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Two vortex rings can form a localized configuration whereby they continually pass
through one another in an alternating fashion. This phenomenon is called leapfrogging.
Using parameters suitable for superfluid helium-4, we describe a recurrence phenomenon
that is similar to leapfrogging, which occurs for two coaxial straight vortex filaments with
the same Kelvin wave mode. For small-amplitude Kelvin waves we demonstrate that our
full Biot-Savart simulations closely follow predictions obtained from a simplified model
that provides an analytical approximation developed for nearly parallel vortices. Our results
are also relevant to thin-cored helical vortices in classical fluids.

DOI: 10.1103/PhysRevFluids.1.084501

I. INTRODUCTION

The mathematical foundation of vortex dynamics was laid down by Helmholtz [1,2], who
subsequently applied his theory to study the propagation of vortex rings. In his work, he suggested
that two vortex rings moving along the same axis would thread each other in an alternating fashion.
The study of vortex rings was also taken up by Lord Kelvin, who contributed significantly to our
understanding of the motion of vortices in general. Following the works of Helmholtz and Kelvin,
the leapfrogging motion of vortex rings has been studied in more detail for classical fluids [3–5] and
also for superfluids [6,7].

Leapfrogging of vortex rings is an interesting example of a recurrence phenomenon involving
two vortices. In this work, we will give another example of leapfrogging, which can resemble the
motion of two coaxial vortex rings. Part of our motivation is to understand the interaction of Kelvin
waves on quantized superfluid vortices. It has been argued that Kelvin waves, which are helical
perturbations of a straight vortex, are important for the energy dissipation in superfluid turbulence at
very low temperatures [8–10]. However, a large body of analytical results and a number of numerical
studies rely on the simplifying assumption of neglecting the interaction of the Kelvin waves between
different vortex filaments and focus on how Kelvin waves evolve on a single filament. Despite
this, the justification of these assumptions on which many of these theories are based is not fully
established.

In this work we will uncover a type of interaction between adjacent vortex filaments that can play
an important role in our understanding of how energy is transferred across different length scales.
We note that some Kelvin wave phenomena bear resemblance to the motion of vortex rings. For
example, a superfluid vortex ring experiencing a counterflow (the relative velocity of normal fluid and
superfluid [11]) through it will either shrink or grow depending on the direction of the counterflow.
Similarly, the amplitude of a Kelvin wave will either decrease or increase depending on the amount
of the counterflow along the vortex axis [12]. On the other hand, a vortex with a large-amplitude
Kelvin wave has a shape that corresponds to a tightly wound helix that, in some approximate sense,
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bears resemblance to a stacked row of vortex rings. Although the correspondence is not exact, in
this work we propose that two stacked rows of vortex rings mimics the motion of two vortices with
large-amplitude Kelvin waves. It turns out that this analogy provides a qualitative understanding of
the observed dynamics. Interestingly, we will show that a form of vortex leapfrogging persists even
when the Kelvin wave amplitudes are small.

Aside from their importance for superfluid turbulence, helical vortices are also important for
classical fluid dynamics. For example, the wake behind rotors can be treated as one or many
interlaced helical vortices. Circumstances where helical vortices are relevant include wakes behind
propellers, wind turbines, or helicopter blades [13–22]. Moreover, experiments have shown how the
adjacent turns of two helices may contract and expand in a manner that resembles leapfrogging of
vortex rings [14,17].

In this work we study the leapfrogging of helical vortices, where the contraction and expansion
occurs along the entire helix as opposed to individual turns. In ordinary viscous fluids, it is expected
that the interaction between helical vortices will eventually lead to the merging of the vortices
[20,22]. However, in our superfluid context, viscous effects and the dynamics of the vortex core are
irrelevant (the core has a negligible atomic scale). In this scenario, the problem of the interaction of
the Kelvin waves acquires its simplest possible form.

II. METHOD

We model the dynamics of helical superfluid vortices using a vortex filament model in which the
vortices are described as discretized space curves s(ξ,t) that are parametrized by their arc length ξ . We
use parameters typical for helium-4 experiments: Each vortex has circulation κ = 0.0997 mm2/s and
a core diameter a0 ≈ 10−7 mm [11]. Since the core diameter is several orders of magnitude smaller
than any other length scale in the system, for example the characteristic intervortex separation in the
experiments, this justifies the use of the filament model. With this model, a filament is discretized
by a finite set of points along the curve s(ξ,t). Each vortex point then evolves according to the
Biot-Savart law

