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The linear properties of the geodesic acoustic modes (GAMs) in tokamaks are investigated by means

of the comparison of analytical theory and gyrokinetic numerical simulations. The dependence on

the value of the safety factor, finite-orbit-width of the ions in relation to the radial mode width,

magnetic-flux-surface shaping, and electron/ion mass ratio are considered. Nonuniformities in the

plasma profiles (such as density, temperature, and safety factor), electro-magnetic effects, collisions,

and the presence of minority species are neglected. Also, only linear simulations are considered,

focusing on the local dynamics. We use three different gyrokinetic codes: the Lagrangian (particle-

in-cell) code ORB5, the Eulerian code GENE, and semi-Lagrangian code GYSELA. One of the

main aims of this paper is to provide a detailed comparison of the numerical results and analytical

theory, in the regimes where this is possible. This helps understanding better the behavior of the lin-

ear GAM dynamics in these different regimes, the behavior of the codes, which is crucial in the view

of a future work where more physics is present, and the regimes of validity of each specific analytical

dispersion relation. [http://dx.doi.org/10.1063/1.4985571]

I. INTRODUCTION

Turbulence in tokamak plasmas is often observed

accompanied by zonal, i.e., axisymmetric, radial electric

fields, giving rise to zonal poloidal flows. Two kinds of zonal

flows are identified: zero-frequency zonal flows (ZFZFs)1–3

and oscillating zonal flows, named geodesic acoustic modes

(GAMs).4,5 GAMs have mainly zonal polarization of the per-

turbed electric field, i.e., the perturbed electric field has n¼ 0

and m¼ 0 (with n and m being the toroidal and poloidal

mode numbers, respectively), whereas the perturbed density

has mainly n¼ 0 and m¼ 1. Their characteristic frequency

is of the order of the sound frequency x � cs=R0 (where

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the sound speed and R0 is the tokamak major

radius, with mi being the ion mass and Te being the electron

temperature). The importance of understanding the dynamics

of these zonal structures in tokamaks is due to their nonlinear

interaction with turbulence, being crucial for its satura-

tion.6–10 As an example of some recent experimental obser-

vations of GAMs in ASDEX Upgrade, see Ref. 11.

In this work, we focus on the linear properties of GAMs

and investigate the dependence on the safety factor, the

effect of the finite-Larmor-radius (FLR) and finite-orbit-

width (FOW) of the ions in relation to the GAM radial width,

the effect of the magnetic-flux-surface shaping, and the

effect of the electron/ion mass ratio. Nonuniformities in the

plasma profiles (such as density, temperature, and safety

factor), magnetic fluctuation effects, collisions, and effects

of plasma minorities (such as bulk ion impurities and ener-

getic ions) are neglected here. Our investigation is done by

means of analytical theory and numerical simulations.

A great progress in the analytical investigation of the

linear GAM dynamics in tokamaks has been achieved, start-

ing with its first estimate in ideal MHD,4 then in kinetic the-

ory by neglecting the effect of the FOWs of the passing

ions,5,12 then including it to the first order,5,13–15 then includ-

ing it to higher orders,16,17 and then including the effect of

the flux surface shape.18,19 All such analytical models

neglect the effect of the finite mass of the electrons. In fact,

all analytical theories derived so far treat the m 6¼ 0 compo-

nent of the electrons as adiabatic (whereas the m¼ 0 compo-

nent of the electron density perturbation is imposed to zero).

We will refer to this model for treating the electrons as

“adiabatic.” The importance of having an analytical descrip-

tion is twofold. On the one hand, it allows a direct under-

standing of the physical mechanisms, leading to each

different effect under investigation. On the other hand, it

allows a detailed linear verification process of the numerical

tools, which is at the basis of the development of gyrokinetic

codes aimed at a rigorous turbulence investigation.

