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Fault Propagation Analysis by Implementing
Nearest Neighbors Method Using

Process Connectivity
Rinat Landman and Sirkka-Liisa Jämsä-Jounela

Abstract— Industrial systems often encounter abnormal con-
ditions due to various faults or external disturbances which
deteriorate the process performance. In such cases, it is essential
to detect and eliminate the root cause of the faulty condition
as early as possible in order to minimize its adverse effect on
the entire process performance. Capturing the process causality
plays a key role in identifying the propagation path of faults and
their root cause. In recent times, several data-based methods
have been developed in order to capture causality from the
measured process data. However, each of the methods suffers
from several limitations and deficiencies which might compromise
their ability to provide an adequate causal model, especially in
multivariate (MV) systems. This paper proposes a new method-
ology for retracing the propagation path of oscillation using a
nearest neighbors method by utilizing the information on process
connectivity. The two-phase methodology yields a directionality
measure based on the type of connectivity in the process using a
unique search algorithm. In phase I, the bivariate directionality
measure is calculated to include only the interactions that are
considered as direct based on the plant topology. In phase II,
a new MV directionality measure based on the nearest neighbors
method is introduced in order to exclude indirect interactions.
The methodology is successfully demonstrated on industrial
board machine exhibiting oscillations in its drying section.

Index Terms— Causality, fault propagation, nearest neighbors,
process connectivity, time series analysis.

I. INTRODUCTION

INDUSTRIAL processes often encounter abnormal con-
ditions, resulting from faults and errors due to various

causes, inducing a deviation in one or more of the process
variables from its desired values [1]. Different types of faults
in industrial processes include process parameter changes and
actuator and sensor problems [2]. Faults can easily propagate
via the process components through material or information
flows, thereby deteriorate the overall process performance [3].
Consequently, it is of major importance to isolate and eliminate
the root cause of a fault as early as possible. For this purpose,
it is essential to identify the variables affected by the fault and
its effect on each variable [4].
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Capturing the causal dependencies between the process
variables can assist in identifying the propagation path of a
fault and its root cause. Essentially, process causality can be
captured from process knowledge and/or process data. When a
fault propagates through the process equipment, it changes the
nature of the process, and thus, specific features can be used to
track the propagation path. Examples of such features include
time delays, oscillations, conditional probabilities, signal atten-
uation, and information transfer. Data-based methods exploit
those features and aim to provide a quantitative measure of the
directionality between two variables [3]. Such methods include
the cross correlation [5], Granger causality (GC) [6]–[8],
transfer entropy (TE) [9]–[11], and several frequency-domain
methods [12]–[14]. There is a large number of published stud-
ies [3], [15]–[17] that review and compare between different
causality estimators. Overall, these studies suggest that each
of the methods has its own advantages and limitations, and
their performance depends on the type of investigated system
and fault.

Most of the methods are limited to pairwise analysis which
cannot distinguish between the direct and indirect causalities.
For instance, it cannot determine whether two variables are
interacting or are driven by a third common source [3].
Furthermore, the data-based methods typically require estima-
tion of several parameters and determination of a statistical
threshold, which are not always straightforward while the
computational complexity increases with the dimensionality
of the analysis. For example, the TE method requires esti-
mation of the probability density function that considerably
contributes to the computational complexity of the method and
requires a large amount of data. Therefore, the dimensionality
of the analysis has to be limited when selecting the para-
meters [18], [19]. Moreover, in most industrial applications,
a single method cannot produce satisfactory results unless few
methods are fused or process knowledge is acquired to validate
the results [3].

Process knowledge is the most reliable and, in most cases,
a readily available source for obtaining a qualitative causal
model of an industrial system. Such sources include piping and
instrumentation diagrams (P&IDs) and other expert knowl-
edge accumulated in the human brain [16]. Causal models
that are based on the P&ID of the process are known as
topology-based models [20]. More specifically, topology-based
models capture the structure of the process and are represented
as a digraph or as a binary matrix, namely, a connectivity
matrix [20].
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A topology-based model represents the physical connec-
tivity among the process components, i.e., it provides only
qualitative information that is not sufficient in many cases.
Consequently, in recent years, there have been an increasing
number of studies combining the topology-based models with
data-based analysis [8], [10], [21]–[23]. The automated capture
of plant topology and the possibility to use a search algorithm
to incorporate the connectivity information with the results of
data-based analysis is a major step in the implementation of
those methods for industrial systems in the future [10], [16].

