DAGs were drawn
in two phases: First, 10% of the time budget is used to get an estimate T ′ for the
number of DAGs that can be drawn within the remaining time budget. Then, exactly
T ′ DAGs are drawn for the use of the algorithm.

Running time. Per configuration we allowed a total running time of 4 days (excluding the
additional time used to sample the DAGs), except for the Flare data set, for which
we only ran some of configurations and at the maximum of 1 day. Table 1 shows
the approximate total number of iterations made, both for linear orders and bucket
orders.

Independent runs. We ran each configuration 7 times, starting from states drawn indepen-
dently and uniformly at random.

In addition to the above choices, we made the following additional choices in the MC3

and AIS methods:

Tempering scheme. We used the linear stepping scheme. For MC3 we varied the number of
temperature levels K in {3, 15, 63}, and the thinning factor was reduced to 1024/(K+
1) correspondingly. For AIS we set the number of levels proportionally to the data
size, K = K ′mn where the factor K ′ varied in {1/4, 1, 4}. These values were found
by preliminary experiments (results not shown).

Number of chain swap proposals. For MC3 swaps of adjacent chains were proposed 1000×K
times every time before moving all the chains one step. Here the rationale is that chain
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Niinimäki, Parviainen, and Koivisto

G
er

m
a
n

−17170

−17160

−17150

−17140

−17130

−17120
MCMC

Li
ne

ar
 o

rd
er

MC3 (K=3) MC3 (K=15) MC3 (K=63)

1 s 1 min 1 h 4 d
−17150

−17140

−17130

−17120

−17110

−17100

B
uc

ke
t o

rd
er

1 s 1 min 1 h 4 d 1 s 1 min 1 h 4 d 1 s 1 min 1 h 4 d

Figure 7: Mixing and convergence of MCMC and MC3 on the German data set, for linear
orders (top) and bucket orders (bottom). Each panel shows the traces of 7 inde-
pendent runs (thin pale lines), that is, the natural logarithm of the unnormalized
posterior probability of the visited state (y-axis) as a function of the time elapsed
(x-axis). The cumulative maximum of these values are also shown for all the 7
runs (thick dark lines). If mixing is good, then all 7 runs should quickly converge
to approximately same posterior probability levels. This seems to be the case
in all eight panels. Note that posterior probabilities of linear orders and bucket
orders are not directly comparable.

swaps are computationally cheap and improve mixing considerably especially when K
is large.

Number of iterations along the coolest chain. For AIS we ran K/4 iterations along the
coolest chain. Here the rationale is that collecting a large number of samples from the
coolest chain is relatively cheap in comparison to the long annealing schedule. Note
that thinning concerns only these K/4 iterations.

We will mainly examine the methods’ performance as functions of running time. For
visualization purposes we did a second round of thinning by an additional factor of 10. Note
however that this additional thinning does not affect the estimates, which are based on the
full set of samples obtained after the first round of thinning.

6.3 Advantage of Partial Orders

We first compared the effect of the sampling space—whether linear orders or bucket orders—
to the mixing rate and convergence speed of the Markov chains. We did this for the basic
MCMC as well as for MC3 with varying number of temperature levels K (Figures 7–9). We
found that on the German and Alarm data sets the two sampling spaces perform about
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Figure 8: Mixing and convergence of MCMC and MC3 on the Mushroom data sets. See the
caption of Figure 7 for further descriptions. The top left panels of both data sets
are examples of bad mixing. Note that MCMC with linear orders fails completely
on the Mushroom-8124 data set for 3 out of the 7 runs, and consequently the
traces do not achieve the visible range of the y-axis.

equally well. On both these data sets, the chains seem to converge within a couple of
minutes. We also observe that that tempering is not particularly beneficial. The results
confirm that linear orders can perform very well on some data sets. The harder data
sets, Mushroom and Spambase, on the other hand, separate the two sampling spaces: the
performance of bucket orders is superior to linear orders. While the difference is particularly
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Figure 9: Mixing and convergence of MCMC and MC3 on the Alarm and Spambase data
sets. See the caption of Figure 7 for further descriptions.

large for the basic MCMC method, the difference remains significant for the MC3 variants:
On Mushroom, all MC3 runs seem to converge, but the convergence is quicker when using
bucket orders. On Spambase, it is not clear if any of the linear-order-based runs managed to
converge within the given time budged, while all the bucket-order-based MC3 runs appear
to converge.

