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Abstract: In general, optical nanomaterials composed of noncentrosym-
metric nanoscatterers are bifacial, meaning that two counter-propagating
waves inside the material behave differently. Thus far a practical theory
for the description of such materials has been missing. Herein, we present
a theory that connects the design of the bifacial nanomaterial’s “atoms”
with the refractive index and wave impedance of the medium. We also
introduce generalized Fresnel coefficients and investigate the role of
electromagnetic multipoles on the bifaciality. We find that in any material
two counter-propagating waves must experience the same refractive index,
but their impedances can differ. The model is demonstrated in practice by
the design of a nanomaterial slab with one of its facets being optically
reflective, while the other being totally non-reflective.
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1. Introduction

Optical nanomaterials are artificial substances with subwavelength-sized unit cells that contain
specially designed nanoparticles (artificial atoms). Light propagation in such a material is fully
determined by the way electromagnetic waves are scattered and absorbed by the nanoparticles.
The optical characteristics of the material can be described using effective material parame-
ters, such as refractive index n and wave impedance η when the nanomaterial can be treated
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as homogeneous. For a given nanomaterial design, these parameters are commonly retrieved
by calculating the light transmission and reflection by a slab of such nanomaterial [1–3]. Using
these retrieval procedures, certain nanomaterials have been designed to exhibit extreme values
for the material parameters, which cannot be found in nature [4–10]. The commonly used re-
trieval procedures rely upon the assumption that the nanomaterial is free of spatial dispersion
and, thus, treatable in terms of standard Fresnel transmission and reflection coefficients. These
assumptions, however, may not hold for materials composed of asymmetric nanoscatterers,
such as typical split-ring-resonators used to obtain artificial magnetism [11].

Nanomaterials in which two counter-propagating optical waves see the medium differently
belong to the large group of optically bifacial nanomaterials. The nanoscatterers in these mate-
rials are not centrosymmetric. Although such asymmetric scatterers have been widely studied
in terms of their scattering properties [12, 13], magnetic near-field enhancement [14, 15], lo-
calized absorption [16], color switching [17, 18] and mimicking electromagnetically induced
transparency [19–21], no adequate theory currently exists for the description of nanomaterials
constructed of such scatterers. For example, for a bifacial nanomaterial, the standard Fresnel
coefficients cannot be applied. In this paper, we consider uniaxial noncentrosymmetric nano-
materials and develop a theoretical model that allows calculating the parameters n and η from
the geometry and composition of the material’s unit cell. The electromagnetic interaction be-
tween the unit cells is taken into account by first considering the interaction within a single
layer of nanoparticles and then considering the inter-layer interaction. Using this model, we
investigate the key properties of such artificial bifacial media. In particular, we find that two
counter-propagating waves in the material must experience the same refractive index, but they
can have dramatically different wave impedances. Hence, the material can reflect light differ-
ently by its different sides.

We apply our model to a particular example of optical nanomaterials consisting of metal
nanodimers and verify the correctness of our model by rigorous numerical calculations. We
also verify that in the limiting case of symmetric nanoscatterers, our model is in agreement
with the results of the existing retrieval procedures.

2. Theory

2.1. Effective wave parameters

Since in general, the parameters n and η differ for optical waves having different propaga-
tion directions, they are often called effective wave parameters instead of material parameters.
In this section, we derive these parameters for a uniaxial nanomaterial. We start by consider-
ing a three-dimensional nanomaterial that consists of periodically arranged nanoscatterers in a
transparent dielectric host medium of refractive index ns. This three-dimensional array can be
thought as a set of two-dimensional nanoscatterer arrays, which are stacked in a certain com-
mon direction, as illustrated in Fig. 1. We choose the z axis to point in this direction and the
length of the unit cell along z to be Λz. For an optical plane wave propagating in the mate-
rial, each two-dimensional nanoscatterer array can be treated as an infinitesimally thin sheet
with a plane-wave transmission coefficient τ and reflection coefficient ρ , which in general both
depend on the wave propagation direction and polarization. As has been shown in [22], these
coefficients can be obtained by calculating the plane-wave transmission and reflection by an
isolated two-dimensional nanoscatterer array in the host medium. As long as the periodicities
within the array are sufficiently small compared to the local wavelength λ , there will be no
coupling of diffraction orders between successive “crystal” planes in the material. Moreover, in
the presence of sufficiently large spacing between neighboring nanoscatterers, the evanescent-
wave coupling between the crystal planes can be safely neglected [22–24]. Thus, in the analysis,
there will locally be only two counter-propagating plane waves in the crystal, due to the finite
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ρ