Many numerical investigations of the linear GAM

dynamics and comparison with analytical theory or bench-

mark among codes have been carried out in the recent deca-

des, mostly treating the electrons as adiabatic. As a non-

extensive list of example, we mention here simulations per-

formed with the gyrokinetic codes GTC,20,21 ORB522 (where

the effect of the elongation was studied), TEMPEST16

a)Author to whom correspondence should be addressed. www.ipp.mpg.de/
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(where the effect of high-order terms of the finite ion orbit

width was studied), GYRO23 (where the effect of finite orbit

width and the application to the radial velocity in the large-q

limit was studied), GYSELA,24 ELMFIRE,25 and GENE

with GKW.26 In non-axisymmetric devices, a description of

the oscillatory nature of zonal flows has been given, for

example, in Refs. 27–29. In particular, a first verification of

ORB5 against analytical theories, for circular geometries

and low values of krqi, was started in Ref. 30. A numerical

study of the effect of kinetic electrons in circular plasmas

has been described in Ref. 31.

In this paper, we aim at performing a comprehensive

cross-code verification and benchmark of several gyrokinetic

codes, in different regimes. We perform numerical simula-

tions with three different gyrokinetic codes, adopting equiva-

lent physical models for the dynamics of the ions (which is

the most basic species to be investigated for the physics of

sound waves and therefore of GAMs), but solving the model

equations in three different ways: the Lagrangian (i.e., parti-

cle-in-cell) code ORB5,32–34 the Eulerian code GENE,35,36

and the semi-Lagrangian code GYSELA.37,38 All these codes

solve the ion dynamics based on the gyrokinetic equations

(see, for example, Refs. 39–42 for some early derivations or

Ref. 43 for a recent comprehensive review). Some of the dif-

ferences in the physical models of these codes are the treat-

ment of the electrons and the possibility of investigating the

dynamics in elongated magnetic equilibria.

The gyrokinetic model has been also adopted in the past

for deriving analytical dispersion relations for linear colli-

sionless GAMs in various regimes (small or large values

of safety factors; negligible, small, or moderate values of

normalized radial wave-number; and small or moderate elon-

gation of the equilibrium magnetic flux surfaces). Testing a

numerical code, by using it in a particular limit where

the analytical solution is known, takes the name of code

“verification.” Testing different numerical codes, which

solve the basic equations in different ways, by using them in

particular regimes where the hypothesis of the physical mod-

els are the same, takes the name of code “benchmark.” The

verification and benchmark of gyrokinetic codes have been

the main goal of a European effort developed in the last three

years as an Eurofusion project. This project focuses on dif-

ferent physical phenomena observed in tokamaks, like, for

example, GAMs and ion-temperature-gradient instabilities,

both crucial factors to be understood in the view of the pre-

diction and control of the turbulent transport in existing toka-

mak devices and future fusion reactors. This paper, in

particular, summarises the results of the verification and

benchmark on GAMs (see Ref. 44 for a description of the

benchmark on ITGs).

The paper is organized as follows. The numerical mod-

els of the three codes adopted for this study are described in

Sec. II. The dependence of the GAM dynamics on the safety

factor, the effect of ion FOW, and flux-surface elongation is

discussed in Sec. III, where the electrons are treated as adia-

batic. The effect of the finite mass of electrons is described

in Sec. IV, where the results of numerical simulations with

kinetic electrons are shown. The conclusions are summarised

in Sec. V. The investigation of the numerical convergence of

the codes is presented in the appendixes.

II. THE MODELS

The choice of the model for the investigation of the

dynamics of GAMs is dictated by their specific spatial and

temporal characteristic scales. In particular, GAMs are zonal

electric field oscillations (i.e., with toroidal and poloidal

mode numbers equal to zero) with radial wavelength bigger

than (or in same case of the order of) the ion Larmor radius,

and time scales of the order of the sound time �2pR=cs. The

basic physics is the one of the sound waves; therefore, the

MHD description is sufficient for estimating the order of

magnitude of the frequency of the mode.4 Nevertheless, such

spatio-temporal scales make the need of a kinetic treatment

clear. This is due to the importance of resonances with the

passing ions, which can determine frequency and damping

rate of the modes. Considering the requirements for the spa-

tial scales and the frequencies being lower than the ion

cyclotron frequency, we can easily see that the gyrokinetic

model39–43,45,46 is the most appropriate tool.