In this paper, a nearest neighbors method is proposed as a
directionality measure for identifying the propagation path of
a fault in a complex industrial system [18], [24]. The nearest
neighbors methods utilize embedded vectors of the process
historical data in order to identify interdependency and direc-
tionality among time series corresponding to the process vari-
ables [18], [24]. The contribution of this paper is as follows.
We propose a methodology that automatically incorporates the
information on the process topology with the nearest neighbors
method using a unique search algorithm. The cornerstone of
the algorithm is the ability to determine whether a physical
path between the two control elements is direct or indirect
based on the process topology. Ergo, the directionality measure
is calculated according to the process connectivity. This feature
enables to efficiently tackle complex industrial systems with a
high level of connectivity while minimizing the computational
effort. Furthermore, we propose a new multivariate (MV)
directionality measure that makes a distinction between the
direct and indirect connectivities. The new measure can be
seen as an extension of the bivariate nearest neighbors method
to include intermediate variables between the “cause” and
“effect” variables. The possibility to discriminate between the
direct and indirect causal dependencies extends the application
of the nearest neighbors method to both linear and nonlinear
processes.

Several MV extensions to GC [25]–[27] have been pro-
posed; however, both GC and its extensions are based on
linear autoregressive (AR) modeling, thus the disadvantage
is obvious. Nonlinear approaches to GC suggest replacing
AR modeling with a Gaussian model [28], [29]. However,
MV/conditional estimates are not addressed in those studies.
On the other hand, the direct TE (DTE) [19] was proposed
as an extension to the TE in order to detect direct causality
in nonlinear MV systems. Yet, the computational burden of
the DTE is extremely high when considering a large-scale
system. Furthermore, the partial TE [30] was proposed to
quantify the total amount of indirect coupling in an interact-
ing network; however, it considers all the system variables
as intermediate which are not necessarily true in chemical
processes. Therefore, the nearest neighbors method is more
practical in industrial applications where often nonlinear and
computationally efficient methods are desired.

The two-phase methodology ensures that the directionality
measure is calculated only if a physical pathway between
the two control elements is detected while the causality is
measured based on the type of connectivity. In phase I,
the bivariate directionality measure is calculated only for the
pathways that are considered as direct based on the process

topology. In phase II, indirect interactions are excluded using
the new MV directionality measure combined with the search
algorithm. Both phases of the methodology are fully automated
which makes it efficient and suitable for industrial applica-
tions. The methodology is demonstrated on a case study of an
industrial board machine. In particular, it aims to retrace the
propagation of oscillation in the drying section of the machine
due to valve stiction.

This paper is structured as follows. Section II presents the
overall methodology including a detailed description of each
phase. Then, general background on extracting process topol-
ogy from a P&ID and description of the search algorithm and
the nearest neighbors method are provided in detail. Section III
presents several applications. The first three examples are
given to demonstrate the efficacy of the proposed MV measure,
while the last example is an industrial case study of a board
machine that serves to demonstrate the overall methodology
and evaluate it with respect to other data-based methods. This
paper ends with summary and conclusions in Section IV.