τ

Fig. 1. Illustration of a three-dimensional nanomaterial composed of periodically arranged
nanoscatterers. Light propagating in the nanomaterial can be described in terms of plane
waves reflected back and forth by successive crystal planes. Each such plane is character-
ized by a transmission coefficient τ and reflection coefficient ρ .

reflection provided by each crystal plane. The optical response of the nanomaterial to a plane
wave propagating in the host medium at an angle θ with respect to the z axis is then fully
determined by τ(θ), τ(π − θ), ρ(θ) and ρ(π − θ). This is depicted in Fig. 2(a), where light
waves are locally reflected back and forth between two nanoscatterer planes within the mate-
rial. For another wave propagating at an angle of π + θ , as depicted in Fig. 2(b), reciprocity
requires that τ(θ) = τ(π +θ) and ρ(θ) = ρ(−θ). For a general array of lossy nanoscatterers,
the asymmetries τ(θ) �= τ(π − θ) and ρ(θ) �= ρ(π − θ) = ρ(π + θ) can hold. However, for
uniaxial nanomaterials considered in this work, the symmetry requires that τ(θ) = τ(π − θ).
For bifacial materials, the inequality ρ(θ) �= ρ(π +θ) can be the case, which allows the waves
propagating in the θ and π +θ directions to behave differently.

Each unit-cell thick layer in a nanomaterial is in our analysis characterized by the following
propagation-direction dependent coefficients

f (θ) = τ(θ)exp(ikzsΛz), (1)

g(θ) = ρ(θ)exp(ikzsΛz), (2)

where kzs = k0ns cosθ is the z component of the wave vector in the surrounding medium; k0

is the wave number in vacuum. We remind that τ and ρ depend on the polarization. The first
coefficient, f , describes the transmission through a single layer of thickness Λz, whereas g
describes the reflection from this layer. Between two neighboring layers j and j+1, we denote
the transverse component of the electric field for the forward and backward propagating waves
by Uj and U

′
j, respectively. These fields are recursively related to each other as [22]

Uj = f (θ)Uj−1 +g(π −θ)U
′
j, (3)

U
′
j = g(θ)Uj + f (θ)U

′
j+1. (4)

Using these equations, one can derive

Uj+1 +Uj−1 −aUj = 0, (5)
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Fig. 2. Illustration of transmission and reflection of a plane wave propagating inside a
nanomaterial. The vertical lines represent planes of nanoscatterers within the nanomaterial
and the red arrows stand for the wave vectors. In (a) and (b) the field propagates between
the planes at an angle of θ and π +θ , respectively.

where
a = f (θ)+ f (θ)−1[1−g(θ)g(π −θ)]. (6)

Next we derive the effective wave parameters that characterize the three-dimensional
nanoscatterer array as a homogeneous, but spatially dispersive nanomaterial. The first such
parameter is the refractive index n. In the homogenized material, the transverse electric field of
a propagating plane wave must satisfy

Uj+1 =Uj exp(ikzΛz), (7)

where kz is the z component of the effective wave vector. Combining Eqs. (5) and (7), we obtain

kzΛz =±arccos(a/2)+2πm, (8)

with m ∈ Z. For nanomaterials which are not bifacial, Eq. (8) can be shown to be in perfect
agreement with Eq. (6) in [1].

