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Observers for Sensorless Synchronous Motor
Drives: Framework for Design and Analysis

Marko Hinkkanen, Senior Member, IEEE, Seppo E. Saarakkala,
Hafiz Asad Ali Awan, Eemeli Mölsä, and Toni Tuovinen

Abstract—This paper deals with the speed and position esti-
mation for synchronous reluctance motors (SyRMs) and interior
permanent-magnet synchronous motors (IPMs). A unified design
and analysis framework for a class of back-electromotive-force
(back-EMF)-based observers is developed and the links between
apparently different estimation methods are brought out. State
observers equipped with a speed-adaptation law are shown to be
mathematically equivalent to voltage-model-based flux observers
equipped with a position-tracking loop. The error signal driving
the adaptation law or the tracking loop is presented in a
generalized form. Using the framework, a stabilizing gain design
is reviewed and detailed design guidelines are given. Selected
observer designs are experimentally evaluated using a 6.7-kW
SyRM drive and a 2.2-kW IPM drive.

Index Terms—Control systems, observers, permanent-magnet
motors, reluctance motors, stability criteria, synchronous motor
drives.

I. INTRODUCTION

IN THE future, energy-efficient synchronous reluctance mo-
tors (SyRMs), with or without permanent magnets (PMs),

could replace induction motors in many applications, such as
pumps, fans, and conveyors. This kind of industrial drives
should obviously be sensorless for cost savings. Furthermore,
interior PM synchronous motors (IPMs) and other salient-rotor
synchronous motors are increasingly used in electric vehicles
and heavy-duty working machines. Even though the drives in
electric vehicles are typically equipped with a motion sensor, a
sensorless mode is beneficial for providing tolerance to sensor
failures.

In this paper, we focus on back-electromotive-force (back-
EMF)-based observers that estimate the rotor speed and po-
sition based on the mathematical motor model. The observer
should provide (locally) stable and sufficiently fast estimation-
error dynamics at all speeds and loads. It should also be
robust against the measurement noise and parameter errors.
Crossing the zero speed even with large load torque as well
as smooth starting and stopping in a no-load condition should
be possible without additional algorithms. These requirements
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are not trivial to fulfil, since the estimation-error dynamics
unavoidably become nonlinear.

Already in the late 1980s, an advanced nonlinear state
observer, operating in estimated rotor coordinates, has been
systematically developed [1]. The speed estimation is based on
the equation of motion, corrected with the current estimation
error. Since this seminal work, numerous other speed and
position estimation schemes have been proposed. A voltage-
model-based flux observer, operating in stator coordinates,
is combined with a position-tracking loop in [2], [3]. A
state observer, operating in estimated rotor coordinates, is
augmented with a speed-adaptation loop in [4], [5]. In order
to simplify the gain selection, a modified state variable is used
to form a D-state observer in [6] and a minimum-order flux
observer in [7].

Common to the observers in [1]–[7] is that their order is
four, thus matching the order of the motor model. Lower-order
observers [8]–[10] tend to be more sensitive to measurement
noise and parameter errors, as shown in [5]. The observers
proposed in [11]–[17] are similar to [1]–[7], but their order is
higher and they have unnecessarily many design parameters. In
addition to the current vector, the PM-flux vector is estimated
in [11]–[13] and the back-EMF vector in [14]. An additional
integral action is used in [15]–[17]. The methods in [11], [13],
[14] are limited to surface-mounted PM machines (SPMs) and
the methods in [16], [17] to SyRMs.

The magnetic saliency increases the coupling between the
electrical and mechanical dynamics, which complicates de-
signing back-EMF-based observers. In [12], a concept of the
fictitious flux is used to turn the salient-rotor motor model into
a more favourable nonsalient form. However, the dynamics
of the d-axis current component are omitted in this analysis.
For salient-rotor motors, the estimation-error dynamics are
rigorously analyzed only in a few papers [1], [4], [5], [10].
In [1], a linearized model is derived for analysis purposes and
an unstable region at higher speeds is found. As concluded
in [1], the linearized model predicts the nonlinear error dy-
namics surprisingly well, even for large perturbations. In [4],
a linearized model similar to [1] is developed and an unstable
region in the regenerating mode at low speeds is revealed.
In [5], a stabilizing observer gain is developed based on the
linearized model. This gain has a unique feature of decoupling
the flux observer from the speed-adaptation law.

This paper is an extended version of the conference paper
[18]. We show that the observers structures [1]–[7], which have
been independently developed from different starting points,
are mathematically equivalent. The main contributions are:
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1) A unified design framework for the observers similar to
[1]–[7] is developed in Section III. We adopt the voltage-
model-based flux observer [2], [3] for the framework,
augmented with a generalized speed-estimation law. The
framework enables exploiting existing results, such as
the linearized model [4] and the stabilizing gains [5].

2) Design guidelines based on the stabilizing observer
gain [5] and pole placement are developed in Section
IV. Furthermore, the stability conditions given in [5]
are extended for the generalized speed-estimation law.
Discrete-time implementation aspects, which are impor-
tant in the high-speed operation, are also covered.