II. OVERALL METHODOLOGY FOR FAULT

PROPAGATION ANALYSIS BASED ON THE

NEAREST NEIGHBORS METHOD

The analysis aims to identify the propagation path of
oscillations via control loops. The two-phase methodology
utilizes the information on the process connectivity when
calculating the directionality measure that yields an efficient
and powerful causal analysis. The analysis consists of the
following steps. First, the process connectivity information is
extracted in the form of a connectivity matrix that is captured
from an XML scheme using AutoCAD P&ID. Next, the data-
based analysis is implemented in two phases. The aim of
phase I is to obtain an initial causality matrix by applying
the bivariate nearest neighbors method to the process data
according to the connectivity information. The aim of phase II
is to exclude indirect causal interactions based on the initial
causality matrix. First, a new connectivity matrix is generated
according to the initial causality matrix. Namely, each direc-
tionality measure obtained in phase I is replaced with “1” in
the new connectivity matrix. Then, a new MV directionality
measure is used to evaluate each indirect path based on the new
connectivity matrix. In both the phases, the process topology
is integrated into the analysis using a unique search algorithm
which has the following functionalities: it determines whether
there is a physical path between two control elements (in
this case, the measurement points) and whether the path is
direct or indirect. A scheme of the overall methodology is
shown in Fig. 1.

In Sections II-A–II-C, we first describe how to generate
a topology-based model. Then, the logic of the search algo-
rithm throughout the analysis is explained in detail. Finally,
the description of the nearest neighbors method for calculating
the directionality measures is given.

A. Generating a Topology-Based Model
A topology-based model describes the physical connectivity

between the process units. The main resources for extract-
ing the connectivity information are process flow diagrams
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Fig. 1. Proposed methodology for causal analysis based on the nearest
neighbors method.

and P&IDs which are converted into standard XML data
formats [16], [31]. XML uses plain text to describe equip-
ment, their properties, and the connections among them [32].
In this paper, the topology data were exported in the format
of ISO-15926-compliant XML scheme XMpLant [33].

There are two types of topology-based models: a connec-
tivity (adjacency) matrix and a causal digraph which can be
seen as a numerical and graphical representation of the process
topology, respectively. In a system with n elements, a connec-
tivity matrix contains binary elements that are set to “1” in the
case of a direct connectivity between elements and otherwise
“0.” In a causal digraph, each (i, j)th element in the connec-
tivity matrix that is set to “1” is expressed as an arc between
the (i)th and ( j)th nodes. In this paper, the connectivity
information was extracted from an electronic P&ID drawn by a
specialized Autodesk AutoCAD drafting application [8]. The
topology-based model, in this case, the connectivity matrix
was generated in three consecutive steps. First, AutoCAD
P&ID software was used to generate an electronic drawing that
includes all process components and the connections among
them such as process units, control elements, piping, and so on.
Next, the topology information, i.e., the names and coordinates
of the process units and the connectivity among them were
retrieved via the database object of the drawing. Finally,
this information was further processed via object-oriented
programming tool of MATLAB and converted into a topology-
based model, namely, a connectivity matrix [8], [34].

B. Logic of the Search Algorithm

The search algorithm is based on a graph traversal which
searches a series of nodes originating from a cause node to an
effect node using a depth-first search which ensures that each
node is traversed only once [22]. In this paper, the algorithm

“searches” through the connectivity matrix for propagation
paths between the two control elements, particularly, the indi-
cators. The basic idea of the algorithm is to move from the
elements that are connected to the “cause” variable and look
for columns with “1” which indicate on a direct connection to
the column element. This procedure is repeated until the same
element is visited twice or the row element is disconnected
from any other elements. The algorithm then backtracks to
follow all the remaining pathways [22]. A detailed example
of the procedure to find propagation paths between two control
elements is given in [22].

Algorithm 1 presents the logic of calculating the direction-
ality between each pair of controllers (i, j) in each phase.
In phase I, the search algorithm finds all feasible propagation
paths between each pair of controllers. Then, it determines
whether each path is direct or not. If at least one direct
path is detected, the directionality from controller i to j is
calculated according to the nearest neighbors method. A path
from controller i to controller j is considered as direct if it
does not traverse any other control element which does not
belong to control loop i or j [35]. The logic of the search algo-
rithm is further explained and demonstrated in [8] and [10].
Next, a new connectivity matrix is generated according to
the causality matrix which was obtained in phase I. In phase
II, the search algorithm uses the new connectivity matrix to
find all possible propagation paths between each (i, j) pair of
controllers whose directionality had been calculated in phase I.
If an indirect path is detected between the two controllers,
a new proposed measure that includes the intermediate con-
trollers is invoked to evaluate whether the directionality is
direct or indirect. The MV directionality measure is calculated
for each indirect path, and finally, the mean value of all indirect
paths is taken as a measure of directionality. If the mean value
is considerably higher than zero (in this paper, we consider
values higher than 0.1 as high), then a direct causality can be
inferred.