A. The numerical model of ORB5

ORB5 is a nonlinear gyrokinetic code based on a parti-

cle-in-cell (PIC) algorithm. The basic discretization scheme

of a PIC code (also known as “Lagrangian” code), for the

Vlasov-Maxwell problem, is presented in Ref. 47. A PIC

code discretizes the distribution function with macro-

particles, also known as markers, associated with weights. In

a gyrokinetic PIC code, the markers are pushed along the tra-

jectories derived from the gyrokinetic model while the fields

are known on a spatial grid and evolved by solving the gyro-

kinetic field equations either with finite differences or with

finite element methods. The sources (charge density and cur-

rent density) needed for solving the field equations are calcu-

lated by projecting the marker weights on a spatial grid. In

ORB5, the distribution function is written as a sum of an

analytical background distribution function and the perturbed

distribution function, which is represented using markers via

a control-variate Monte Carlo method, historically known as

df PIC48 (see Ref. 34 for a recent overview).

ORB5 was originally developed for electrostatic turbu-

lence studies.32 In the recent years, it has been extended to the

electromagnetic, multi-species version within the NEMORB

project.33,34 In this paper, only the linearized electrostatic

model of ORB5 is used. Only collisionless simulations are

considered. Although only the local GAM dynamics is of

interest in this paper, no flux-tube version of ORB5 exists;

therefore, only global simulations are considered, and the

global effects are not studied (see Ref. 49 for an investigation

of the global effects with ORB5). The model equations of

ORB5 are derived in a Lagrangian formulation,34 based on the

gyrokinetic Vlasov-Maxwell equations of Refs. 43 and 46.

The gyrocenter trajectories describe the motion of the

markers of the kinetic species in phase-space coordinates writ-

ten in pjj-formalism, Zpjj ¼ R; pjj; l
� �

, i.e., the gyrocenter posi-

tion, canonical parallel momentum pjj ¼ msvjj þ qs=cð Þ ~Ajj,
and magnetic momentum l ¼ msv2

?= 2Bð Þ, respectively (with
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ms and qs being the mass and charge of the species). vjj and

v? are, respectively, the parallel and perpendicular compo-

nents of the particle velocity. The gyroaverage operator is

labeled here by the tilde symbol �. The gyroaverage opera-

tor reduces to the Bessel function J0 if we transform into

Fourier space. In all simulations with ORB5 shown in this

paper, the gyroaverage is always calculated by considering

non-vanishing Larmor radius for the ions, whereas it is cal-

culated with zero argument for the electrons. In other

words, finite-Larmor-radius (FLR) effects are retained for

ions and neglected for electrons. The code ORB5 is based

on straight-field-line tokamak coordinates. Dirichlet bound-

ary conditions on the fields are imposed in the radial direc-

tion, while periodicity is assumed in the two angles. The

nonlinear electromagnetic version of the trajectories is34

_R ¼ 1

ms
pjj �

qs

c
~Ak

� �
B�

B�k
þ c

qsB�k
b

� lrBþ qsr ~/ �
pjj

msc
~Ajj

� �� �
; (1)

_pjj ¼ �
B�

B�k
� lrBþ qsr ~/ �

pjj
msc

~Ajj

� �� �
; (2)

_l ¼ 0: (3)

Here, the time-dependent fields are the scalar potential / and

the parallel component of the vector potential Ajj, and

B� ¼ Bþ c=qsð Þr � b pjj
� �

, where B and b are the equilib-

rium magnetic field and magnetic unitary vector, respec-

tively. The linearization of the Vlasov equation is performed

by pushing the markers along the unperturbed trajectories

_R ¼
pjj
ms

B�

B�k
þ c

qsB�k
b� lrB; (4)

_pjj ¼ �
B�

B�k
� lrB: (5)

In this paper, the trajectories given by Eqs. (4) and (5) are

always calculated for the ions (which are always treated

kinetically), whereas the electrons can be either treated

kinetically (by considering J0 ¼ 1 and neglecting the elec-

tron polarization) or with an “adiabatic” model, where the

electron gyrocenter density is calculated directly from the

value of the scalar potential as34

ne R; tð Þ ¼ ne0 þ
qsne0

Te0

/� �/
� �

; (6)

where �/ is the flux-surface averaged potential. The quanti-

ties with subscript “0” refer to the equilibrium and are func-

tions of the radial coordinate q only.