The refractive index is obtained as

n(θ) =±k−1
0 [(k0ns sinθ)2 + k2

z ]
1/2, (9)

where the continuity of the tangential component of the wave vector is taken into account. This
is one of the key results of this work. The choice of order m and signs in Eqs. (8) and (9), to
obtain physical solutions, are performed as described in [1], i.e., using the continuity of the kz

spectrum and requiring kz and n to have positive imaginary parts. We notice that, since a is
symmetric with respect to the interchange between θ and π −θ , the effective refractive index is
the same for any two counter-propagating waves. This finding is in agreement with [25] and can
be understood as a consequence of reciprocity for the waves propagating inside the material.
As we show next, the same symmetry does not hold for the effective wave impedance.

We derive the wave impedance of the nanomaterial by averaging the electromagnetic fields
over a single period of the material in the z direction. Irrespective of the field polarization, we
use Eqs. (3) and (7) to express the component of the electric field that is transverse to the z axis
between two neighboring crystal planes as

E⊥(z) = Uj exp(ikzsz)+U
′
j exp(−ikzsz)

= Uj{exp(ikzsz)+g(π −θ)−1[1− f (θ)exp(−ikzΛz)]exp(−ikzsz)}. (10)
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Since E, H and ks form a right-handed triad in the host medium, the transverse component of
the magnetic field is

H⊥(z) = ξ
Uj exp(ikzsz)−U

′
j exp(−ikzsz)

ηs

=
ξUj

ηs
{exp(ikzsz)−g(π −θ)−1[1− f (θ)exp(−ikzΛz)]exp(−ikzsz)}, (11)

where ηs denotes the wave impedance of the host medium and

ξ =

{
cosθ for TE polarization,

1/cosθ for TM polarization.
(12)

Notice that we define the reflection coefficient for the TM-polarization such that it has zero
phase when the transverse components of the reflected and incident electric fields are in phase.
By integrating Eqs. (10) and (11) with respect to z over the interval from −Λz/2 to Λz/2 we
can calculate the averaged transverse electric and magnetic fields in the unit cell. Using the fact
that 〈exp(ikzsz)〉= 〈exp(−ikzsz)〉, where 〈〉 denotes the mentioned averaging, we find the ratio
between the averaged fields to be

〈E⊥(z)〉
〈H⊥(z)〉 =

ηs

ξ
g(π −θ)+ [1− f (θ)exp(−ikzΛz)]

g(π −θ)− [1− f (θ)exp(−ikzΛz)]
. (13)

In the homogenized material, the wave (on average) propagates at an angle θeff �= θ . This angle,
as determined by the Snell law n(θ)sinθeff = ns sinθ , is obtained from

cosθeff =±
[
1− n2

s

n(θ)2 sin2 θ
]1/2

. (14)

For the TE polarization, the total magnetic field is found from the transverse magnetic field by
dividing it with cosθeff. The total electric field is transverse for this polarization. Using Eq. (13),
the effective wave impedance for the TE polarization becomes

ηTE(θ) = ηs
cosθeff

cosθ
g(π −θ)+ [1− f (θ)exp(−ikzΛz)]

g(π −θ)− [1− f (θ)exp(−ikzΛz)]
. (15)

Likewise, for the TM polarization the transverse electric field appearing in the numerator of
Eq. (13) must be divided with cosθeff and, thereby, we obtain

ηTM(θ) = ηs
cosθ

cosθeff

g(π −θ)+ [1− f (θ)exp(−ikzΛz)]

g(π −θ)− [1− f (θ)exp(−ikzΛz)]
. (16)

Notice that the quantities f , g and kz in Eqs. (15) and (16) have different values for TE and
TM polarizations. Obviously, the impedances obtained for two counter-propagating waves are
different in bifacial nanomaterials [since η(θ) �= η(π +θ), when g(π −θ) �= g(−θ)].