ṡ = κ

4π
ln

(
2
√

l+l−
e1/2a0

)
ŝ′ × s′′ + κ

4π

∫ ′ (s1 − s) × ds1

|s1 − s|3 , (1)

where s1 = s(ξ1,t), the overdot denotes a time derivative, and a prime to the variable s denotes
differentiation with respect to arc length. The first term arises from a commonly adopted
regularization of the singular integrand in the expression for the velocity in the Biot-Savart integral
in which the contribution from a small interval [s(ξ − l−),s(ξ + l+)] is isolated around the point at
which the velocity is calculated [23]. The Biot-Savart integral contained in the second term contains
the contribution from the remaining segment of the filament plus the contributions from all the
other vortices. Henceforth, we denote an integral that excludes a segment containing the divergent
contribution with a prime. The above approximation is valid when a0 � l± � 1/c, where c is the
local curvature. In our simulations, l± were chosen to correspond to the distances to the two nearby
points on the discretized curve, respectively. Figure 1 illustrates the parametrization and the key
length scales used in the model.

In this work we focus on the motion of vortices at zero temperature in the absence of any
normal fluid, which allows us to neglect mutual friction that would otherwise act on the vortices
[11]; in practice, this regime refers to helium-4 experiments at temperatures below 1 K. Above this
temperature, mutual friction acts to damp Kelvin waves along vortex filaments. Without the normal
component, the dynamics of the vortices are equivalent to the motion of vortices in a classical ideal
fluid but with the constraint that the circulation is quantized in units of h/m4, where m4 is the atomic
mass of 4He.

A Kelvin wave is a helical perturbation of a straight vortex. We choose our coordinate system
such that the principal axis of the filament is aligned along the z axis. Since this work deals with
vortex filaments with helical shape, the x and y coordinates are single-valued functions of the z
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FIG. 1. Key length scales used in the vortex filament model. Also shown is the right-handed local orthogonal
coordinate system prescribed by the local vectors s′, s′′, and s′ × s′′.

coordinate and we can therefore introduce a complex function

w(z) = x(z) + iy(z). (2)

Then the equation of a helical vortex is given by w(z) = A exp[i(kz + φ)]. Here A is the amplitude
of the wave, k is the wave number, and φ is a phase that determines the orientation of the helix. For
an infinitely long straight vortex, k is any real number. In this work we will simulate vortices in a
domain with periodic boundary conditions along the z coordinate direction. In this case, allowable
wave numbers correspond to k = 2πm/Lz, where m is an integer and Lz is the period along z.

In general, a curve that is a single-valued function of z can be expressed as a linear combination
of Kelvin waves given by

w(z) =
∑

k

αk exp[i(kz + φk)], (3)

where αk and φk are the amplitude and phase of the kth mode, respectively. This allows us to
decompose a general perturbation in terms of its Fourier modes and thereby evaluate the Kelvin
wave spectrum. Since Kelvin waves can be quantized [24], we refer to the elementary excitations
on a vortex as kelvons. The kelvon occupation number spectrum is then defined as

nk = α2
k + α2

−k, k > 0. (4)

The vortex configurations considered will typically have a single Kelvin wave mode. The phase of
the vortex can then be obtained by simply tracking the location of point z = 0 in the computational
domain that spans the interval 0 � z � Lz. The phase of the Kelvin wave is defined as the azimuthal
angle of that point in the xy plane. On the other hand, the amplitude of the wave is determined by
fitting a circle to the projection of the vortex on the xy plane, the radius of that circle being the
amplitude A. One advantage of this method is that it is also applicable to localized wave packets
and localized nonlinear excitations such as Hasimoto solitons [25]. We have tested that our method
for determining the phase and amplitude is consistent with finding them by using a fast Fourier
transform.

For a helical vortex, the dimensionless product Ak is an important parameter. It appears in
the dispersion relation of a Kelvin wave of arbitrary amplitude (derived using the local induction
approximation) [26,27]

ω = κ

4π
�

k2√
1 + (Ak)2

, (5)

where � is the logarithmic prefactor of the first term containing ŝ′ × s′′ in Eq. (1). The inclusion of
mutual friction or counterflow would change the dispersion relation [27]. The motion of a helical
vortex is purely rotational when Ak → 0. If Ak → ∞, then the motion is pure translation along the
vortex axis. Since the behavior depends on the ratio of the amplitude of the wave measured with
respect to the wavelength, we will use the condition Ak = 1 to distinguish between two different
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FIG. 2. Recurrence of two coaxial vortices. The initial configuration is a helical vortex with mode 5
and amplitude A = 0.015 mm wound around a straight vortex. The length of the z period is Lz = 1 mm.
Vortex configurations are shown at times 0, 0.0035, 0.007, 0.0105, 0.014, 0.0175, and 0.021 s. Although these
parameters correspond to the small-amplitude limit, the amplitudes of the Kelvin waves look large because
we have used a 1:10 scaling for the axial and transverse directions of the coaxial vortices to clearly depict the
helicoidal waves.

regimes. For Ak < 1, we have small-amplitude Kelvin waves, whereas Ak > 1 corresponds to
large-amplitude Kelvin waves.