The equation for solving the scalar potential is the gyro-

kinetic Poisson equation, also known as polarization equa-

tion. This is derived from the gyrokinetic Lagrangian of

ORB5, using the variational derivation, and imposing that

the E�B drift energy of the particles is larger than the

field energy (quasi-neutrality condition).34 The gyrokinetic

Poisson equation is34

�r � n0mic
2

B2
r?/ ¼

X
s

ð
dWqs

~dfs ; (7)

with n0mi being here the total plasma mass density (approxi-

mated as the ion mass density), and the summation over the

species is performed when the electrons are treated as kinetic,

otherwise the electron contribute is given by �ne R; tð Þ. Here,

df ¼ f � f0 is the gyrocenter perturbed distribution function,

with f and f0 being the total and equilibrium (i.e., independent

of time, assumed here to be a Maxwellian) gyrocenter distri-

bution functions. The integrals are over the phase space vol-

ume, with dW ¼ 2p=m2
i

� �
B�jjdpjjdl being the velocity-space

infinitesimal. The gyrokinetic Poisson equation is solved with

a finite element method, by using B-splines in all the spatial

directions.

Equations (4)–(7) are the constitutive equations of the

model of ORB5 used in this paper for studying the collision-

less electrostatic linearized dynamics of GAMs. In the elec-

tromagnetic version, the Ampère equation is also solved for

calculating the time evolution of the parallel component of

the vector potential Ajj, which is neglected in this paper.

B. The numerical model of GENE

The Gyrokinetic Electromagnetic Numerical Experiment

(GENE) code is also a nonlinear gyrokinetic code originally

developed for electromagnetic turbulence studies in the flux-

tube (i.e., local) limit,35 recently extended to its global repre-

sentation.36 The model of GENE is also based on the gyroki-

netic Vlasov-Maxwell equations of Brizard and Hahm.43

Intra- and inter-species collisions (both pitch angle and

energy scattering) are implemented. In this paper, only the

linearized electrostatic collisionless version of GENE is used.

GENE is an Eulerian code. In an Eulerian description,

the distribution function is not discretized with markers, but

it is discretized on a 5D fixed grid in phase-space. The gyro-

kinetic equation is then solved on this grid for each species s.

The coordinate system of GENE in the 5D phase space is

written in vjj-formalism, Zvjj ¼ R; vjj; l
� �

, i.e., the gyrocenter

position, parallel velocity, and magnetic momentum, respec-

tively. GENE adopts a field-aligned coordinate system to

represent the fluctuation fields in the configuration space of

R. This coordinate system becomes singular at the magnetic

axis which therefore cannot be simulated. In the local ver-

sion of the code, the radial direction is Fourier transformed

and periodic boundary conditions are applied. In the global

version, the radial direction is instead treated in real space

and Dirichlet boundary conditions are applied. The binormal

direction (i.e., perpendicular to the radial direction and to the

equilibrium magnetic field) is always Fourier transformed as

axisymmetry corresponds to invariance in this direction, and

each linear mode corresponds to a toroidal mode number n.

The distribution function fs of each species is evolved

according to the gyrokinetic equation in the form:36

@fs

@t
þ dR

dt
� rfs þ

dvjj
dt

@fs

@vjj
¼ 0; (8)

where the equations of motion of the gyrocenters are given

by36
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dR

dt
¼ vjjbþ

B

B�Gjj
vE þ vrB þ vcð Þ; (9)

dvjj
dt
¼ � dR=dt

msvjj
� qsr~/ þ qs

c
b
@ ~Ajj
@t
þ lrB

� �
: (10)

Here, B�G ¼ Bþ msc=qsð Þr � b vjj
� �

, the generalized E�B

drift is vE ¼ c=B2
� �

B�r ~/ � vjj=c
� �

~Ajj

	 

, the grad-B drift

is vrB ¼ lc=qsB
2

� �
B�rB, and the curvature drift is vc

¼ v2
jj=Xs

	 

r� bð Þ?. In the electrostatic version of the code,

used in this paper, the E�B drift is vE ¼ c=B2
� �

B�r~/, and

the second term on the right hand side of Eq. (10) is dropped,

so that the equation of the time derivative of the parallel com-

ponent of the velocity takes the form:

dvjj
dt
¼ � dR=dt

msvjj
� qsr~/ þ lrB
� �

: (11)

The linearization in GENE is done by plugging in the equa-

tion of motion in the Vlasov equation and neglecting all the

nonlinear terms. Only linear simulations are considered in

this paper.