Equations (9), (15) and (16) fully characterize the material. We have verified that for nano-
materials which are not optically bifacial, these equations yield exactly the same results as the
retrieval procedure in [1]. The derivation in [1], however, considers a plane-wave transmission
through a nanomaterial slab, whereas the derivation presented here considers the plane waves
propagating inside a bulk nanomaterial of an arbitrary shape. Equations (9), (15) and (16) are
also in agreement with [25], in which the special case of normal incidence illumination was
considered.
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In summary, the wave parameters for a given bifacial nanomaterial design can be calculated
as follows: The first step is to numerically or otherwise obtain the spectra of f and g, defined
in Eqs. (1) and (2), for a single two-dimensional layer of nanoscatterers in the host medium.
Next, one calculates the spectra of a using Eq. (6). Thereafter a continuous spectrum of kz

is calculated from Eq. (8). The spectrum of the refractive index follows from Eq. (9). With
the refractive index at hand, the effective propagation angle θeff in the material is solved from
Eq. (14). Finally, depending on the chosen polarization, one uses either Eq. (15) or Eq. (16) to
obtain the spectrum of the wave impedance.

2.2. Transmission and reflection at an interface between two bifacial nanomaterials

The transmission and reflection of an optical plane wave at a material boundary is usually de-
scribed by using the standard Fresnel coefficients [26]. However, it has been shown that even for
strictly homogeneous noncentrosymmetric crystals that are free of spatial dispersion, a gener-
alized form of these coefficients is required [27]. In the case of optically bifacial nanomaterials,
the Fresnel coefficients must be modified as well, to take into account both the asymmetry of
the unit cells and the resulting spatial dispersion.

Consider a boundary at z = 0 between two bifacial materials with material parameters nj and
η j, where the index j ∈ {1,2} refers to the material in question. A wave with a wave vector
k1 = kyŷ+ kz1ẑ is incident from material 1 onto material 2, in which the wave propagates with
the wave vector k2 = kyŷ+ kz2ẑ as depicted in Fig. 3. The magnitude of the wave vector is
k j = k0n j. For simplicity, we define ηR

j = η j(θ) and ηL
j = η j(π −θ) to denote the impedances

for the waves propagating to the right and left, respectively, in Fig. 3. The vector complex
amplitudes of the electric and magnetic fields for the incident ( j = 1) and transmitted ( j = 2)
waves can be written as

E j(r) =
[
ETE

j x̂+ETM
j (ŷ

kz j

k j
−ẑ

ky

k j
)
]

exp(ik j ·r), (17)

H j(r) =
[
ETE

j (ŷ
kz j

k j
−ẑ

ky

k j
)−ETM

j x̂
]exp(ik j ·r)

ηR
j

. (18)

The wave vector of the reflected wave is kr1 = kyŷ−kz1ẑ. The reflected wave is therefore of the
form

Er1(r) =
[
ETE

r1 x̂+ETM
r1 (ŷ

kz1

k1
+ẑ

ky

k1
)
]
exp(ikr1·r), (19)

Hr1(r) =
[
ETM

r1 x̂−ETE
r1 (ŷ

kz1

k1
+ẑ

ky

k1
)
]exp(ikr1·r)

ηL
1

. (20)

Applying the electromagnetic boundary conditions that require ẑ× (E1 +Er1) = ẑ×E2 and
ẑ× (H1 +Hr1) = ẑ×H2 at z = 0, we derive Fresnel transmission and reflection coefficients
generalized for bifacial nanomaterials, for the TE and TM polarizations, as

τTE
12 =

kz1/(k1ηR
1 )+ kz1/(k1ηL

1 )

kz1/(k1ηL
1 )+ kz2/(k2ηR

2 )
, (21)

τTM
12 =

kz1/(k1ηR
1 )+ kz1/(k1ηL

1 )

kz1/(k1ηR
2 )+ kz2/(k2ηL

1 )
, (22)

ρTE
12 =

kz1/(k1ηR
1 )− kz2/(k2ηR

2 )

kz1/(k1ηL
1 )+ kz2/(k2ηR

2 )
, (23)

ρTM
12 =

kz2/(k2ηR
1 )− kz1/(k1ηR

2 )

kz1/(k1ηR
2 )+ kz2/(k2ηL

1 )
, (24)
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Fig. 3. Illustration of a plane wave incident on a boundary between two bifacial materials.
In material 1, the incident and reflected waves see the same refractive index n, but different
wave impedances that are, respectively, denoted by ηR
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where the subindex 12 indicates that the field is incident from material 1 onto material 2. As
shown in the next section, the bifacial behavior is tightly connected to the excitation of higher-
order multipoles. It has previously been suggested that special electromagnetic boundary con-
ditions are required to deal with materials in which higher order multipoles can be excited [28].
Here, however, the ordinary boundary conditions are applied, since we allow the material pa-
rameters to depend on the propagation direction of the plane wave for which they are calculated.
This provides a remarkable simplicity for the resulting Fresnel coefficients.