C. Nearest Neighbors Method

The nearest neighbors method is based on the concept of
embedded vectors which can be seen as a high-dimensional
representation of a dynamic system [36]. The method incor-
porates both the time delay and the attenuation of the signal
to measure causality [18]. The implementation of the method
is adapted from [24] as follows.

Consider process variable X with N samples. For time
instance i, the embedded vector xi is defined as xi =
[xi , xi−k , . . . , xi−(m−1)k], where m is the embedded dimension
and k is the embedding time delay. All the embedded vectors
of X can be arranged in the following matrix [24]:

X =

⎛
⎜⎜⎜⎝

x(m−1)k+1 . . . x1
x(m−1)k+2 . . . x2

...
...

xN . . . xÑ

⎞
⎟⎟⎟⎠ (1)

where Ñ = N − (m − 1)k is the number of embedded
vectors. The nearest neighbors of xi are defined as the
embedded vectors that have the smallest Euclidian distance
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Algorithm 1 Calculating the Directionality Measure in
Phases I & II, * m Is the Embedded Dimension for Hi→ j

di, j = ‖xi − x j‖. The K nearest neighbor indices are denoted
as ri, j , where j = 1 . . . K , and ri, j denotes the j th nearest
neighbor of the i th embedded vector xi . Similarly, for each
embedded vector yi , the indices of the K nearest neighbors
are denoted as si, j [24].

The mutual predictability from y to x determines the sim-
ilarity between the prediction of each xi and the prediction
value of each of the nearest neighbors si, j of yi [24], [37]

Di (X |Y ) = 1

K

K∑
j=1

|xi+h − xsi, j +h | (2)

where xi+h is the prediction value of xi , while xsi, j +h is
the prediction value assigned according to the index of the
j th nearest neighbor of yi . For example, consider two time
series X and Y, each with N observations and m = 4. If the

nearest neighbor of an embedded vector y4 = [y4, y3, y2, y1] is
y20 = [y20, y19, y18, y17], then according to (2), if the distance
between x4 + h and x20+h is small, then Y can be considered
as a good predictor of X [24]. The self-predictability of X is
defined as

Di (X) = 1

K

K∑
j=1

|xi+h − xri, j +h | (3)

where xi+h is the prediction values of xi and xri, j +h is the pre-
diction of the j th nearest neighbor of xi . The results are then
scaled to give the predictability improvement measure [37]

H (X |Y ) = 1

Ñ

Ñ∑
i=1

Di (X |Y )

Di (X)
. (4)

In the same manner, H (Y |X) is calculated to take into account
the influence of X on Y. Finally, both H (X |Y ) and H (Y |X) are
compared in order to determine whether X influences Y or vice
versa [24]

Hx→y = H (X |Y ) − H (Y |X). (5)

A positive value indicates on a causal influence from X to Y,
while a negative value implies on directionality from Y to X.

We propose the following MV directionality measure taking
into account the effect of Y on X via n intermediate variables Z

H (X |Y, Z) = 1

Ñ

Ñ∑
i=1

Di (X |Y )

Di (X) + ∑n
j=1 Di (X |Z j )

(6)

where Di (X |Z j ) is the mutual predictability from an interme-
diate variable Z j to X and n is the total number of intermediate
variables. One can think of the numerator as the directionality
measure from Y to X which is scaled by the denominator
representing the self-directionality of X and the sum of the
directionality measure from each Z j to X . Then, according
to 5, a direct causality from X to Y can be established if the
following term is greater than zero:

Hx→y,z = H (X |Y, Z) − H (Y |X, Z). (7)

If Hx→y,z is considerably higher than zero, then the direc-
tionality from x to y can be considered as direct. Note that
the same parameters (m, k, and h) used for the bivariate
directionality measure are used as well in the MV case.