Equation (8) is then solved self-consistently with the

gyrokinetic Maxwell equations, which in the cases considered

here reduces to the gyrokinetic Poisson equation, Eq. (7),

which is solved for obtaining the scalar potential (whereas the

Ampère equation can also be solved in the case of electro-

magnetic simulations). As in the ORB5 code, different models

are available for describing each species dynamics. In this

paper, ions are always assumed to be fully gyrokinetic,

whereas electrons, depending on the particular case being

simulated, are treated either as a second kinetic species or

assumed to respond adiabatically. For typical tokamak param-

eters, the Debye length is much smaller than the characteristic

wave-length of microinstabilities. The gyrokinetic Poisson

equation can thus be reduced to the quasi-neutrality condition,

which, having assumed a quasi-neutral background, readsX
s

qsdns ¼ 0; (12)

where dns indicates the perturbed gyrocenter density of the

s-th species, obtained from the gyrokinetic model. When all

species are treated kinetically, the equation for quasi-

neutrality [Eq. (12)] can be rewritten as

X
s

2pqs

ms

ð
B�Gjj

~dfs dvkdl� q2
s n0s

T0s

� /� B0

T0s

ð
~~/ exp �lB0

T0s

� �
dl

� �
¼ 0; (13)

while in the case of adiabatic electrons reduces to

� e2n0e

T0e
/� �/
� �

þ
X
s 6¼e

2pqs

ms

ð
B�Gjj

~dfsdvkdl� q2
s n0s

T0s

� /� B0

T0s

ð
~~/ exp � lB0

T0s

� �
dl

� �
¼ 0: (14)

Here, we have used the notation
~~/ ¼

Þ
dh ~/ Rð Þ d Rð

þqi hð Þ � xÞ= 2pð Þ, where, only in this formula, h denotes the

gyroangle and x denotes the particle space vector.

As mentioned above, the linear physical models of

ORB5 and GENE are equivalent (see Ref. 53 for a detailed

discussion on the comparison of the two models), and no dif-

ference in the results is expected for the linear collisionless

GAM dynamics, depending on them. Nevertheless, the

numerical schemes are different. Moreover, the existence of

the two representations of GENE, namely, the global and the

local (i.e., flux-tube) representations, offers the possibility to

solve the model equations in two independent ways. As

shown in Secs. III–IV, no difference is found in the results,

for the chosen tests. This means that, for these particular

cases, the local dynamics is dominant and independent on

the adopted numerical scheme.

C. The numerical model of GYSELA

Like ORB5 and GENE, the GYrokinetic SEmiLAgrangian

code (GYSELA) is also a nonlinear 5D gyrokinetic code.38 No

linear version exists; therefore, nonlinear simulations are con-

sidered in this paper, but with sufficiently small initial perturba-

tion, in order to focus on the linear dynamics. The GYSELA

code is dedicated to electrostatic Ion Temperature Gradient

(ITG) turbulence with the possibility to address the transport of

impurities. The electrons are presently assumed adiabatic but a

kinetic version is under development. GYSELA is a global full-

f flux-driven code which addresses turbulent and neoclassical

transports on an equal footing.

GYSELA is a global code with a toroidal geometry with

a simplified concentric circular magnetic configuration. Its

coordinate system in the 5D space is written as GENE in vjj-
formalism, Zvjj ¼ R; vjj; l

� �
but where R ¼ r; h;uð Þ with r

being the radial direction and h and u being the poloidal and

toroidal geometric angles. Boundary conditions are periodic

in h and u directions. Non-axisymmetric fluctuations of the

electric potential and of the distribution function—i.e.,

m; nð Þ 6¼ 0; 0ð Þ modes—are forced to zero at both radial

boundaries of the simulated domain. As far as the axisym-

metric component is concerned, the value of the potential is

prescribed at the outer boundary, while the radial electric

field is set to zero at the inner boundary. No flux-tube version

of GYSELA exists, but since in this paper only local physics

is concerned, density, temperature, and safety factor profiles

will be considered constants to minimize the global effects.