Using Eqs. (21)-(24) one can, for instance, calculate the transmission and reflection coeffi-
cients of an optically bifacial nanomaterial slab by taking into account multiple reflections. For
a wave being incident from a semi-infinite material 1 onto a bifacial slab made of a material 2
of thickness D and transmitted into a semi-infinite material 3, these coefficients are

t = exp(ikz2D)
τ12τ23

1−ρ21ρ23 exp(2ikz2D)
, (25)

r = ρ12 +
τ12 exp(2ikz2D)ρ23τ21

1−ρ21ρ23 exp(2ikz2D)
. (26)

For any bifacial nanomaterial slab, the reflection coefficient r for a wave incident from material
1 differs from that obtained for a wave incident from material 3 even when the materials 1
and 3 are the same, which can be seen by interchanging ηR

2 and ηL
2 in Eqs. (21)-(26). The

transmission coefficient, however, is invariant with respect to this interchange, which ensures
that the nanomaterial is reciprocal. This bifacial reflection has been observed previously in
theoretical calculations [22, 29, 30], as well as in experiments [31–33]. Equations (21)-(26)
enable one to verify the effective wave parameters calculated by using Eqs. (9), (15) and (16).
At the end of Sec. 3, this verification is performed for a particular bifacial nanomaterial.

2.3. Electromagnetic multipoles

In this subsection, we show that for a nanomaterial to be optically bifacial, it is necessary
that higher-order electromagnetic multipoles are excited in the nanoscatterers. The transmis-
sion and reflection coefficients of a two-dimensional array of nanoscatterers are related to the
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multipole excitations in each nanoscatterer. Here, for simplicity, we derive these coefficients
for normal-incidence illumination of a nanoscatterer array in which both electric dipole and
current quadrupole [34] moments are excited. The current multipoles represent a complete or-
thogonal basis and can be expressed in terms of the standard electromagnetic multipoles. The
current quadrupoles, for example, are coherent superpositions of magnetic dipoles and electric
quadrupoles. Considering an x-polarized incident wave, we write the complex amplitude for
the x component of the excited electric current density as

Jx(r) =−iω ∑
u,v

(
px −Qxz

d
dz

)
δ (r−uΛx̂− vΛŷ), (27)

where u and v are integers that refer to a certain equivalent point-scatterer in a square lattice of
period Λ in the z = 0 plane. In Eq. (27), px is the x component of the excited dipole moment
and Qxz is the xz element of the current quadrupole dyadic [34]. The contribution from the xx
element of the quadrupole dyadic is neglected, as it does not radiate in the ±ẑ direction. For
Λ < λ , no diffraction orders can appear, and Eq. (27) can be averaged in the xy plane to obtain

〈Jx(z)〉=− iω
Λ2

(
px −Qxz

d
dz

)
δ (z). (28)

When replacing Jx with 〈Jx〉, the evanescent near-field of the array is lost, whereas the far-field
that determines the transmission and reflection of the array remains. In the Lorenz gauge, the x
component of the vector potential Ax satisfies the wave equation

( d2

dz2 + k2
s

)
Ax(z) =−μs〈Jx(z)〉, (29)

where ks and μs are the wave number and magnetic permeability, respectively, of the surround-
ing medium. Using the one-dimensional Green’s function [35], one can solve Eq. (29) for the
vector potential and obtain

Ax(z) =
ks

2ωεsΛ2

[
px − iksQxzsign(z)

]
exp(iks|z|). (30)

The electric far-field scattered by the array, Esca, is related to the vector potential through [34]

Esca(r) = iω
[
A(r)+

1
k2

s
∇∇ ·A(r)

]
. (31)