3) Two selected observer designs are evaluated by means
of the stability analysis and experiments in Section V.
A risk of an unstable region appearing in the field-
weakening range at high torque values is discovered for
the design in [2], [3].

A 6.7-kW SyRM drive and a 2.2-kW IPM drive are used in
experimental evaluation. If the application requires sustained
operation at very low speeds in a loaded condition, the
observer should be combined with a signal-injection scheme,
cf. [2]–[4], [15]–[17], [19]–[23].

II. MOTOR MODEL

Real space vectors are used. Vectors are denoted using bold-
face lowercase letters and matrices using boldface uppercase
letters. For example, the current vector is i = [id, iq]

T, where
id and iq are the components of the vector. The identity
matrix is I = [ 1 0

0 1 ] and the orthogonal rotation matrix is
J = [ 0 −11 0 ]. Space vectors in stator coordinates are marked
with the superscript s. No superscript is used for space vectors
in estimated rotor coordinates.

The electrical rotor angle is ϑm and the electrical angular
rotor speed is ωm = dϑm/dt. The electrical radians are used
throughout the paper. In rotor coordinates, the inductance ma-
trix and the PM-flux linkage vector, respectively, are denoted
by

L =

[
Ld 0
0 Lq

]
ψf =

[
ψf

0

]
(1)

where Ld is the direct-axis inductance, Lq is the quadrature-
axis inductance, and ψf is the PM flux.

The machine model is expressed in estimated rotor coordi-
nates, whose d-axis is aligned at ϑ̂m with respect to the stator
coordinates. The stator flux linkage is

ψ = L′i+ψ′f (2)

where the inductance matrix and PM-flux vector, respectively,

L′ = e(ϑm−ϑ̂m)JL e−(ϑm−ϑ̂m)J ψ′f = e(ϑm−ϑ̂m)Jψf (3)

depend nonlinearly on the estimation error ϑm − ϑ̂m of the
rotor position. The stator voltage is

u = Ri+
dψ

dt
+ ω̂mJψ (4)

where R is the resistance and ω̂m = dϑ̂m/dt is the angular
speed of the coordinate system. The electromagnetic torque is

T =
3p

2
iTJψ (5)

where p is the number of pole pairs and the superscript T
marks the transpose. As special cases, this model represents
the SPM if Ld = Lq and the SyRM if ψf = 0.

III. SPEED AND POSITION OBSERVER

Fig. 1(a) shows the block diagram of a typical sensorless
control system, part of which is the speed and position ob-
server. Other control schemes, such as flux-linkage control or
direct torque control, could be used instead of current control.
A speed controller is not shown in the figure for simplicity, but
it uses the estimated speed as its feedback signal. The pulse-
width modulator (PWM) calculates the duty ratios based on
the voltage reference us

ref and the DC-bus voltage udc. The
observer is implemented in estimated rotor coordinates in Fig.
1(a). Alternatively, the observer could be implemented in stator
coordinates, as shown in Fig. 2(a).

A. Observer Structure Used in the Framework

1) Flux Observer in Estimated Rotor Coordinates: A
voltage-model-based flux observer similar to [2], [3] is adopted
for the framework, since this structure leads to the simplest
form of the equations and simplifies the inclusion of the
magnetic saturation model in the observer. Fig. 1(b) shows
the structure of the speed and position observer, operating in
estimated rotor coordinates. The flux observer is defined by

dψ̂

dt
= u−Ri− ω̂mJψ̂ +K

(
Li+ψf − ψ̂

)
(6)

where K is a 2 × 2 observer gain matrix and estimates
are marked with a hat. In sensorless drives, the actual rotor
position ϑm is naturally unknown. Therefore, the correction
vector generally differs from the real flux estimation error
ψ− ψ̂ during transients, even if the accurate model parameter
estimates are assumed, as can be realized from (2) and (3). As
seen later, the correction vector in (6) is equal to the difference
between the measured current and the estimated current, scaled
by the inductance matrix.

2) Flux Observer in Stator Coordinates: Alternatively, the
flux observer can operate in stator coordinates according to
Fig. 2(b). Eq. (6) transformed to stator coordinates is

dψ̂
s

dt
= us −Ris +Ks

(
Lsis +ψs

f − ψ̂
s)

(7)

where

Ls = eϑ̂mJL e−ϑ̂mJ ψs
f = eϑ̂mJψf

Ks = eϑ̂mJK e−ϑ̂mJ (8)

3) Generalized Speed Estimation: As seen in Figs. 1(b)
and 2(b), the proportional-integral (PI) mechanism is used to
drive the error signal ε to zero by adjusting the speed estimate,
which is further fed to the integrator for getting the position
estimate,

ω̂m = kpε+

∫
kiεdt ϑ̂m =

∫
ω̂mdt (9)

where kp and ki are the gains. The generalized error signal is
defined by means of the scalar product

ε = λTJ
(
Li+ψf − ψ̂

)
(10)
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Fig. 1. Observer in estimated rotor coordinates: (a) sensorless control system;
(b) observer structure.

where the projection vector λ can be a constant vector or
it may depend on ψ̂ and i. The rotation matrix J has been
included in (10) in order to simplify the expressions in the
latter part of the paper. It is worth noticing that the form of the
scalar product in (10) resembles that of the torque expression
(5). Furthermore, the magnitude of the projection vector λ is
irrelevant due to the gains kp and ki in (9).