III. NUMERICAL RESULTS FOR SMALL-AMPLITUDE KELVIN WAVES

Let us consider two coaxial vortices, one straight and one with a Kelvin wave. Subsequent
integration of Eq. (1) with such an initial condition reveals that a Kelvin wave with the same wave
number as that initially present on the perturbed vortex will grow on the initially straight vortex.
This is compensated by a decrease in the amplitude of the initially perturbed vortex until it becomes
straight. The cycle then continues, resulting in a recurrence, as can be seen in Fig. 2. For the
dynamics, see Ref. [28].

When the vortices are viewed along their common axis, they appear as vortex rings passing through
one another. We therefore refer to this behavior as leapfrogging Kelvin waves. This recurrent motion
is easy to see if we consider the amplitudes of the vortices as functions of time (see Fig. 3). We note
that the exchange of energy that is associated with the hopping of the Kelvin wave from one vortex
onto the other and vice versa arises from the intrinsic nonlocal dynamics of the Biot-Savart law.
The phenomena we observe cannot be described using the so-called local induction approximation,
which retains only the first term in Eq. (1).

During the evolution, the momentum (or, more precisely, the impulse) of the vortices defined as

I = ρsκ

2

∫
s × ds (6)

is conserved. Here ρs is the superfluid density and the integral is performed over the interval
0 � z � Lz. The z component of the momentum (i.e., along the vortex) is proportional to the
product of the area of the projection of the vortex line onto the xy plane times the mode number, i.e.,
the number of times the vortex winds around the axis within one period. From this we can determine
the instants when the amplitudes of the Kelvin waves of each vortex are equal. This should occur
when A = A(0)/

√
2. This is confirmed in the results presented in Fig. 3.

We have found that the leapfrogging motion of Kelvin waves is a robust effect, which occurs
even if we add some random white noise to the initial configuration. Figure 4 shows the evolution
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FIG. 3. (a) and (c) Vortex amplitudes and (b) and (d) the phase difference as a function of time. The
different colors in (a) and (c) correspond to the two different vortices. Dashed lines show the solutions of the
analytical model described in Sec. IV. The jump in the phase occurs when one of the vortices straightens. For
(a) and (b), the initial configuration corresponds to one straight vortex, i.e., A1(0) = 0, and another vortex with
A2(0) = 0.015 mm, m = 5, and Lz = 1 mm. The initial configuration for (c) and (d) is two vortices with equal
Kelvin wave amplitudes and mode numbers (A1(0) = A2(0) = 0.1 mm, m = 1, and Lz = 20 mm), but with an
initial phase difference 
φ = π/2. In this case, A(0)k ≈ 0.03 and so the requirement Ak � 1 is better satisfied
and the difference in the time scales of the simulation and model is very small. On the other hand, the amplitude
is much larger than for (a) and (b), which results in a longer recurrence time.

of a Kelvin wave on a vortex to which we added some noise with magnitude equal to 2% of the
original amplitude. It is clear that even after more than ten recurrence periods we can still see the
initial Kelvin mode, confirming the persistence of the leapfrogging behavior for initially perturbed
Kelvin waves. We have also tested the stability to sideband modes (m − 1 and m + 1) with small
amplitudes and found that such a perturbation did not destroy the recurrence of the leapfrogging.

We note that for the leapfrogging to take place, it is not necessary for one of the vortices
to be initially straight. Leapfrogging occurs whenever the coaxial vortices have the same Kelvin
wave mode. If the vortices initially have equal amplitudes (an example is shown in Fig. 5), then
the minimum and maximum amplitudes Amin and Amax will depend on the initial phase difference
(see Fig. 6). We observe that the amplitude tends to zero, i.e., the vortex straightens, only when the
phase difference tends to π/2 (as in Fig. 3). The minimum and maximum amplitudes are symmetric
with respect to π/2, while the recurrence time τ increases as the phase difference is increased. If
the phase difference is 0 < 
φ � π/2 when the vortices have equal amplitudes, then the phase
difference oscillates around 0 (as can be seen from Figs. 3 and 5). In contrast, when the amplitudes
are equal and π/2 < 
φ < π , the phase difference oscillates around π .

It is remarkable that throughout the leapfrogging process, the two helical vortices do not cross
and reconnect. If the phase difference is small when the vortices have equal amplitudes, they come
really close to each other (
φ cannot be exactly zero, since then the vortices would coincide). Even
then the reconnection does not happen easily. This is because the vortices are locally parallel and
any reconnection would increase the vortex length and is thus not energetically favorable.