The reflection coefficient ρ for the array is obtained from Eqs. (30) and (31) by dividing the
complex amplitude Esca with the electric field amplitude E0 of the incident wave at z → 0−.
The result is

ρ =
iks

2εsΛ2

[
αx + iksβxz

]
. (32)

The coefficients αx = px/E0 and βxz = Qxz/E0 are the electric dipole and current quadrupole
polarizability components of the scatterers (see also [12]). For the transmission coefficient τ , the
forward scattered field is superposed to the incident field at z > 0. Dividing this superposition
field with the incident field, we obtain

τ = 1+
iks

2εsΛ2

[
αx − iksβxz

]
. (33)

Equations (32) and (33) give the normal-incidence transmission and reflection coefficients
for an arbitrary two-dimensional array of nanoscatterers, provided that the array period is
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subwavelength-sized. Octupoles and other higher-order multipoles, which may be excited in
particular nanoscatterer designs [36, 37], can be included by simply adding more terms in
the expansion of Jx. These multipoles, however, are often negligible for subwavelength-sized
nanoparticles.

Important conclusions can now be made from Eqs. (32) and (33) regarding the effect of
multipoles on optically bifacial and non-reflective nanoparticle arrays. The first conclusion is
that complete suppression of reflection requires at least the excitation of current quadrupoles
in the nanoparticles. We recall that the current quadrupoles include both traditional electric
quadrupoles and magnetic dipoles, which are electromagnetic multipoles of the same order
[34]. By designing the scatterers such that px =−iksQxz, the reflection can be brought to zero.
This is precisely what happens in so-called metamaterial perfect absorbers [38]. In general,
both the transmission and absorption are non-zero. We emphasize that when px =−iksQxz, the
backward radiation by both the magnetic dipole and the electric quadrupole is out-of-phase with
respect to the electric dipole. Therefore, zero reflection can also be obtained using structures
where either the electric quadrupole or magnetic dipole contribution to Qxz is absent. Another
conclusion is that the excitation of current quadrupoles or other higher-order multipoles are
necessary for bifacial behavior (for the reflection coefficient to depend on the side of illumina-
tion). This is seen by noting that, due to reciprocity, τ in Eq. (33) must be the same for both
illumination sides. Therefore, if Qxz = 0, also px must be the same for both illumination sides,
and so must be the reflection coefficient ρ , too.

3. Numerical studies

In this section, we use the introduced theory to analyze a particular example of an optically
bifacial nanomaterial constructed of gold nanodimers [12, 39]. These nanodimers consist of
two axis-aligned discs as depicted in Fig. 4(a). The thickness of both discs is chosen to be
H = 20 nm and the surface-to-surface separation between the discs is s= 20 nm. The diameters
of the discs are chosen as D1 = 40 nm and D2 = 60 nm, such that the resonances of the discs
occur at different frequencies. In the material, the nanodimers are arranged in a cubic lattice
with a period of Λ = 150 nm and placed in a surrounding dielectric of refractive index ns = 1.5,
corresponding to that of glass. The nanodimer dimensions and the lattice geometry are chosen
such that the material is impedance-matched to the surrounding medium when illuminated from
the side of the smaller disc.

We start by calculating the complex transmission and reflection coefficients of a single two-
dimensional array of the nanodimers in glass [see Fig. 4(b)] using the computer software COM-
SOL Multiphysics. The spectrum of the relative electric permittivity of gold is taken from [40].
The intensity transmission and reflection spectra of this array at normal incidence are depicted
in Fig. 4(c). At a vacuum wavelength of λ0 = 632 nm the reflection from the smaller-disc side
(θ = 0) is strongly suppressed, whereas the reflection from the other side (θ = π) is consider-
able.