The expression (10) for the error signal ε is valid in stator
coordinates as well. The observers in Figs. 1(b) and 2(b) are
mathematically equivalent even though they look different:
the flux observer (6) in estimated coordinates depends on the
speed estimate while the flux observer (7) in stator coordi-
nates depends on the position estimate. The position-tracking
mechanism in Fig. 2(b) corresponds to a phase-locked loop
(PLL).

B. Linearized Estimation-Error Dynamics

The nonlinear estimation-error dynamics consisting of (2)–
(4), (6), (9), and (10) can be linearized for analysis purposes,
as explained in [1], [4], [5]. The operating-point quantities are
marked with the subscript 0. The accurate model parameters
are assumed, making the operating-point estimation errors
zero, e.g., ϑ̂m0 = ϑm0, further leading to L′0 = L and
ψ′f0 = ψf . The standard linearization procedure gives

dψ̃

dt
= −(K0 + ωm0J)ψ̃ +K0Jψa0ϑ̃m (11a)

ε = λT
0 Jψ̃ + λT

0ψa0ϑ̃m (11b)

where ψ̃ = ψ− ψ̂ is the flux estimation error and other errors
are marked similarly. To simplify the notation, an auxiliary
flux linkage vector is defined as

ψa0 = (L+ JLJ)i0 +ψf

=

[
(Ld − Lq)id0 + ψf

−(Ld − Lq)iq0

]
=

[
ψad0

ψaq0

]
(12)
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Fig. 2. Observer in stator coordinates: (a) sensorless control system; (b)
observer structure.
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Fig. 3. Linearized model of the estimation-error dynamics for analysis
purposes.

The linear system (11) can be represented by the transfer
function

H(s) = λT
0 J(sI+K0 + ωm0J)

−1K0Jψa0 + λ
T
0ψa0 (13)

from ϑ̃m(s) to ε(s). Fig. 3 shows the block diagram of the
resulting linearized model, where also the speed-estimation
loop is included. According to the figure, the closed-loop
transfer function from the actual speed to the estimated speed
is

ω̂m(s)

ωm(s)
=

(skp + ki)H(s)

s2 + (skp + ki)H(s)
=
B(s)

A(s)
(14)

where A(s) is the fourth-order characteristic polynomial and
B(s) is the third-order numerator polynomial. The closed-form
expressions for these polynomials can be easily calculated
using, e.g., any symbolic mathematics package. In a general
case, the properties of (14) depend on the observer gain K0,
the projection vector λ0, and the speed-adaptation gains kp
and ki. All the observer designs corresponding to Figs. 1(b)
and 2(b) can be analyzed by means of the linearized model.

C. Equivalent Structures and Existing Designs

1) Voltage-Model-Based Flux Observer With a Position-
Tracking Loop: In [2], [3], the observer corresponding to Fig.
2(b) is developed and a simple observer gain Ks = K = kI
is used. In this special case, (7) can be represented as

ψ̂
s
=

s

s+ k

us −Ris

s
+

k

s+ k

(
Lsis +ψs

f

)
(15)
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where s/(s+k) and k/(s+k) are the first-order high-pass and
low-pass filters, respectively, and s is used as the derivative
operator. This form clearly shows that the flux observer can be
parametrized to behave as the voltage model at higher speeds
and as the flux model at low speeds, the parameter k defining
the corner frequency (typically k = 2π · 15 . . . 30 rad/s).

According to [3], the position-tracking loop is driven by the
error signal

ε =
ψ̂

T
J
(
Li+ψf

)
‖ψ̂‖2

(16)

where the superscript s has been dropped from the space
vectors, since the expression is valid also in estimated rotor
coordinates. It can be seen1 that this error signal equals (10)
with λ = ψ̂/‖ψ̂‖2. When the effect of the position-tracking
loop is taken into account, the constant gain K = kI results in
unstable operating regions, as will be shown in Section V-A.