III. APPLICATIONS

In this section, we provide a few examples for the applica-
tion of the nearest neighbors method. The first three examples
consist of simulated data generated from simple mathematical
equations. Those examples are aimed to demonstrate the
application of the MV directionality measure proposed in
(6) and (7). Finally, a case study of a drying section of an
industrial board machine is investigated to demonstrate the
overall methodology using the search algorithm.
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TABLE I

RESULTS FOR CASE I

Fig. 2. Causal model according to (a) case I and (b) case II.

TABLE II

RESULTS FOR CASE II

A. Case I

Consider the following linear continuous system with the
following variables:

{
z(n + 1) = 0.5x(n) + 0.3z(n) + ν1(n)

y(n + 1) = z(n) + 0.8x(n) + ν2(n)

where x(n) ∼ N(0, 1), ν1(n), ν2(n) ∼ N(0, 0.1), and z(0) =
3. 6000 samples were simulated while only the last 3000 sam-
ples were taken for the analysis to ensure stationarity. The
following parameters were used in the calculations: m =
4, k = 1, h = 1, andK = 20. The results are summarized
in Table I.

Note that only positive values are taken into account.
Fig. 2(a) presents the causal model based on the results.
According to the model, the directionality from x to y can
be direct or indirect via z. Therefore, Hx→y,z should be
calculated in order to determine the type of directionality.
Since Hx→y,z = 0.182 is fairly larger than zero, we can
deduce that the causality from x to y is direct (we consider
values >0.1 as indication for direct causality).

B. Case II

Consider the same system as case I, however, this time the
influence from x to y is removed

{
z(n + 1) = 0.5x(n) + 0.3z(n) + ν1(n)

y(n + 1) = z(n) + ν2(n)
.

Using the same parameters as in case I, the directionality
measure is calculated once again (see Table II).

However, in this case Hx→y,z = 0.029, we can conclude
that the causality from x to y is via z [Fig. 2(b)].

TABLE III

RESULTS FOR CASE III

Fig. 3. (a) Initial causal model and (b) final causal model for case III.

TABLE IV

INDIRECT PATHS FOR CASE III AND THEIR DIRECTIONALITY MEASURE

C. Case III

Consider the following nonlinear system:⎧⎪⎨
⎪⎩

z(n + 1) = 1 − 2|0.5 − (0.8x(n) + 0.4
√

z(n))| + ν1(n)

r(n + 1) = 0.45r(n − 1) + 2
√|z(n)| + ν2(n)

y(n + 1) = 0.5z(n)2 + √|r(n)| + ν3(n)

where x is a uniform distributed signal in the interval [1, 2],
ν1(n), ν2(n) ∼ N(0, 0.05), and z(0) = 0.5. The following
parameters where used in the calculations: m = 4, k = 1,
h = 1, and K = 20. 6000 samples were simulated while the
last 3000 were taken for the analysis. Table III presents the
directionality measure for case III.

The initial causal model based on the results is shown
in Fig. 3(a). Next, it is necessary to establish whether the
directionality from x to r , from x to y, and from z to
y is direct. Therefore, the MV directionality between those
variables is calculated. The results for each indirect path are
given in Table IV.

The results indicate that the only directionality which can
be considered as direct is z → y since all the other mea-
sures are either negative (directionality is inconclusive in this
case) or close to zero. Accordingly, the final model is presented
in Fig. 3(b).