If we ignore the wavelength, then A(0) and κ are the only relevant dimensional parameters
in the system and they can be combined to identify a relevant time scale. Indeed, the recurrence
time τ seems to be proportional to A(0)2/κ for a given phase difference (see Fig. 7). In Fig. 7
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FIG. 4. Leapfrogging of Kelvin waves (for m = 5) with random perturbations added to the initial
configuration of the helical vortex. (a) Initial configuration. (b) Configuration (inset) and the kelvon occupation
spectrum at t = 0.6 s. After more than ten recurrence periods, the initial Kelvin mode still clearly dominates.
(c) Amplitudes of the waves as a function of time. It is apparent that the recurrence is practically unaffected by
the noise.

we included only numerical simulations with very small amplitudes for practical computational
reasons. Figure 8(a) also shows that for vortices with small-amplitude Kelvin waves, the recurrence
time depends only very weakly on the wavelength of the Kelvin wave. However, in Fig. 8 we can
see that when Ak is close to unity, the recurrence time is no longer proportional to A(0)2/κ .

IV. MODEL OF LEAPFROGGING FOR NEARLY PARALLEL VORTICES

We have seen that helical vortices can be expressed in the form of Eq. (2). If the amplitude is
small, the helices are nearly parallel to the z axis. In this case, it is possible to describe the motion
of the vortices using simplified equations that account for the interaction of nearly parallel vortex
filaments as given in Refs. [29,30]. This model essentially combines a local induction approximation
(LIA) for each vortex with a nonlocal term describing the interaction with the other vortices in a
layered fashion.

To provide a systematic but more straightforward derivation of this model, we will begin by
considering the Hamiltonian formulation of the Biot-Savart law as given in Ref. [9]. In particular,
we recall that the Biot-Savart law conserves energy as given by

E =
Nv,Nv∑
j,k=1

κjκk

4π

∫∫
dsj · d s̃k

|sj − s̃k| , (7)
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FIG. 5. (a) Time development of the phase difference and (b) Kelvin wave amplitudes. The initial phase
difference is 
φ = π/3 and the vortices have initially equal amplitudes of A1(0) = A2(0) = 0.01 mm. The
initial configuration with m = 5 and Lz = 1 mm is shown in the inset. In this case the vortices do not straighten
completely.

where the double summation runs over all the Nv vortices. From this definition for the energy, it
follows that for a filament that can be parametrized in terms of the z coordinate, the Hamiltonian
can be expressed as

H =
Nv,Nv∑
j,k=1

κjκk

4π

∫∫ [1 + Re{w′∗
j (z1)w′

k(z2)}]dz1dz2√
(z1 − z2)2 + |wj (z1) − wk(z2)|2 . (8)

Here the prime in w′(z) denotes differentiation with respect to the argument z. Since the integrand
in the above expression for H is singular as z1 → z2 for j = k, we regularize the integrand by
introducing cutoff scales l± as described in Sec. II such that a0 � l± � 1/c. This choice of the
cutoff scale, which has also been described in Ref. [23], leads to

H ≈
Nv∑
j=1

κ2
j

2π
ln

(
2
√

l+l−
e1/2a0

) ∫
dz

√
1 + |w′

j (z)|2

+
Nv,Nv∑
j,k=1

κjκk

4π

∫∫ ′ [1 + Re{w′∗
j (z1)w′

k(z2)}]dz1dz2√
(z1 − z2)2 + |wj (z1) − wk(z2)|2 , (9)

where, as before, the prime on the integrals implies that the integrals exclude the interval
|z1 − z2| >

√
l+l− when j = k (i.e., the contribution to the self-energy of a vortex). We will

restrict our analysis to two coaxial corotating vortices with circulation κj = κk = κ . Moreover,
if we assume small-amplitude Kelvin wave perturbations on the vortices with amplitude A and wave
number k, then w′(z) � 1, which is equivalent to our earlier assumption that Ak = ε � 1. Under
this assumption and considering the case where j = k, we find that the integrand in the nonlocal
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FIG. 6. Minimum (the red line is from the model in Sec. IV and the circles are from Biot-Savart simulations)
and maximum (the green line is from the model and the triangles are from the simulations) amplitudes for
vortices, when we begin with equal amplitudes but a given phase difference (A1(0) = A2(0) = 0.01 mm, m = 5,
and Lz = 1 mm). The inset shows recurrence times as a function of the phase difference (the solid line is from
the model and circles are from simulations). For 
φ = π no recurrence occurs. That is the case of a double
helix, which is a steady configuration.