2) Nonlinear State Observer: In [1], a nonlinear state
observer is developed

dî

dt
= L−1u−

(
RL−1 + ω̂mL

−1JL
)
î

− ω̂mL
−1Jψf +Gi

(
i− î

)
(17a)

dω̂m

dt
=
p

J

(
T̂ − T̂L

)
+ gTωJ

(
i− î

)
(17b)

dϑ̂m
dt

= ω̂m (17c)

T̂ =
3p

2
î
T
J(Lî+ψf) (17d)

where J is the inertia estimate, T̂L is the load torque estimate,
T̂ is the electromagnetic torque calculated using the estimated
quantities, and Gi and gω are the observer gains. The change
of the state variable, î = L−1(ψ̂ − ψf), reveals that (17a) is
mathematically equivalent to (6) if

K = LGiL
−1 +RL−1 (18)

The speed estimation in (17b) needs the information of the
inertia and the load torque. Since the load torque is typically
unknown, the term based on the mechanical dynamics is
omitted in the following. In this case, the speed and position
estimation in (17) is equivalent to (9) and (10), if kp = 0 is
substituted in (9) and if the projection vector

λ = −JL−1Jgω/ki (19)

is used in (10). In [1], the constant gains Gi and gω are used,
leading to the instability at higher speeds.

3) D-State and Minimum-Order Observers: A modified
state observer with constant observer gain is proposed in
[6], [7]. The implementation in estimated rotor coordinates is
referred to as a D-state observer in [6] and the implementation
in stator coordinates as a minimum-order state observer in [7].
Here, the variant in estimated rotor coordinates is taken as an
example, defined by

dφ̂

dt
=D (u−Ri)− ω̂mJφ̂+ ω̂mJ(D − I)(φf − φ̂f) (20a)

φ̂f = φ̂−DLi (20b)

1Note that ψ̂
T
Jψ̂ = 0 and similarly for other vectors.

where φ̂ is the state variable, φ̂f is the output variable, and
φf = Dψf is the transformed constant PM-flux vector.2 The
matrix gain is

D = d1I− sign(ω̂m)d2J (21)

with constants d1 and d2 > 0. The speed-estimation law equals
(9) and the error signal is defined by

ε =
(φ̂f)

TJφf

‖φf‖2
(22)

Since the matrix gain D is constant, the state variable can
be changed as φ̂ =Dψ̂, leading to (6) with

K = ω̂mJ(D − I)

= |ω̂m|
[
d2I+ (d1 − 1) sign(ω̂m)J

]
(23)

Furthermore, applying (20b) and (21), it can be shown that
the error signal in (22) equals the error signal in (10), if the
projection vector λ = ψf/‖ψf‖2 is chosen. In [6], [7], the
gains d1 = 1 and d2 > 0 are used, giving K = d2|ω̂m|I.
Therefore, this observer design is similar to one in [2], [3], but
the observer gain is proportional to the speed. At zero speed,
this observer reduces to the pure voltage model, which makes
it difficult to start and stop the drive. The coupling between
the state observer and the speed estimation is omitted in the
analysis in [6], [7].

4) State Observer With a Speed-Adaptation Law: In [4],
[5], an open-loop flux observer is augmented with an output-
error-based correction term

dψ̂

dt
= u−Rî− ω̂mJψ̂ +G

(
i− î

)
(24a)

î = L−1
(
ψ̂ −ψf

)
(24b)

It is easy to show that (24) is mathematically equivalent to (6)
if

K = GL−1 +RL−1 (25)

The speed-adaptation law used in [4], [5] equals (9) and (10).
The error signal ε = îq − iq is obtained by substituting λ =
[ 10 ]/Lq in (10).

In [4], the observer gain below the base speed is

G = l|ω̂m|
[
I+ sign(ω̂m)J

]
(26)

where l is constant. The interaction between the state observer
and the speed-estimation loop is analyzed using the linearized
model. In [4], an unstable region at low speeds in the regen-
erating mode for salient-pole rotors is found out. In [5], a
stabilizing gain is derived and applied. However, the selection
of its free design parameters is not explained in detail in [5].

2In [6], [7], zero vector φf = 0 is used in the correction vector in (20a).
This choice causes an undesirable speed-dependent disturbance input to the
observer, which deteriorates its performance at higher speeds, unless some
additional compensation is used. To avoid this problem, the constant vector
φf =Dψf is included in (20a).
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IV. DESIGN GUIDELINES

A. Stabilizing Gains

1) Flux Observer: The stabilizing observer gain developed
in [5] is briefly reviewed here. The fourth-order closed-
loop system (14) is complicated and the gains can be diffi-
cult to tune. In order to simplify the tuning procedure, the
flux-estimation dynamics can be decoupled from the speed-
estimation dynamics. From (13), it can be seen that this
decoupling is achieved if and only if K0Jψa0 = 0 holds
or

K0 =

[
k1
k2

]
ψT

a0

‖ψa0‖2
=

1

ψ2
ad0+ψ

2
aq0

[
k1ψad0 k1ψaq0

k2ψad0 k2ψaq0

]
(27)

where k1 and k2 are the two remaining free gains in the ob-
server gain matrix. The gain matrix is normalized by dividing
it by ‖ψa0‖2 in order to simplify the following equations. The
condition (27) makes the transfer function (13) to reduce to
the static gain H(s) = λT