Next we investigated how the differences in mixing and convergence rates translate
to differences in the accuracy of the arc posterior probability estimates under the order-
modular model (i.e., without bias correction). For each pair of nodes, we measure the
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accuracy by the standard deviation of the estimates in the 7 independent runs. When the
exact values were available we also gauged the accuracy by the median of the 7 absolute
errors. In a worst-case spirit, we report the respective the largest standard deviation and
the largest median error, which we obtain by taking the maximum over the node pairs. We
found that, qualitatively, the results follow closely the mixing and convergence behavior of
the methods (Figure 10). Specifically, on the German and Alarm data sets all the methods
perform about equally well, whereas on the Mushroom data sets the estimates we obtain
with bucket orders are significantly more accurate than the estimates we obtain with linear
orders, the difference being about one order of magnitude. On the Spambase data set
none of the methods performs particularly well, which can be probably explained by the
insufficiency of the allocated running time for achieving proper convergence. As the exact
values are not available for Spambase, the small empirical standard deviations might be just
due to similar yet insufficient convergence of the 7 runs. On the other hand, we also observe
that, in general, the largest standard deviation reflects very well the largest median error.

Based on these results with different number of temperature levels K for MC3, we fixed
K = 15 for presenting the remaining results in the next subsections. This value of K
appears to make a good compromise between a large number of iterations and fast mixing.

6.4 Accuracy of AIS

To study to performance of AIS, we compared the obtained arc posterior probability esti-
mates to those obtained with MC3, now with K = 15 only (Figure 11, left; Figure 12, left).
We found that on the easiest data set, German, the methods perform almost identically,
regardless of the value of the K ′ parameter. This holds also on the Mushroom data sets,
provided that K ′ is large enough (1 or 4). Furthermore, we observe that bucket orders are
superior to linear orders also in the case of AIS. On the Alarm data set AIS is slightly be-
hind MC3 even when sampling bucket orders, and on the Spambase data set the difference
of the methods is larger.

Based on these results with different values of K ′, we fixed K ′ = 1 for presenting
the remaining results in the next subsections. This value of K ′ appears to make a good
compromise between a long annealing schedule and a relatively large number of independent
samples.

6.5 Efficiency of Bias Correction

So far we have only discussed the results obtained under the order-modular model. We next
turn to the results under the modular model, which we obtain by applying the bias-corrected
estimators. The results are presented graphically in Figures 11–13.

First we studied the subproblem of counting the linear extensions of a given DAG. We
generated random DAGs for a varying number of nodes n, setting the maximum indegree to
either 3 or 6, and then ran the exact dynamic programming algorithm (from Section 2.2). We
found that while both the time and the space complexity of the algorithm grow exponentially
in n, the computations are feasible as long as n is at most about 40 for sparse DAGs, or
at most about 60 for dense DAGs (Figure 13a). For example, the linear extensions of a
49-node DAG of maximum indegree 6 can typically be counted within a couple of seconds.
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Figure 10: The accuracy of the arc posterior probability estimates under an order-modular
model, for MCMC and MC3. For each method the largest median error (err)
and the largest standard deviation (dev) are shown as a function of the time
elapsed.
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Figure 11: The accuracy of the arc posterior probability estimates under an order-modular
model (left) and a modular model (right), for AIS and MC3. For clarity, only
the largest median errors are shown for the German and Mushroom data sets.
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Figure 12: The arc posterior probability estimates for 7 independent runs (y-axis) plotted
against the exact values (x-axis), under an order-modular and modular model.
For the modular model also the biased values (exact under the order-modular
model) are plotted against the unbiased exact values (gray ×).

However, the simple dynamic programming algorithm does not exploit sparsity well and so
the performance degrades for maximum indegree 3.

Then we compared our bias correction method to that of Ellis and Wong (2008), which
we refer to as the EW method in the sequel. The EW method works as follows. First it
draws a sample of node orderings from an approximate posterior distribution, like the order-
MCMC method of Friedman and Koller (2003). Then, from each sampled node ordering, it
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Figure 13: (a) The runtime required to count the linear extensions of 9 random DAGs with
a varying number of nodes and a varying maximum indegree. Runtimes less than
0.01 seconds are rounded up to 0.01. The mean of the runtimes is shown by a
solid line. The available memory was limited to 16 GB. No runtime estimates
are shown when the memory requirement exceeded the limit for at least one of
the 9 DAGs. (b) The accuracy of the proposed bias correction method (MC3)
compared to the EW method with ε = 0.05 (MC3-EW). Both methods are based
on sampling linear orders by MC3 under an order-modular model. The largest
median error of the arc posterior probability estimates over 7 independent runs is
shown as a function of the time elapsed. The runs of the EW method terminated
as soon as one of the 7 runs ran out the 20 GB of memory allocated for storing
the DAGs. For the EW method the estimates were computed at doubling sample
sizes 2, 4, 8, . . ., to make sliding burn-in periods computationally feasible.