GYSELA is a full-f code, namely, the back reaction of turbu-

lent transport is accounted for in the time evolution of the

equilibrium. In such a framework, the turbulence regime is

evanescent if no free energy is injected in the system. A flux-

driven version of the code is available since 2009,55 where

the system can be driven by a prescribed volumetric source,

versatile enough to allow for separate injection of heat, par-

allel momentum, and vorticity. However, in this paper, the

temperature and density profiles are constant and therefore

we only use the forcing governed by the two equal thermal

baths at the two radial boundaries. A linearized multi-species

collision operator is implemented in the code54 but here only
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collisionless simulations are considered. No filters in the

toroidal mode number are imposed in these simulations with

GYSELA; therefore, all components are allowed to develop.

As shown in Sec. III, the results of GYSELA are found to be

in good agreement of those obtained with codes which use a

linearized version of the model equations and filter out the

non-zonal component. This means that, for the tests chosen

in this paper, the nonlinear excitation of non-zonal compo-

nents is negligible and does not sensibly modify the evolu-

tion of the zonal component.

The numerical scheme of GYSELA is based on a semi-

Lagrangian method51 (more specifically on a “backward

semi-Lagrangian approach”), which is a mix between PIC

and Eulerian methods exhibiting good properties of conser-

vation.37 In this method, the phase-space mesh grid is kept

fixed in time (like in Eulerian codes) and the Vlasov equa-

tion is integrated along the trajectories (like in PIC codes)

using the invariance of the distribution function along the

trajectories (Liouville theorem). In GYSELA, the interpola-

tion step is presently performed with cubic splines.

Like for ORB5 and GENE, the model equations of

GYSELA are based on the gyrokinetic equations of Brizard

and Hahm.43 Then, the time evolution of the full guiding-

center distribution function Fs is governed for each species s,

by the same form of equation as the one of GENE, i.e., Eq.

(8) where the characteristics, i.e., the trajectories of the gyro-

centers, are given by Eqs. (9) and (11). These 5D gyrokinetic

Vlasov equations are self-consistently coupled to a 3D quasi-

neutrality equation defined as

� 1

ne0

X
s

qsr? �
ns0

BXs
r?/ R; tð Þ

� �
þ e

/� �/
Te

 !

¼ 1

ne0

X
s

qs ns � ns0ð Þ; (15)

where the gyrocenter density ns of species s reads ns R; tð Þ ¼Ð
J v dl dvk ~Fs R; v; tð Þ with J v ¼ 2pB�Gjj=ms the Jacobian in

velocity space. The equilibrium gyrocenter density ns0 corre-

sponds to the same expression as ns, where Fs is replaced by

the equilibrium Maxwellian Fs0. The gyroaverage operator

was historically approximated by a Pad�e expansion but in

this paper the new version based on direct integration on the

gyro-circles with Hermite interpolation is used. In GYSELA,

the quasi-neutrality equation [Eq. (15)] is solved with finite

differences in radial direction and Fourier projection in h
direction (u plays the role of a parameter). See Appendix A

in Ref. 38 to see how the presence of �/ is overcome.

III. NUMERICAL SIMULATIONS WITH ADIABATIC
ELECTRONS

In this section, the results of numerical simulations of

GAMs with adiabatic electrons are discussed and compared

with the analytical theory. The main aim here is to perform a

detailed verification and benchmark of the different gyroki-

netic codes. This has the triple role of (a) understanding bet-

ter the behavior of the linear GAM dynamics in different

regimes; (b) understanding better the behavior of the codes,

which is crucial in the view of a future work where more

physics is present; (c) understanding better the regimes of

validity of each specific analytical dispersion relation. Two

main regimes are considered: one where the GAM radial

size is large with respect to the ion Larmor radius, and there-

fore, the FOW effects are smaller, and one where the GAM

radial structure is finer, and therefore, the FOW effects are

larger.

A. GAMs with broad radial structure

1. Analytical predictions

In the case of GAMs with broad radial structure

(krqi � 1), an analytical theory neglecting the FLR and

FOW corrections can be considered as a first approximation.