Using the results of section 2.3, we can fully explain this bifacial behavior of the nanodimer
array in terms of the electromagnetic multipole excitations. The multipole excitations in the
array are extracted from the electric field distribution inside the scatterers as described in [34].
The electric dipole and current quadrupole moments are obtained from the multipole coeffi-
cients as

px =
6πiεsE0

k3
s

[aE(1,−1)−aE(1,1)
2

]
, (34)

Qxz =
πεsE0

k4
s

[
3aM(1,−1)+3aM(1,1)−5aE(2,−1)+5aE(2,1)

]
, (35)
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Fig. 4. (a) Illustration of a gold disc nanodimer used as an artificial atom in each unit cell of
the considered bifacial nanomaterial. (b) Illustration of a two-dimensional nanodimer array
spanning a plane within the nanomaterial. (c) Normal-incidence intensity transmission T
and reflection R of the array as functions of the wavelength λ0 in vacuum. The angles of 0
and π correspond to illumination from the side of the smaller and larger discs, respectively.

where aE and aM are the electric and magnetic multipole coefficients, respectively, described in
detail in [34]. In Fig. 5, we show the normalized intensity of the field radiated in the backward
direction separately by the dipoles and current quadrupoles, as obtained by calculating the
squared moduli of the individual terms in Eq. (32). The actual reflection shown in Fig. 4(c) is the
result of interference between the two multipole waves as given by Eq. (32). The magnitudes of
multipoles of higher orders than the current quadrupole are negligibly small. From Fig. 5(a), we
see that in the region of λ0 = 632 nm, the dipole and quadrupole waves have equal amplitudes.
These two waves oscillate out of phase and interfere destructively, providing the suppressed
reflection in Fig. 4(c). In contrast, for the opposite propagation direction, θ = π , the dipole
contribution is much larger than the quadrupole one over the whole spectral range considered
[see Fig. 5(b)]. Consequently, the reflection is significant everywhere in this wavelength range.

In order to calculate the effective electromagnetic wave parameters for the considered three-
dimensional nanomaterial, we use Eqs. (9), (15) and (16) with the complex transmission and
reflection coefficients that are numerically obtained for the two-dimensional array of the dimers.
The effective refractive index and impedance are expected to depend on both the angle θ and
the polarization direction of the light. Consequently, we consider both TE- and TM-polarized
waves and a large enough set of propagation angles θ in the host medium, choosing the values
of 0, π/6, π/3, 2π/3, 5π/6, and π . As explained in Sec. 2.1, it is sufficient to evaluate the re-
fractive index only for θ ≤ π/2, because of the symmetry n(π −θ) = n(θ). Before discussing
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Fig. 5. Normalized intensity, I/I0, of the plane wave radiated in the backward direction by
the electric dipoles (black solid lines) and current quadrupoles (green dotted lines) excited
in the nanodimer array of Fig. 4(b). I0 is the intensity of the incident wave that propagates
in the direction of (a) θ = 0 and (b) θ = π . The actual reflection coefficient of the array is
determined by the interference between the waves created by these two multipoles.

our results, we emphasize that we have verified the obtained wave parameters by doing rigorous
numerical calculations for a five-layer thick nanomaterial slab and by comparing those calcula-
tions with the results obtained by applying Eqs. (21)-(26) with the evaluated wave parameters.
The agreement is perfect, as will be shown later on in this section.

For the TE polarization, with the electric field perpendicular to the dimer axis, the calculated
spectra of the refractive index and the wave impedance are shown in Figs. 6(a) and 6(b), respec-
tively. The real parts of these complex quantities are shown by solid lines, while the imaginary
parts are shown by dashed lines. It can be seen that, for this polarization, the refractive index
is nearly independent of the light propagation direction. This feature can be understood by not-
ing that the modal excitations in the individual discs can only slightly depend on the angle of
incidence of the light. In the refractive index spectra, one can clearly distinguish the dipole
resonances of the two discs composing the dimers.

In contrast to the refractive index, the wave impedance, as expected, depends on the propa-
gation direction quite significantly [see Fig. 6(b)]. At a wavelength of about 630 nm, the wave
impedance for θ ∈ {0,π/6,π/3} is essentially real-valued and quite well matched to that of the
surrounding glass, which means that the light reflection at a glass-nanomaterial interface will
be suppressed [see Eq. (23)]. The smaller discs are in this case pointed towards the interface.
On the other hand, if the larger discs are those which are closer to the interface, the interface
reflects light significantly, as follows from a completely different value of wave impedance for
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Fig. 8. Normal-incidence intensity transmission T and reflection R of a nanomaterial slab
composed of 5 layers of nanodimers embedded in glass. The slab is located in vacuum. The
lines show the results obtained by using Eqs. (21)-(26) with the wave parameters obtained
from a single two-dimensional array in glass. The stars show the results of direct numerical
calculation.