contribution to the Hamiltonian can be approximated to leading order by

∫∫ ′ [1 + Re{w′∗
j (z1)w′

j (z2)}]dz1dz2√
(z1 − z2)2 + |wj (z1) − wj (z2)|2 ≈

∫∫ ′ dz1dz2√
(z1 − z2)2

. (10)

In arriving at the above approximate form on the right-hand side, we have made use of the fact that
|z1 − z2| �

√
l+l− since the prime on the double integral assumes that a small interval is excluded

for j = k. Since Ak � 1 and l± � 1/c, we can satisfy both of these conditions with the further
assumption that A < l±. It follows that |wj (z1) − wj (z2)|/|z1 − z2| < 1 and we can neglect this
latter term in comparison to the z1 − z2 term from which the above expression follows.

Since the leading-order expression does not depend on the function w(z) or its derivatives, this
term plays no role in the motion of the vortices. On the other hand, for j 	= k, we transform the
integration variables to

z+ = z1 + z2, z− = z1 − z2. (11)

A(0)2/ κ (s)

0 1 2 3 4

τ 
(s

)

0

50

100

150

FIG. 7. Recurrence time τ as a function of A(0)2/κ . The initial configuration is two vortices with equal
amplitude Kelvin waves (m = 1 and Lz = 20 mm). The different lines are for different phase differences
(blue circles, π/2; red squares, 5π/12; green diamonds, π/3; and yellow triangles, π/4). Solid lines are from
the model and points are from simulations. Amplitudes are between 0.1 and 0.6 mm (this corresponds to
A(0)k = 0.031, . . . ,0.19, so this is clearly in the small-amplitude regime). It is clear that τ ∝ A(0)2/κ , but the
proportionality coefficient depends on the phase difference.

084501-8



LEAPFROGGING KELVIN WAVES

FIG. 8. Extra length due to the Kelvin wave as a function of time. In all simulations there is one initially
straight vortex and one with a Kelvin wave (m = 1 and A = 0.5 mm). The length of the z period is varied between
different runs, which corresponds to a variation in the wavelength of the Kelvin wave. Only the length of the
initially straight vortex is plotted. (a) For all of the small-amplitude cases (A(0)k < 1 or Lz > 2πA(0) = π mm)
the recurrence time is almost the same. Deviations are most visible when A(0)k ∼ 1. (b) For A(0)k > 1 (or
Lz < 2πA(0) = π mm) the recurrence times do not follow the same pattern as for the long wavelengths. For
Lz � 3 mm the amplitudes of the two vortices are never equal.

Taylor expanding the complex functions w about the point z+, we have

wj (z+ + z−) = wj (z+) + w′
j (z+)z− + w′′

j (z+) (z−)2

2 + · · · ,

wk(z+ − z−) = wk(z+) − w′
k(z+)z− + w′′

k (z+) (z−)2

2 + · · · .

After neglecting the w′(z) terms in the numerator due to the assumption of small-amplitude Kelvin
waves, this gives

∫∫ [1 + Re{w′∗
j (z1)w′

k(z2)}]dz1dz2√
(z1 − z2)2 + |wj (z1) − wk(z2)|2 ≈

∫∫
2dz−dz+√

(z−)2 + |wj (z+ + z−) − wk(z+ − z−)|2 . (12)

In order to identify the leading-order contributions, we focus on the integral over z− and perform
a scaling analysis by splitting the integral into an inner integral extending over the interval Ci =
{z− : |z−| �

√
A/k} and an outer interval for Co = {z− : |z−| >

√
A/k}. The intermediate length

scale
√

A/k is chosen such that it is large relative to the amplitude A that is used as the length
scale for the inner integral, but is small in comparison to the wavelength 2π/k that is used to
define the length scale for the outer integral. Hence, introducing the rescaled variables z̃ = z/A and
w̃(p) = w(p)/Akp for the inner integral and Z = zk and W = w(p)/Akp for the outer integral, where
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HIETALA, HÄNNINEN, SALMAN, AND BARENGHI

t (s)
0 20 40 60 80 100

A
 (

m
m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

t (s)
0 50 100

Δ
φ

0

π

2π

FIG. 9. Amplitudes and phase difference (inset) as a function of time. Initially, one of the vortices is straight
and the other vortex has a Kelvin wave (m = 1, A = 0.5 mm, and Lz = 2.5 mm). In the large-amplitude regime,
the amplitudes oscillate within different ranges.