generates a number of independent DAGs from the conditional posterior distribution until
the total posterior mass of the unique DAGs obtained is at least 1 − ε, where ε > 0 is a
parameter of the method. Finally, the DAGs so obtained for each node ordering are merged
into a single set, duplicates are removed, and each DAG is assigned an importance weight
proportional to the posterior probability of the DAG.

The results of the comparison on the Flare and German data sets are shown in Fig-
ure 13b. On these data sets the EW method turned out to be inferior to the proposed
method. On the other data sets (Mushroom-1000 , Mushroom-8124 , Alarm, Spambase), the
EW method either ran out of memory immediately or was able to process only a couple of
node ordering samples, yielding poor estimates (the largest media error close to 1; results
not shown).

Finally we compared the arc posterior probability estimates under the two models,
order-modular and modular (Figure 11, right). The results confirm the expectation that
the estimates are less accurate under the modular model. The weaker performance is due
to the additional importance sampling step needed for bias correction, which reduces the
effective sample size. Otherwise, the earlier conclusions hold also under the modular model:
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bucket orders outperform linear orders and MC3 is slightly superior to AIS. However, the
bias correction method also brings a new feature: on the Mushroom data sets the largest
median error stops decreasing at some point, stagnating at an error of about 0.10 (while the
largest standard deviation continues decreasing). This phenomenon is due to a few node
pairs for which the arc posterior probability is very close to 1 under the order-modular
model, but around 0.90 under the modular model. The culprits can be located in Figure 12
(right) as a cluster of points in the upper-right corner of the panels. Note that for the other
node pairs the arc posterior probability estimates are very accurate.

6.6 Estimating the Marginal Likelihood

For estimating the marginal likelihood AIS clearly outperforms MC3, as expected (Fig-
ure 14). The relatively small number of chains (i.e., temperature levels) in MC3 leads to a
large fluctuation in the estimates within a single run and between independent runs. AIS,
on the other hand, benefits from the long annealing scheme and produces very accurate
estimates on the German and Mushroom data sets. On the Alarm data set the variance
of the estimates is larger for both methods. Yet the estimates of AIS seem to converge
well. The Spambase data set is, again, the hardest instance for both method, the results
suggesting insufficient convergence of the samplers.

We also observed that when the estimates of AIS are close to the exact value, then also
the high-confidence lower bounds are very good. Indeed, on the German and Mushroom
data sets the lower bounds obtained with the square-root lower-bounding scheme are within
an absolute error of about 0.4 or less in the logarithmic scale, hence within a relative error
of about e0.4 − 1 ≈ 0.4 or less. Whether the model is order-modular or modular affects
the accuracy of the marginal likelihood estimates considerably on the German data set but
very little on the Mushroom data sets.

7. Conclusions and Future Work

We have investigated a sampling-based approach to Bayesian structure learning in Bayesian
networks. Our work has been inspired to a large extent by the order-MCMC method of
Friedman and Koller (2003), in which the sampling space consists of all possible linear
orders of the nodes. Our partial-order-MCMC methods advance the methodology in four
dimensions:

1. Smoother sampling space. The space of partial orders is smaller still than the space
of linear orders. Also, the posterior distribution tends to be smoother, because the
posterior probability of each partial order is obtained by summing the posterior prob-
abilities of its linear extensions. Our empirical results agree with these expectations,
and show instances where partial-order-MCMC performs significantly better than
order-MCMC.

2. Arbitrary structure priors. We proposed a method to correct the bias that arises
because the samples are drawn (approximately) from an order-modular rather than
a modular posterior distribution. The correction amounts to a simple scaling term
per sampled DAG. The term only depends on the number of linear extensions of the
DAG, and as we showed, it can be computed sufficiently fast when the number of
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Figure 14: The marginal likelihood of the model estimated by 7 independent runs of AIS
and MC3. For AIS, shown are also lower bound estimates obtained with all the
samples pooled together (thus extending the total running). The lower bound
schemes are as described in Example 8 and 9. On the y-axis is the natural
logarithm of the estimate or exact value.
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nodes is moderate, say, at most 40. Our empirical results confirmed that, in general,
the correction works well also in practice—some rare cases where the correction fails
are discussed below.