D. Industrial Case Study

The industrial case study is a drying section of a large-scale
board machine that produces liquid packages. This section
consists of six consecutive drying groups (DGs). Each group
consists of steam-filled cylinders that are used to evaporate
the excess water in the web and a tank where the condensate
is collected by siphons. Each group has its own controllers
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Fig. 4. Flowsheet of the drying section. Red lines: steam pipes. Blue lines: condensate pipes. Purple lines: mixed flow of steam and condensate (PI =
pressure indicator, PC = pressure controller, LC = level controller, SG = steam group, and C = condensate tank).

to control the steam pressure, the steam pressure difference
between the steam and the condensate headers, and the level
of the condensate tanks. The steam pressure of each DG is
regulated using 5 and 10 bar steam headers. The pressure
difference is maintained using control valves in the steam
outlet of the condensate tank while the level of each tank
is regulated using the outlet flow control valve. The process
scheme is shown in Fig. 4. The case study investigates the
propagation path of oscillation as a result of valve stiction
in pressure controller PC1652. Oscillations in control valves
can easily propagate due to the process connectivity, and
therefore, it is of major importance to detect the root cause
and identify the propagation path as early as possible. In this
paper, the stiction was initially detected using the detection
system proposed in [38] and was later confirmed using the
maintenance records of the plant. The outcome of the analysis
is a causal model of the controllers in the drying section
depicting the propagation path of the oscillation generated by
PC1652.

The time series corresponding to the measured variables
are illustrated in Fig. 5 and their corresponding spectra are
shown in Fig. 6 (the measurement and spectra of PC1652 are
shown in red). The samples were recorded with 10-s sampling
interval and 3000 samples were taken for the analysis. Initially,
it is essential to select the subset of variables with a common
oscillation frequency. This step is important in order to focus
on the variables that are pertinent to the fault, to reduce
the dimensionality of the analysis, and to provide a better
understanding of the process behavior [39], [40]. Several clus-
tering methods for isolating the faulty variables for diagnostic
purposes are reported in [4], [29], and [39]–[42]. In this case,
the spectra of the series are examined to select the series
with similar oscillating features. The spectra of the series
(Fig. 6) reveal that the control loops which oscillate at the same

Fig. 5. Measured process variables in the drying section of the board machine.

frequency (0.007 Hz) are PC668, PC1653, PC651, PC652,
PC653, PC670, LC652, PC1652, PC671, LC653, PC672, and
PC673.

1) Parameter Settings: The parameters were selected based
on the guidelines provided in [24]. The embedding dimension
m was selected by plotting Hx→y while m was varied from
1 to 10 and k = h = 1. The value of m for which
Hx→y is maximized was selected for each pair of variables.
Next, the same procedure was repeated while varying k when
h = 1 and m was set according to the previous step. Finally,
h was varied while m and k were retained at their optimal
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TABLE V

RESULTS OF PHASE I: INITIAL CAUSALITY MATRIX

Fig. 6. Spectra of the process measurements.

settings. An example for setting the parameters of the pair
PC651 → PC652 is presented in Fig. 7. Fig. 7 shows
HPC651→PC652 when m is varied and h and k are fixed (top),
the selection of k (middle), and the selection of h (bottom).

The number of nearest neighbors, K , is typically set to be
equal to the number of cycles that are analyzed in the case of
an oscillatory disturbance [24]. In this case, the oscillation
period is 14 samples while 3000 samples were analyzed;
hence, K was chosen as 200.

2) Results: The results obtained in phase I are given
in Table V. Empty cells indicate either that there is not
a direct physical connectivity from the raw element to the
column element according to the search algorithm or that the
directionality is in the opposite direction (i.e., only positive
values are considered).

In phase II of the analysis, each nonzero element in the
matrix is further investigated to ensure that causality can be
considered as direct. First, a new connectivity matrix is con-
structed from the initial causality matrix, where each nonzero
element is replaced by “1.” Based on the new connectivity
matrix, the MV directionality measure is calculated for all
the indirect paths according to the search algorithm. The

Fig. 7. Parameter setting for PC651 → PC652 (N = 3000 and K = 200).
HPC651→PC652 is plotted when m, k, and h are varied (top, middle, and
bottom, respectively). The chosen parameters are circled.

outcome is a new causality matrix where “1”s indicate on
direct causality based on the new connectivity matrix, while
the rest of the numeric values correspond to the mean MV
directionality measure for the indirect paths based on the new
connectivity matrix [calculated according to (6) and (7)]. The
outcome of phase II is presented in Table VI.