θ ∈ {π,5π/6,2π/3} at this wavelength. Still one can see that in the range of θ ∈ [−π/3,π/3]
(or θ ∈ [2π/3,4π/3]) the material can be considered to be nearly spatially non-dispersive. It is
nonetheless quite obvious that the material is optically bifacial.

The calculated spectra for the refractive index and the wave impedance corresponding to
TM polarized light are shown in Fig. 7. For this polarization, the refractive index changes
significantly with the propagation angle θ , as shown in Fig. 7(a). This is a consequence of the
fact that the z component of the electric field interacts non-resonantly with the nanodimers.
Hence, for angles θ approaching π/2, the resonant interaction of the wave with the dimers
gradually disappears. For the propagation directions θ = 0 and θ = π , the wave impedances
are as expected identical to those for the TE polarization. However, for the TM polarization, the
wave impedance changes more with increasing θ than for the TE polarization. At λ0 ≈ 630 nm,
we still have quite good impedance-matching of the material to glass at θ ∈ {0,π/6,π/3}.

We have verified the validity of the obtained wave parameters and the expressions for them
in Eqs. (9), (15) and (16) by using Eqs. (21)-(26) to calculate the transmission and reflection
of light by a nanomaterial slab in vacuum. The slab has a thickness of 750 nm and contains
five nanodimer layers [each layer is as the one in Fig. 4(b)] embedded in glass. The calculated
intensity transmission and reflection spectra of this slab are depicted by solid lines in Fig. 8.
For comparison, we use COMSOL to directly calculate the transmission and reflection by the
slab. The results of these calculations are presented in Fig. 8 by stars. These results are seen
to be in perfect agreement with the results obtained using our effective wave parameters. The
suppressed reflection at λ0 ≈ 650 nm originates from the fact that at this wavelength the nano-
material is approximately impedance-matched to vacuum (see Figs. 6 and 7).

4. Conclusions

We have introduced a theoretical model for calculating the electromagnetic characteristics of
designed bifacial optical nanomaterials that are composed of noncentrosymmetric nanoparti-
cles with a single symmetry axis. In general, these characteristics depend on the propagation
direction of light, and for bifacial nanomaterials they are different for two counter-propagating
waves. Our approach enables direct evaluation of the material’s refractive index and wave
impedance from the transmission and reflection coefficients of a single crystal plane of the
constituent nanoscatterers. This makes the required numerical calculations fast. Taking into ac-
count the dependence of the material parameters on the light propagation direction, we have
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derived generalized Fresnel coefficients that describe the light transmission and reflection at
the surface of a bifacial nanomaterial. We have found that in order to create an optically bi-
facial nanomaterial, it is necessary to use nanoscatterers in which light can efficiently excite
higher-order electromagnetic multipoles. Inside such a nanomaterial, two counter-propagating
waves necessarily see equal refractive indices, while they can experience quite different wave
impedances.

The practical application of the theory was demonstrated with a particular example of a
bifacial nanomaterial composed of metal-disc nanodimers. Using the model, we have designed
and characterized a material that is impedance-matched to the surrounding medium (glass and
vacuum) for a wave propagating in a certain direction, but not for a counter-propagating wave.

This work opens up the possibility to comprehensively describe and design uniaxial bifa-
cial optical nanomaterials. The asymmetry of the unit cells in such materials can provide the
substance with an extraordinary electromagnetic response that is not possible to find in natural
materials. For example, a nanomaterial slab can be designed to have a desired spectrum of the
refractive index and/or to reflect light only by one of its surfaces. The latter feature can be of
interest for imaging and energy-harvesting applications, including ultrathin wide-angle bifacial
antireflection coatings and high-efficiency solar cells.
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