For convenience, we focused on the special case where the correct model is the modular
counterpart of an order-modular model. In principle, it is straightforward to extend
the estimators to accommodate an arbitrary model, as long as the corresponding
posterior probability function (a) can be efficiently evaluated for any given DAG (up
to a normalizing constant) and (b) has a support that is contained in the support of
the order-modular sampling distribution. The statistical efficiency of the estimator
may, however, deteriorate if the true distribution is far from the sampling distribution.

3. Efficient parallel computation. We observed that the annealed importance sampling
method (AIS) is easy to run in parallel, since the method is designed to produce
independent samples. We compared AIS empirically to another tempering method,
Metropolis-coupled MCMC (MC3), and found that AIS-based estimates are slightly
less accurate for arc posterior probabilities but significantly more accurate for the
marginal likelihood of the model.

4. Quality guarantees. We also observed that AIS allows us to compute high-confidence
lower bounds for the marginal likelihood. We showed that the lower bounds are
very good, within a factor of about 1.2 on the data sets for which exact values were
available. Admitted, lower bounds on the marginal likelihood is just a small step
toward accuracy guarantees more generally.

These advancements (1–4) upon the order-MCMC method come essentially “for free”
concerning both computational and statistical efficiency. Indeed, sampling partial orders
is not more expensive than sampling linear orders, provided that the partial orders are
sufficiently thin (i.e., the number of downsets is small). Namely, the bottleneck in both
methods is the need to visit a large number of potential parent sets of the nodes. Likewise,
while counting the linear extensions of a sampled DAG can be computationally demanding,
the computational cost is compensated by the relatively small number of sampled DAGs
(after thinning) as compared to the total number of partial order samples (before thinning).

The proposed methods also have shortcomings that call for further investigations. First,
the complexity of the per-sample computations grows rapidly with the number of nodes n. In
particular, the complexity of computing the unnormalized posterior probability of a partial
order does not scale well with the indegree k, and the computations become impractical
when, say, n ≥ 60 and k ≥ 4. For example, on the Spambase data set (n = 58, k = 3)
we observed that the large number of potential parent sets rendered the allocated running
time of 4 days insufficient for proper convergence of the sampling methods. To significantly
expedite these computations, a plausible idea is to resort to approximations instead of
exact computation. In the sampling space of linear node orders, the approach has proved
successful, provided that the number of data records is large (Friedman and Koller, 2003;
Niinimäki and Koivisto, 2013a). In contrast, the problem of counting the linear extensions
of a sampled DAG seems to get harder for sparser DAGs. However, we believe this is
rather a feature of our simple algorithm—our preliminary results with a more sophisticated
algorithm suggest that sparsity can actually be turned into a computational advantage.
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Second, the theoretical accuracy guarantees of the proposed methods are quite modest.
For example, currently the methods do not produce good lower or upper bounds for the arc
posterior probabilities. Thus the user has to resort to monitoring empirical variance and
related statistics that do not always generalize well beyond the obtained sample. We saw
a warning example of that on the Mushroom data set, where the bias-corrected estimates
had small variance over 7 independent runs, but where the estimates were biased and the
bias did not decrease as the number of samples grew. While this failure concerned only a
few node pairs (the estimates being very accurate for the rest), it shows that sometimes
the proposed bias correction method is not efficient. It may happen that all the sampled
DAGs contain the arc of interest, because the biased, order-modular posterior probability
of the arc is close to 1, and yet the unbiased, modular posterior probability of the arc can
be much below 1, say, 0.90. In such cases the present bias correction approach may fail. It
is an intriguing open question how situations of this kind can be treated or circumvented.
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Appendix A. Proofs

Lemma 7 It holds that ϕn(Y ) = ϕ̂(Y ) for all Y ∈ D.

Proof For a set X write Xi for X ∩ {vi}, and for sets X,Y write X ⊆i Y as a shorthand
for X ⊆ Y and Xj = Yj for j > i. Let Y ∈ D. We prove by induction on i that

ϕi(Y ) =
∑
X∈D
X⊆iY

ϕ(X) .

The claim then follows, for the condition X ⊆n Y is equivalent to X ⊆ Y . Note also that
the base case of i = 0 clearly holds, since X ⊆0 Y is equivalent to X = Y .