As an example, consider the directionality from PC670 to
PC651. According to the initial causality matrix (Table V)
HPC670→PC651 = 1.802, however, it is essential to confirm
whether the causality is direct or indirect. According to the
initial causality matrix, the search algorithm finds three pos-
sible indirect paths between these controllers. Next, for each
path, the MV directionality measure is calculated according
to (6) and (7) (see Table VII). Finally, the mean of all the
results is calculated (HPC670→PC651 in Table VI). In this case,
the mean value is significantly higher than zero (0.282), thus
we can deduce that the causality from PC670 to PC651 is
direct.

The results of phase II show that HPC670→PC651,
HPC670→PC652, HPC1652→LC653, and HLC653→PC651 are much
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TABLE VI

RESULTS OF PHASE II

TABLE VII

INDIRECT PATHS FROM PC670 TO PC651 AND THEIR

DIRECTIONALITY MEASURE

Fig. 8. Final causal model. Dashed arcs: causality which is indirect or spu-
rious. Dotted arcs: causality which is direct but had not been identified).

higher than zero (>0.1); therefore, they can be considered
as direct. However, HLC652→PC651, HLC652→PC652, and
HLC653→PC652 are considerably low; therefore, they are either
indirect or their level of interaction is very weak. (The
corresponding values are highlighted in yellow in Table VI.)
Based on these results, the final causal model can be obtained
(Fig. 8). The causal model depicts the propagation path of the
oscillation originated in PC1652. The dotted arcs correspond to
interactions that are considered as spurious or indirect based on
our process knowledge and previous investigations [8], [10].
For instance, the directionality from PC673 to PC563 has
been identified as direct by the search algorithm since one of
its manipulating valves discharges steam from C8 into SG2.
However, typically, the PCs in the drying section manipulate
two valves, whereas only one valve is constantly open while
the other valve is opened only when a higher pressure is
needed. Hence, PC673 essentially affects the level in C8 rather
than PC653. This case exemplifies that the physical connec-
tivity does not necessarily indicate on information transfer.
In addition, the causality from PC652 to PC1653 and from
PC671 to PC1652 had not been identified. However, overall,
the results demonstrate a high level of accuracy (∼90%).

3) Comparison With Other Methods: The authors carried
out several investigations into the current case study using
different data-based methods [8], [10]. The proposed method-
ology has shown several advantages compared with the one
implemented in our previous study using the TE method [10].
The two methodologies have similar features: they are imple-
mented as a two-phase analysis wherein bivariate analysis is
implemented in phase I, while MV analysis is implemented in
phase II as a tool for discriminating indirect connectivity. Both
the methods are nonlinear and require estimation of prediction
horizon, embedding dimension, and time delay. Thus, they are
sensitive to parameters changes which affect the results and the
computational burden. However, the TE requires estimation of
the probability density function whose complexity increases
with the dimensionality of the analysis. Wherefore, from
computational point of view, the TE method is more difficult
to implement. In both studies, the statistical significance was
determined according to the magnitude of the results instead
of computationally expensive methods involving the surrogate
data [43]. Although the TE and the nearest neighbors methods
produced a fairly accurate causal model, the TE yielded
more spurious result and required more computational effort
compared with the nearest neighbors method.

On the other hand, there was no significant difference in
the ability to identify the propagation path when applying the
conditional GC [8] and the nearest neighbors method. Unlike
the nearest neighbors method, the GC is linear and based on
fitting MV AR (MAR) models to the time series. Essentially,
it is less computationally heavy than the nearest neighbors
method and the statistical significance can be simply deter-
mined via the F-statistic test [7]. However, its performance is
dependent on the model estimation and the linearity between
the process variables. In this case, the GC method produced
similar results to the nearest neighbors method, which implies
on somewhat linear interactions between the controllers in the
drying section.