0ψa0

The two remaining free gains of K0 determine the two
flux-estimation poles, which can be placed as

det(sI+K0 + ωm0J) = s2 + bs+ c (28)

where b and c are the coefficients of the characteristic poly-
nomial. Solving (28) under the condition (27) yields

k1 = bψad0 + (ωm0 − c/ωm0)ψaq0 (29a)
k2 = bψaq0 − (ωm0 − c/ωm0)ψad0 (29b)

These gain elements can be inserted into (27), leading to

K0 =

[
bI+

(
c

ωm0
− ωm0

)
J

]
ψa0ψ

T
a0

‖ψa0‖2
(30)

where the design parameters b > 0 and c > 0 determine the
flux-estimation error dynamics. The factor ψa0ψ

T
a0/‖ψa0‖2

can be recognized as an orthogonal projection matrix, which
takes the vector projection of the correction vector in the
direction of the vector ψa0. This matrix can be expressed in
different forms

ψa0ψ
T
a0

‖ψa0‖2
=

1

ψ2
ad0 + ψ2

aq0

[
ψ2
ad0 ψad0ψaq0

ψad0ψaq0 ψ2
aq0

]
=

1

1 + β2

[
1 −β
−β β2

]
(31)

where β = −ψaq0/ψad0 is an auxiliary variable [5]. As special
cases, β = 0 holds for SPMs and β = iq0/id0 for SyRMs.

2) Generalized Speed Estimation: The projection vector λ
can be freely chosen in the generalized form (10) of the error
signal, unlike in the method in [5]. If the gains of the PI
mechanism in (9) are positive, the stability condition for the
speed-estimation loop is

H(s) = λT
0ψa0 > 0 (32)

The tuning of the speed-estimation loop becomes very simple,
if H(s) = 1 holds. This goal is achieved by choosing, e.g., a
projection vector

λ0 =
ψa0

‖ψa0‖2
(33)

Another example is

λ0 =
1

ψad0

[
1
0

]
(34)

which corresponds to the speed-adaptation law in [4], [5]. Both
these projection vectors cause (14) to reduce to3

ω̂m(s)

ωm(s)
=

(s2 + bs+ c)(skp + ki)

(s2 + bs+ c)(s2 + skp + ki)

=
skp + ki

s2 + skp + ki
(35)

where the speed-adaptation gains kp > 0 and ki > 0 are
now directly the coefficients of the characteristic polynomial.
Even if the flux-observer dynamics cancel out from (35),
they still are a part of the whole system and the closed-loop
flux-observer poles should be properly placed. This observer
design is a subset of all possible stable designs. However, it is
easier to tune two second-order systems than one fourth-order
system, which is a clear advantage of this design approach.

The choice of the projection vector affects the sensitivity
to parameter errors. The vector (33) maximizes the signal-
to-noise ratio, while, based on the time-domain simulations,
the vector (34) results in the better robustness against model
parameter errors at low speeds. It can also be shown that the
choice λ0 = ψ0 does not generally fulfil the stability condition
(32) and, therefore, is not recommended. We consider further
optimization of the choice of the projection vector as a suitable
topic for future research.

3) Example: Selection of Design Parameters: The closed-
loop flux-observer poles can be arbitrarily placed using (30).
In order to limit the observer gain and to reduce sensitivity
to model parameter errors, the design parameters b and c
should be selected such that the poles remain in the vicinity
of the open-loop poles. Fig. 4(a) shows open-loop poles of
the 6.7-kW SyRM at ωm0 = 0 . . . 2 p.u. It can be seen that
the damping of the open-loop poles decreases as the speed
increases. It is favorable to increase the damping of the closed-
loop poles at higher speeds.

In principle, the undamped natural frequency of the poles
could be chosen to be proportional to the rotor speed and the
damping ratio could be kept constant. However, this choice
would locate both the poles at the origin at ωm0 = 0, causing
the pure voltage-model behavior, which is undesirable and
complicates the starting and stopping of the motor as well
as speed reversals. This problem can be avoided, e.g., using
the design parameters

b = b′ +

(
2ζ − b′

ωζ

)
|ωm0| c =

b

2ζ
|ωm0| (36)

where the constant ζ is the desired damping ratio at a given
angular speed ωζ (e.g., the rated speed). The constant b′ is
recommended to be chosen larger than R/Ld and R/Lq. At
standstill, the poles are placed at s = 0 and s = −b′.

3This result can be checked by substituting (30) and either (33) or (34) in
(13), giving H(s) = (s2 + bs+ c)/(s2 + bs+ c) as expected. Substituting
H(s) in (14) gives (35).
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(a) (b) (c)

Fig. 4. Pole locations of the 6.7-kW SyRM at ωm0 = 0 . . . 2 p.u.: (a) open-loop poles from det(sI − RL−1 − ωm0J) = 0; (b) closed-loop poles for
K = kI; (c) closed-loop poles for (30). The flux-observer poles are marked with the red line and the speed-estimation poles with the blue line. The diamonds,
crosses, and stars mark the speeds of 0, 1, and 2 p.u., respectively. The dashed line corresponds to the damping ratio of 0.4. At each speed, the optimal
current components id0 and iq0 corresponding to the MTPA locus, current limit of 1.5. p.u., and MTPV limit are used. Note that the poles in (a) and (c) do
not depend on the currents, however. The constant parameters are used: R = 0.04 p.u., Ld = 2.2 p.u., and Lq = 0.33 p.u.