Let then i > 0. Suppose first that vi 6∈ Y or Y \ {vi} 6∈ D. Then ϕi(Y ) = ϕi−1(Y ). If
vi 6∈ Y , then the conditions X ⊆i Y and X ⊆i−1 Y are equivalent, and by the induction
hypothesis the claim follows. Assume then that vi ∈ Y and Y \ {vi} 6∈ D. By the induction
hypothesis it suffices to show that, if X ∈ D, then the conditions X ⊆i Y and X ⊆i−1 Y
are equivalent. Because the latter condition implies the former, it remains to consider the
other direction. To this end, suppose the contrary, X ⊆i Y but Xi 6= Yi. Thus we must
have vi 6∈ X. However, the assumption Y \ {vi} 6∈ D and the fact that Y ∈ D imply that
there is an element vj ∈ Y \ {vi} such that vivj ∈ P , which, together with the ordering of
the elements imply that i < j. Therefore, as X ⊆i Y , we have vj ∈ X, which contradicts
our assumption that X ∈ D.
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Suppose then that vi ∈ Y and Y \ {vi} ∈ D. Then ϕi(Y ) = ϕi−1(Y ) + ϕi−1(Y \ {vi}).
Let X ∈ D. Denote the conditions of interest by

E = X ⊆i Y ,
E1 = X ⊆i−1 Y ,
E2 = X ⊆i−1 Y \ {vi} .

By the recurrence and the induction hypothesis, it suffices to show that E holds if and only
if exactly one the conditions E1 and E2 holds. Clearly, if either E1 or E2 holds, so does E.
Suppose therefore that E holds. Now, either Xi = {vi} = Yi, in which case E1 holds (but
E2 does not); or Xi = ∅, in which case E2 holds (but E1 does not).

Lemma 9 Let Y and Y ′ be distinct downsets. Then the tails TY and TY ′ are disjoint.

Proof Suppose the contrary that there exists a X ∈ TY ∩TY ′ . Since Y and Y ′ are distinct,
by symmetry we may assume Y \Y ′ contains an element w. Thus w 6∈ X, because X ⊆ Y ′.
Since maxY ⊆ X, we have w 6∈ maxY . On the other hand, from the definition of maxY
together with transitivity and acyclicity of P it follows that, for every u ∈ Y \maxY there
exists a v ∈ maxY such that uv ∈ P . In particular, there exists a v ∈ maxY such that
wv ∈ P . Since w /∈ Y ′ and Y ′ is in D, it follows from the definition of a downset that
v /∈ Y ′. But this is a contradiction, because we had v ∈ maxY and maxY ⊆ X ⊆ Y ′,
which imply v ∈ Y ′.

Lemma 10 Let X ⊆ N . Let Y = {u : uv ∈ P, v ∈ X}, that is, the downward-closure of
X. Then Y ∈ D and X ∈ TY .

Proof To see that Y is a downset, suppose the contrary that there exist v ∈ Y and uv ∈ P
such that u 6∈ Y . By the definition of Y , there must be vw ∈ P such that w ∈ X. But since
P is transitive, uw ∈ P and thus u ∈ Y which is a contradiction.

Consider then the second claim, that maxY ⊆ X ⊆ Y . The second inclusion follows
from the reflexivity of P . For the first inclusion, note that that maxY = maxX, since Y
only contains elements u such that uv ∈ P for some v ∈ X.

Lemma 11 Let Z ⊆ N . Then D ∩ 2Z = D ∩ 2Y , where the set Y ∈ D is given by

Y = {v ∈ Z : if uv ∈ P , then u ∈ Z} ;

in words, Y consists of all elements of Z whose predecessors also are in Z.
Proof We show first that Y ∈ D. Suppose the contrary that v ∈ Y and uv ∈ P but u 6∈ Y .
By the definition of Y we have u ∈ Z. Since u 6∈ Y , there is a wu ∈ P such that w 6∈ Z.
However, as P is transitive, we have wv ∈ P and thus w ∈ Z which is a contradiction.

To complete the proof, we show that D ∩ 2Z = D ∩ 2Y . Clearly D ∩ 2Z ⊇ D ∩ 2Y .
For the other direction, we consider an arbitrary X ∈ D ∩ 2Z and show that X ⊆ Y .
To this end, consider any v ∈ X. Now, if uv ∈ P , then u ∈ X (because X is a downset)
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and consequently u ∈ Z (because X ⊆ Z). Thus, by the definition of Y we get that v ∈ Y .
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