w(p), p = 0,1,2, . . ., denotes the pth derivative of w, we obtain(∫
Co

+
∫
Ci

)
2dz−√

(z−)2 + |wj (z+ + z−) − wk(z+ − z−)|2

=
(∫ ∞

ε1/2
+

∫ −ε1/2

−∞

)
2dZ−√

(Z−)2 + ε2|Wj − Wk + · · · |2

+
∫ ε−1/2

−ε−1/2

2dz̃−√
(z̃−)2 + |w̃j − w̃k + ε(w̃′

j + w̃′
k)z̃− + · · · |2

≈
∫ ε−1/2

−ε−1/2

2dz̃−√
(z̃−)2 + |w̃j − w̃k|2

+ const

≈ −2 ln|wj (z+) − wk(z+)| + const. (13)

Note that the limits tend to infinity for the integrals over the inner coordinates as ε tends to zero,
while the separation scale tends to zero for the integral over the outer coordinates. It follows that
after expanding the square root term in the local term (LIA contribution) to first order, neglecting
the constant terms, and redefining z+ → z, the total Hamiltonian to low-amplitude Kelvin waves
can then be expressed as

H ≈
∫

⎛
⎜⎜⎜⎝

Nv∑
j=1

κ2�

4π
|w′

j (z)|2 −
Nv,Nv∑
j,k = 1
j 	= k

κ2

2π
ln|wj (z) − wk(z)|

⎞
⎟⎟⎟⎠dz.

We note that since the LIA term contains an independent parameter given by ln(
√

l+l−/a0), the two
terms in the above expression for the Hamiltonian are equally important in the distinguished limit
corresponding to ε2� ∼ 1.

We have approximated the logarithmic factor to be constant and for helium-4 its value in typical
experiments is � � 12. We remark that since the LIA ignores all nonlocal interactions it alone
cannot explain the interaction between the two vortices. In this model, the nonlocal interactions are
approximated to be similar to straight line vortices interacting in a layered fashion such that points
of the vortex filaments lying at the same value of z interact as though they were point vortices lying
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in a plane. We note that the model we have derived was also obtained by Klein et al. in Ref. [29],
although our derivation and application differ from theirs. An intuitive explanation for the above
form of the Hamiltonian that we have derived is that since the vortices are almost straight, their
respective self-induced velocities must be very small. On the other hand, since each vortex is also
nearly parallel to the z axis, the velocity it induces on the other is inversely proportional to their
separation.

We can now recover the equations of motion for each vortex filament by using

i
∂wj

∂t
= 1

κj

δH [w]

δw∗
j

. (14)

Hence, evaluating the equations of motion from the above simplified form of the Hamiltonian, we
recover

∂wj

∂t
= i

κ�

4π

∂2wj

∂z2
+ i

κ

2π

wj − wk

|wj − wk|2 , (15)

where j = 1 when k = 2 or vice versa. If we introduce the coordinates u = w1 − w2 and v =
w1 + w2, Eq. (15) transforms to

∂u

∂t
= i

κ�

4π

∂2u

∂z2
+ i

κ

2π

2u

|u|2 , (16)

∂v

∂t
= i

κ�

4π

∂2v

∂z2
. (17)

These equations admit plane-wave solutions for both u and v, which are given by

u = Bei(kz−ωut+θu), v = Cei(kz−ωvt+θv ), (18)

ωu = κ�

4π
k2 − κ

2π

2

B2
, ωv = κ�

4π
k2, (19)

where B and C are real constants with units of length. Without loss of generality, we can restrict
B and C to be positive since the negative values can be encoded within the phases θu and θv .
Alternatively, we can set θu = θv = 0 because these constants will simply shift the origin of the
graphs for the amplitudes and phases. In principle, the wave number k could be different for u and
v, but the case with the same k is relevant for the leapfrogging Kelvin waves that are the focus of
this work. The corresponding expressions for the complex coordinates of the two vortices are given
by

w1 = C

2
ei(kz−ωvt) + B

2
ei(kz−ωut) = A1(t)eikzeiφ1(t), (20)

w2 = C

2
ei(kz−ωvt) − B

2
ei(kz−ωut) = A2(t)eikzeiφ2(t), (21)

where the amplitudes are

A1,2(t) = 1
2

√
C2 + B2 ± 2BC cos[t(ωu − ωv)] (22)

and the phases are given by

tan φ1,2(t) = − C sin ωvt ± B sin ωut

C cos ωvt ± B cos ωut
. (23)

In the above equations, the positive and negative signs correspond to w1 and w2, respectively.
Solutions of this type represent two leapfrogging coaxial helical vortices with initial amplitudes

A1(0) = 1
2 |C + B| and A2(0) = 1

2 |C − B| and initial phase difference 0 or π . Due to our choice of
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HIETALA, HÄNNINEN, SALMAN, AND BARENGHI

the initial phase difference (i.e., setting θu = θv = 0), the amplitudes A1(0) and A2(0) also correspond
to the maximum and minimum amplitudes. The recurrence time is then given by

τ = 2π

ωv − ωu

= 2π2B2

κ
. (24)

In Sec. III we arrived at the proportionality τ ∝ A(0)2/κ from dimensional reasoning. In Fig. 7 we
show τ as a function of A(0)2/κ , where A(0) corresponds to the value of the amplitude at the instant
when the respective amplitudes of the Kelvin waves of both vortices become equal. This is true
because τ ∝ B2, where B =

√
4A(0)2 − C2.