The two remaining poles of (35) can be placed at s = −ωo,
leading to the critically damped speed-estimation dynamics.
This choice corresponds to the speed-estimation gains

kp = 2ωo ki = ω2
o (37)

where ωo can be considered as an approximate speed-
estimation bandwidth.

B. Implementation Aspects

1) Operating-Point Quantities in the Gains: In the imple-
mentation, the operating-point quantities in (12), (30), (34),
and (36) are replaced with the instantaneous estimated quan-
tities

ωm0 ← ω̂m i0 ← L−1(ψ̂ −ψf) (38)

Under the assumption of accurate model parameters, the
linearized model is still valid after these replacements. Al-
ternatively, the measured current could be used, i.e. i0 ← i.

2) Discrete-Time Implementation: The continuous-time ob-
server (6) can be discretized in various ways. The simplest
option would be to apply the Euler approximation, but it leads
to severely distorted pole locations and instability issues at
higher speeds, unless a comparatively high sampling frequency
is used.

The state-observer form (24) is chosen as a starting point
for discretization, making it possible to apply an exact hold-
equivalent motor model (or its series approximation) for the
open-loop observer part. Hence, the structure of the discrete-
time observer is analogous to (24),

ψ̂(k + 1) = Φψ̂(k) + Γ fψf + Γu(k)

+Gd

[
i(k)− î(k)

]
(39a)

î(k) = L−1
[
ψ̂(k)−ψf

]
(39b)

where k is the discrete-time index, Gd is the observer gain
matrix, and the system matrices Φ, Γ f , and Γ are defined
in Appendix A. The system matrices depend on the speed
estimate, e.g., Φ = Φ[ω̂m(k)]. The same system matrices are
used in the discrete-time controller [24]. If the control system

has a typical computational delay of one sampling period Ts,
the voltage in (39) is

u(k) = e−Tsω̂mJuref(k − 1) (40)

where uref is the reference voltage to the PWM in rotor
coordinates, cf. Fig. 1(a). The matrix Γ inherently takes the
PWM delay into account and no additional compensation
should be used. The observer gain K is mapped to the
discrete-time domain as, cf. (25),

Gd = Ts (KL−RI) (41)

If the exact system matrices (or their second-order series ap-
proximations) are used, the estimation-error dynamics remain
stable at very low ratios between the sampling frequency and
fundamental frequency (much below ten).

The speed-adaptation law (9) is discretized as

ω̂mi(k + 1) = ω̂mi(k) + Tskiε(k) (42a)
ω̂m(k) = kpε(k) + ω̂mi(k) (42b)

where ω̂mi is the integral state. The sampled error signal is

ε(k) = λ(k)TJ
[
Li(k) +ψf − ψ̂(k)

]
(43)

The estimate ω̂m is used in the observer (39), while the integral
state ω̂mi is used as a feedback signal for the speed controller.

3) Magnetic Model: The inductances may vary signifi-
cantly due to the magnetic saturation, especially in the case of
SyRMs. Look-up tables could be used to model the saturation
characteristics as a function of the current, Ld = Ld(id, iq)
and Lq = Lq(id, iq), as in [2], [3]. In the implementation of
this paper, an algebraic magnetic model described in Appendix
B is used and the inductances depend on the flux estimates,
Ld = Ld(ψ̂d, ψ̂q) and Lq = Lq(ψ̂d, ψ̂q). This same magnetic
model is consistently used everywhere in the sensorless control
system.

V. RESULTS

A. Stability Analysis
The 6.7-kW SyRM is considered in the stability analysis.

Here, the constant parameters corresponding to the rated
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(a) (b)

Fig. 5. Experimental results for the 6.7-kW SyRM showing torque reference steps at 1.2-p.u. speed: (a) observer gain K = kI; (b) observer gain (30).
First subplot: reference torque and estimated torque T̂ = (3/2)piTJψ̂. Second subplot: actual speed and estimated speed. Third subplot: estimated flux
components in estimated rotor coordinates. Last subplot: measured current components in estimated rotor coordinates.

operating point are used: R = 0.04 p.u., Ld = 2.2 p.u., and
Lq = 0.33 p.u. Two different observer designs are compared:

1) K = kI with k = 2π · 20 rad/s;
2) K is defined by (30) and (36) with b′ = 2π · 20 rad/s,

ζ = 0.4, and ωζ = 1 p.u.
In both designs, the projection vector (34) is used and the
speed-estimation gains are given by (37) with ωo = 2π · 100
rad/s. The local stability of the two observer designs is
analyzed by calculating the poles of (14) in the speed range
of ωm0 = 0 . . . 2 p.u. at the maximum positive torque, when
the current magnitude is limited to 1.5 p.u. At each speed,
the optimal current components id0 and iq0 corresponding to
the maximum-torque-per-ampere (MTPA) locus, current limit,
and maximum-torque-per-volt (MTPV) limit are used.