With respect to the frequency-domain methods, the partial
directed coherence (PDC) [12] and the directed transfer func-
tion (DTF) [14] are particularly useful when investigating an
oscillatory disturbance. The PDC and the DTF represent the
normalized measure of the direct and the total energy transfer
between two variables [3]. Similar to the GC, the DTF and the
PDC are linear methods which are based on the estimation of
MAR models of the time series and their Fourier transform
to the frequency domain. The frequency-domain methods
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measure the magnitude of the energy transfer at each fre-
quency, and therefore, they are able to quantify rather accu-
rately the causal dependence between oscillating signals as
demonstrated in [8]. However, the methods require surro-
gate data to evaluate the significance of the measure at
each frequency which makes them more time-consuming and
computationally complex to implement compared with the
nearest neighbors and the GC methods. Therefore, in our
previous study [8], frequency-domain analysis was used as
a supplementary method to the GC.

IV. CONCLUSION

The problem of identifying the propagation path of a fault
in a highly interconnected system is a demanding task whose
complexity increases with the number of variables involved
and the level of interactions. This paper proposes a new
methodology for retracing the propagation path based on the
nearest neighbors method. The methodology is implemented
in two phases. In phase I, an initial causality matrix is obtained
according to the paths that are considered as direct based on
the process topology. In phase II, a new MV directionality
measure is used in order to exclude indirect interactions from
the model. In both the phases, a unique search algorithm is
used in order to facilitate the analysis.

The methodology was successfully demonstrated on an
industrial case study of a board machine exhibiting oscilla-
tions in its drying sections. The methodology offers several
advantages. First, the automated integration of the data-based
analysis with the connectivity information using the search
algorithm produces an efficient analysis which is suitable
for industrial applications. Second, the methodology only
considers direct interactions when obtaining the initial causal
model, thus not all pairs of variables are tested in order to
obtain the causal model. Therefore, the computational load
is reduced and the results are easier to interpret. Moreover,
the newly proposed measure for estimating the direct causality
in MV cases proved to be beneficial in excluding indirect
interactions in phase II of the analysis. Although the results of
phase I might be sufficient to obtain an adequate causal model,
phase II is essential since physical connectivity does not
necessarily imply on direct causality. Consequently, the two-
phase analysis yields a casual model with a high degree
of credibility, although the significance level of the results
was not tested. This enables to retrace the propagation path
with less computational effort compared with other data-based
methods that require surrogate data for statistical significance
testing or are more computationally complex, e.g., TE. On the
other hand, the GC method was able to produce just as
reliable results in the same case study [8]. In general, therefore,
it seems that in the future cases, straightforward linear methods
such as the GC should be tried at first, while if the system is
highly nonlinear, the nearest neighbors method would be an
appropriate selection.

The main weakness of this paper is that it does not take
into account a variety of case studies. Further studies need to
be carried out in order to estimate the efficacy of the proposed
methodology using other case studies with different types of

disturbances. In particular, it would be interesting to test the
proposed methodology on a highly nonlinear system or with
nonoscillatory disturbances. An important limitation of this
approach is that the directionality measure relies on the physi-
cal connectivity of the process. On the one hand, the possibility
to easily capture the plant topology using a CAD tool offers
a practical method for automated causal analysis [32]. On the
other hand, the connectivity matrix is a simple qualitative
representation of the process schematic which does not include
any information on the process itself such as the chemical
composition of the components, reactions rate, and so on.
Thus, it is problematic, for example, to retrace the propagation
of disturbances that cause variations in the composition of a
stream. One possibility to tackle this issue could be labeling
the contents of vessels and pipes with the attribute of com-
position [22]. Addressing these kinds of limitations is further
discussed in [22] and [32]. Future studies should therefore
concentrate on automatic technique to deal with disturbances
in unmeasured variables. Another problem with this approach
lies in the fact that the results are not evaluated by a statistical
threshold. Consequently, several indirect/spurious results were
obtained in the final model. Therefore, it is advised to verify
the results using process knowledge or plant personnel if
available. Alternatively, several data-based methods can be
applied in parallel to reinforce the analysis.
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