This model gives very good agreement with the results of our numerical simulations of the vortex
filament model. We note that since B and C determine the phase difference, τ also depends on

φ, as observed in our simulations. In Fig. 3, the results of both the numerical simulation and the
solution of the model are shown. For the case with A(0)k ≈ 0.47 presented in Figs. 3(a) and 3(b), we
note that the time scale of the recurrence predicted by the model differs slightly from the numerical
solution. We attribute this to the value of Ak used in this case, which is not sufficiently small to agree
with the assumptions made in arriving at Eq. (15). The second simulation presented in Figs. 3(c)
and 3(d) corresponding to A(0)k ≈ 0.03 satisfies the condition Ak � 1 better and consequently we
observe better agreement with the prediction of our model. Therefore, in the small-amplitude limit,
the accuracy of the approximations made improves.

V. LARGE-AMPLITUDE KELVIN WAVES

In the preceding sections we have focused on small-amplitude Kelvin waves and derived a model
to explain the observed recurrence phenomena in this limit. We will now consider what happens if
we relax the assumption of small-amplitude Kelvin waves. The model we have derived is no longer
applicable in this parameter regime and we will proceed by relying on numerical simulations alone.
To identify qualitative differences in the dynamics of the vortices, we have tracked how the length
of one of the vortices in our simulations changes with time (see Fig. 8). This provides sufficient
insight into the dynamics because, for a helix, the amplitude and length are related through the
expression Lhelix = Lz

√
1 + (Ak)2. The amplitude of the other vortex can then be recovered by

using momentum conservation. The results of our simulations, presented in Fig. 8, reveal that if
the amplitude is increased, the frequency of the recurrence is modified, indicating that the vortex
motion is being influenced by nonlinear effects. Moreover, for sufficiently large amplitudes, there is
a qualitative change in the behavior of the system, indicating a transition from one type of recurrent
motion to another. In addition, if the Kelvin wave amplitude of one of the vortices is sufficiently large
in comparison with the other, then the amplitudes of the waves on the vortices might never coincide
with one another. In this case, the amplitudes of the Kelvin waves in each vortex will oscillate within
different ranges (see Fig. 9 and Ref. [28]).

In order to explain the difference between the case of small amplitudes and the case of large
amplitudes, it is useful to draw the following analogy. If we consider two coaxial vortex rings, it
is possible that one of the rings escapes and no leapfrogging occurs. In the case of Kelvin waves,
there is no direct analogy to this effect, so we must consider two rows of coaxial vortex rings instead
of just two vortex rings. Now there are two possibilities. The first possibility takes place if rings
of the inner row leapfrog with corresponding rings of the outer row. This scenario is analogous
to leapfrogging of small-amplitude Kelvin waves. The analogy then allows us to associate the
amplitude and wavelength of the Kelvin wave with the radius of the rings and the distance between
consecutive rings on the same row, respectively. Moreover, the phase difference at the instant when
the amplitudes of the vortices are equal is related to the distance between the rings in the two rows
at the moment when they have equal radii.

For the scenario of large-amplitude Kelvin waves, the analogy with two coaxial rows of vortex
rings implies that a qualitatively different behavior is expected. In this case, if the ring in the inner
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row escapes the corresponding outer ring, its radius may increase some time until it approaches
the next ring in the outer row. Then the inner ring shrinks and passes through the outer ring
and this cycle repeats. This analogy can provide a qualitative interpretation for the change in
leapfrogging of Kelvin waves between small amplitudes and large amplitudes. Furthermore, it
provides an explanation for the sudden qualitative difference in the recurrence phenomena as the
amplitudes are increased. However, care must be taken not to push this analogy too far as it cannot
provide accurate quantitative predictions. In particular, rings having amplitudes and distances that
are similar to Kelvin wave amplitudes and wavelengths will not behave in exactly the same way.

VI. CONCLUSION

We have shown that coaxial vortices with the same Kelvin wave mode exchange energy in a
periodic fashion. The helical vortices move through each other in a way that is similar to leapfrogging
vortex rings. In the small-amplitude limit, the amplitudes of the two helical waves oscillate within the
same range. In contrast, in the large-amplitude limit, the amplitudes oscillate around two different
mean values, although leapfrogging continues to occur in a periodic fashion.