Fig. 4(b) shows the pole locations of Design 1. It can be
seen that the system is unstable at higher speeds. The unstable
region could be decreased by limiting the current (and the
torque) at higher speeds. Since the flux-observer dynamics are
coupled with the speed-estimation dynamics, also the speed-
estimation gains strongly affect the stability. Under the same
conditions, Fig. 4(c) shows the pole locations of Design 2. The
system is stable and the pole locations match the designed
values (and they are independent of the current). It can be
seen that the flux-observer dynamics are decoupled from the
speed-estimation dynamics.

B. Experiments

The two observer designs are experimentally evaluated
using the 6.7-kW SyRM drive (also used in the previous
stability analysis) and and the 2.2-kW IPM drive. The data

of these machines are given in Appendix B. The observer has
been implemented according to Section IV-B, using the exact
discrete-time system matrices.

1) Sensorless Control System: A sensorless control system
was implemented on a dSPACE DS1006 processor board.
The stator currents and the DC-link voltage are sampled in
the beginning of each PWM period; both the switching and
sampling frequencies are 5 kHz. The inverter nonlinearities are
compensated for using a simple current feedforward method.
The actual rotor speed ωm is measured using an incremental
encoder only for monitoring purposes.

The control scheme shown in Fig. 1(a) was augmented
with a speed controller, which provides the torque reference
Tref based on the speed reference ωm,ref and the estimated
speed ω̂m. Instead of controlling the measured current i, the
estimated flux linkage ψ̂ is controlled. This choice makes it
easy to take the magnetic saturation effects into account, since
the incremental inductances are not needed at all in the control
system. The flux-linkage controller and its tuning is based on
the discrete-time controller presented in [24]; only the state
variable to be controlled has been changed from the current
to the flux. The flux reference ψref is determined from Tref
and ω̂m using the optimal torque control scheme [25], which
includes the MTPA locus, field weakening, and MTPV limit.

2) Constant-Speed Tests: Fig. 5 shows the results when the
load drive of the test bench regulates the speed at 1.2 p.u. and
the sensorless SyRM drive under test is driven in the torque-
control mode. The torque reference is stepped from zero to
the rated torque with increments of 20% of the rated torque.
Fig. 5(a) shows the results for Design 1. The system becomes
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(a) (b)

Fig. 6. Experimental results for the 6.7-kW SyRM showing fast acceleration to the 2-p.u. speed, with the current limit of 1.5 p.u.: (a) observer gain K = kI;
(b) observer gain (30). First subplot: reference speed, actual speed, and estimated speed. Second subplot: estimated flux components in estimated rotor
coordinates. Last subplot: measured current components in estimated rotor coordinates.

(a) (b)

Fig. 7. Experimental results for the 2.2-kW IPM showing fast acceleration to the 2-p.u. speed: (a) observer gain K = kI; (b) observer gain (30).

unstable at high torque values, which is also evident from the
stability analysis results shown in Fig. 4(b). Fig. 5(b) shows
the results for Design 2. It can be seen that the system is
stable, which is in line with the stability analysis in Fig. 4(c).

3) Fast Acceleration Tests: Fig. 6 shows the results when
the sensorless SyRM drive under test is driven in the speed-
control mode and the load drive is disabled. The initial rotor
position was set simply by supplying the DC-current vector to
the direction of the a-phase magnetic axis, causing the rotor
to rotate into this direction, and then resetting the position
estimate ϑ̂m to zero. Alternatively, the initial rotor position
could be obtained by using a signal-injection method, without
causing the rotor to move.

The motor is accelerated from zero to 2 p.u., with the
stator current magnitude limited to 1.5 p.u. Fig. 6(a) shows
the results for Design 1. The system becomes unstable soon
above the rated speed. This result agrees well with the stability

analysis in Fig. 4(b). As mentioned, the selection of k and the
speed-estimation gains affects the stability. If the current limit
is decreased, the system becomes stable, but acceleration time
naturally increases. Fig. 6(b) shows the results for Design 2.
It can be seen that the system is stable. The estimated speed
ω̂m behaves smoothly and follows the measured speed ωm.

Finally, Fig. 7 shows the corresponding results for the
sensorless IPM drive. For this motor, the responses for Design
1 and Design 2 are quite similar. This is an expected result
based on the stability analysis, which was carried out for the
IPM as well. As compared to the SyRM, the observer-based
sensorless control of the IPM is easier due to its lower saliency
ratio (Lq/Ld = 1.4). Furthermore, lesser magnetic saturation
of the IPM makes it possible to use constant inductances in
the control system. It is also to be noted that both Designs 1
and 2 are able to operate at zero speed in a no-load condition
(as can been seen in Figs. 6 and 7 at t = 0 . . . 0.5 s), since
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they avoid the pure voltage-model behavior.