Using a simplified model for nearly parallel vortices, we were able to explain the leapfrogging
behavior observed in our Biot-Savart simulations in the limit of small-amplitude Kelvin waves. The
success of the model in this regime suggests that it may be possible to generalize it to other contexts,
most notably in studying how adjacent vortex filaments can influence the theoretically predicted
Kelvin wave cascades in the high-wave-number regime of superfluid turbulence. For example, such
a scenario would be relevant to understanding Kelvin waves on polarized vortex bundles that are
believed to form in superfluid turbulence.

In the large-amplitude Kelvin wave regime, there is a qualitative change in the dynamical behavior
of the vortices. We have been able to interpret this by drawing an analogy with the dynamics of
coaxial rows of vortex rings. We end by noting that the phenomena predicted here will also contribute
to our understanding of the dynamics of vortices and their interaction in classical fluids.
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[7] R. M. Caplan, J. D. Talley, R. Carretero-González, and P. G. Kevrekidis, Scattering and leapfrogging of

vortex rings in a superfluid, Phys. Fluids. 26, 097101 (2014).
[8] W. F. Vinen, Decay of superfluid turbulence at a very low temperature: The radiation of sound from a

Kelvin wave on a quantized vortex, Phys. Rev. B 64, 134520 (2001).

084501-13

https://doi.org/10.1515/crll.1858.55.25
https://doi.org/10.1515/crll.1858.55.25
https://doi.org/10.1515/crll.1858.55.25
https://doi.org/10.1515/crll.1858.55.25
https://doi.org/10.1007/s00162-009-0148-z
https://doi.org/10.1007/s00162-009-0148-z
https://doi.org/10.1007/s00162-009-0148-z
https://doi.org/10.1007/s00162-009-0148-z
https://doi.org/10.1098/rsta.1893.0020
https://doi.org/10.1098/rsta.1893.0020
https://doi.org/10.1098/rsta.1893.0020
https://doi.org/10.1098/rsta.1893.0020
https://doi.org/10.1098/rspa.1922.0075
https://doi.org/10.1098/rspa.1922.0075
https://doi.org/10.1098/rspa.1922.0075
https://doi.org/10.1098/rspa.1922.0075
https://doi.org/10.1134/S1560354713010036
https://doi.org/10.1134/S1560354713010036
https://doi.org/10.1134/S1560354713010036
https://doi.org/10.1134/S1560354713010036
https://doi.org/10.1063/1.4864659
https://doi.org/10.1063/1.4864659
https://doi.org/10.1063/1.4864659
https://doi.org/10.1063/1.4864659
https://doi.org/10.1063/1.4894745
https://doi.org/10.1063/1.4894745
https://doi.org/10.1063/1.4894745
https://doi.org/10.1063/1.4894745
https://doi.org/10.1103/PhysRevB.64.134520
https://doi.org/10.1103/PhysRevB.64.134520
https://doi.org/10.1103/PhysRevB.64.134520
https://doi.org/10.1103/PhysRevB.64.134520
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[14] J. Stack, F. X. Caradonna, and Ö. Savaş, Flow visualizations and extended thrust time histories of rotor

vortex wakes in descent, J. Am. Helicopter Soc. 50, 279 (2005).
[15] V. L. Okulov and J. N. Sørensen, Stability of helical tip vortices in a rotor far wake, J. Fluid Mech. 576, 1

(2007).
[16] S. Ivanell, R. Mikkelsen, J. N. Sørensen, and D. Henningson, Stability analysis of the tip vortices of a

wind turbine, Wind Energ. 13, 705 (2010).
[17] M. Felli, R. Camussi, and F. Di Felice, Mechanisms of evolution of the propeller wake in the transition

and far fields, J. Fluid Mech. 682, 5 (2011).
[18] S. Sarmast, R. Dadfar, R. F. Mikkelsen, P. Schlatter, S. Ivanell, J. N. Sørensen, and D. S. Henningson,

Mutual inductance instability of the tip vortices behind a wind turbine, J. Fluid Mech. 755, 705 (2014).
[19] T. Leweke, H. U. Quaranta, H. Bolnot, F. J. Blanco-Rodrı́guez, and S. Le Dizès, Long- and short-wave

instabilities in helical vortices, J. Phys.: Conf. Ser. 524, 012154 (2014).
[20] I. Delbende, B. Piton, and M. Rossi, Merging of two helical vortices, Eur. J. Mech. B 49, 363 (2015).
[21] A. Nemes, D. L. Jacono, H. M. Blackburn, and J. Sheridan, Mutual inductance of two helical vortices,

J. Fluid Mech. 774, 298 (2015).
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