VI. CONCLUSIONS

We have developed a design and analysis framework for a
class of observers and brought out the links between appar-
ently different observer structures. The voltage-model-based
flux observer structure was adopted as a basis. A previously
proposed stabilizing gain design was extended to different
error signals of the speed-estimation loop. The stabilizing gain
simplifies the observer design procedure and helps to avoid
unstable regions. Detailed design guidelines were given. We
also discovered a risk of an unstable region in the classical gain
design. The observer designs were experimentally evaluated
using the 6.7-kW SyRM drive and the 2.2-kW IPM drive.

APPENDIX A
EXACT DISCRETE-TIME MOTOR MODEL

The exact discrete-time model of (2) and (4) in rotor coor-
dinates (i.e. ϑ̂m = ϑm) is briefly reviewed in the following.
The input voltage in (4) is assumed to be constant between
the sampling instants in stator coordinates, which matches
the physical reality. The PM-flux vector ψf is constant in
rotor coordinates. Further, the rotor speed ωm is assumed to
be quasi-constant, since it varies slowly as compared to the
electrical dynamics. These assumptions lead to the discrete-
time model [24]

ψ(k + 1) = Φψ(k) + Γ fψf + Γu(k) (44)

with the system matrices

Φ = eTsA Γ f =

∫ Ts

0

eτAdτ ·RL−1

Γ =

∫ Ts

0

eτAeτωmJdτ · e−TsωmJ (45)

where A = −RL−1 − ωmJ is the continuous-time system
matrix. The closed-form expressions for the elements of the
system matrices are given in [24].

Alternatively, the system matrices in (45) can be expressed
using series expansions. The matrices Φ and Γ f are

Φ = I+ TsΨA Γ f = TsΨ
(
RL−1

)
(46)

where

Ψ = I+
TsA

2!
+
T 2
s A

2

3!
+ . . . (47)

The matrix Γ cannot be easily expressed in the exact form
using a series expansion, but it can be approximated as

Γ ≈ TsΨ
Tsωm/2

sin(Tsωm/2)
e−(Tsωm/2)J (48)

where the last factors take the PWM delay into account [26].
If used in the observer or controller, the system matrices
can typically be approximated using only the first two terms
of (47). Choosing Ψ = I yields the Euler approximation.
In other words, the model (44) covers the whole range of
discrete-time models from the Euler approximation to the
exact model. The model variant can be chosen based on
the minimum sampling frequency, maximum rotor speed, and

TABLE I
RATED VALUES OF EXAMPLE MACHINES

SyRM IPM

Power 6.7 kW 2.2 kW
Speed 3 175 r/min 1 500 r/min
Torque 20.1 Nm 14.0 Nm
Frequency 105.8 Hz (1 p.u.) 75 Hz (1 p.u.)
Voltage

√
2/3 · 370 V (1 p.u.)

√
2/3 · 370 V (1 p.u.)

Current
√
2 · 15.5 A (1 p.u.)

√
2 · 4.3 A (1 p.u.)

(a) (b)

Fig. 8. Flux linkages of the 6.7-kW SyRM: (a) ψd = ψd(id, iq); (b) ψq =
ψq(id, iq). The surfaces are calculated using (49) with given parameters.

available computational power and memory. When applied in
a sensorless control system, as in this paper, the actual speed
appearing in the system matrices is replaced with the speed
estimate, ωm ← ω̂m.

APPENDIX B
DATA OF THE 6.7-KW SYRM AND THE 2.2-KW IPM

The 6.7-kW SyRM and the 2.2-kW IPM are used in the
experiments. Their rating is given in Table I and the parameters
used in the control system are given in the following.

The saturation characteristics of the SyRM are modeled
using [27]

Ld(ψd, ψq) =
1

ad0 + add|ψd|α +
adq
δ+2 |ψd|γ |ψq|δ+2

(49a)

Lq(ψd, ψq) =
1

aq0 + aqq|ψq|β +
adq
γ+2 |ψd|γ+2|ψq|δ

(49b)

where the exponents are α = 5, β = 1, γ = 1, and δ = 0. The
coefficient ad0 = 0.36 p.u. is the inverse of the unsaturated
d-axis inductance and the coefficient aq0 = 1.08 p.u. is the
inverse of the unsaturated q-axis inductance. The coefficients
add = 0.15 p.u. and aqq = 6.20 p.u. take the self-axis
saturation characteristics into account, while adq = 2.18 p.u.
takes the cross-saturation into account. These parameters have
been obtained by fitting the model (49) to the measured data.
As can be seen in Fig. 8, both axes saturate significantly. The
stator resistance is R = 0.04 p.u.

The saturation effects of the IPM are omitted and constant
parameters are used in the control system: Ld = 0.34 p.u.,
Lq = 0.48 p.u., ψf = 0.85 p.u., and R = 0.07 p.u.
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