Although an MHD theory would be sufficient for estimating

the order of magnitude of the GAM frequency, nevertheless,

due to the resonances with ions, a gyrokinetic treatment of

the ions is necessary for a proper estimation of the GAM fre-

quency and damping rate. Such a dispersion relation in the

case of circular flux surfaces has been provided by Zonca in

199612 in the general electro-magnetic case, for low-

frequency Alfv�en modes and can be adopted for GAMs as

well, when neglecting diamagnetic effects (due to the degen-

eracy of the GAM and beta-induced shear Alfv�en continuum

accumulation point frequency), as discussed in detail in Ref.

5. No resonances of the electrons are retained. It reads

K2 zð Þ ¼ z2 þ q2x2
tiz F zð Þ � N2 zð Þ

D2 zð Þ

" #
¼ 0; (16)

where z ¼ xþ icð Þ=xti; xti ¼
ffiffiffi
2
p

vti= qR0ð Þ is the transit ion

frequency, vti ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
, and the functions F, N, and D are

defined by

F zð Þ ¼ z z2 þ 3=2
� �

þ z4 þ z2 þ 1=2
� �

Z zð Þ; (17)

N zð Þ ¼ zþ 1=2þ z2
� �

Z zð Þ; (18)

D zð Þ ¼
1

z

� �
1þ 1

se

� �
þ Z zð Þ; (19)

where se ¼ Te=Ti is the ratio of electron over ion tempera-

tures, and Z(z) is the plasma dispersion function

Z zð Þ ¼ p�1=2

ðþ1
�1

e�y2

y� zð Þ
dy: (20)

Equation (16) is the desired dispersion relation. It is in

implicit form, i.e., the zeroes of the function K zð Þ must be

found in the complex plane.

For shorter wavelengths and/or larger q, FLR/FOW

effects become more important,17 and higher order transit

resonances play a more important role in the Landau damp-

ing of GAMs, in addition to the modification of their real fre-

quency. An extension of Eq. (16) to the case where FLR and

FOW effects are also considered to the first order (still in cir-

cular geometry, and with adiabatic electrons), was made

for general low-frequency Alfv�en modes by Zonca in
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1998.13 An approximated explicit formula for the frequency

and damping rates of GAMs with x ¼ lxti; l ¼ 61;62 tran-

sit resonances accounted for was provided by Sugama in

200614 and 2008,15 in the regime of moderate value of q:

x
qxti
¼ f

1=2
T 1þ 1

q2

fS1

f 2
T

� �1=2

; (21)

c
qxti
¼ �

ffiffiffi
p
p

2
q3fT

"
exp �x2ð Þ x2 þ 2se þ 1

� �

þ q2

4
k2

r q
2
i exp � x2

4

� �
x4

128
þ fS2x2 þ fS3

� �#
; (22)

with x ¼ x=xti ¼ < zð Þ; qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
=Xi; fT ¼ 7=4þ se,

and fS1 ¼ 23=8þ 2se þ s2
e=2; fS2 ¼ 1þ seð Þ=16, and fS3 ¼

3=8þ 7se=16þ 5s2
e=32 (with Xi being the ion cyclotron fre-

quency). Note that, in the limit of large values of q (i.e.,

q> 4) and se ¼ 1, the normalized frequency, Eq. (21), tends

to x=qxti ’ f
1=2
T ¼ 1:66, and x ’ f

1=2
T q ¼ 1:66 q. For cases

with large enough values of q to satisfy x ’ 2xti, the second

term in Eq. (22) (namely, the one proportional to k2
r q

2
i )

becomes dominant since the ions with lower energy (and

thus, which are present in larger number) resonate with the

GAM frequency. Note that FLR corrections are not included

in Eq. (22).

The effect of elongation e, in a gyrokinetic treatment,

has been included by Gao in 2009,18 in the large aspect ratio

limit, neglecting the FLR/FOW effects. The resulting GAM

frequency and damping rate, where we neglect here the

effect of the radial derivative of the elongation (a typo was

present in the original paper, due to a missing proper normal-

ization of x in the formula for the damping rate), are

x
qxti
¼ f

1=2
T

e2 þ 1

2

� ��1=2

1þ e2 þ 1

2

1

2q2

fS1

f 2
T

 !
; (23)

c
qxti
¼ �

ffiffiffi
p
p

2

1

qfT
x6 exp �x2ð Þ: (24)

Note that, for e¼ 1, i.e., for circular flux surfaces and for large

values of q, the frequency given by Gao-2009, Eq. (23),

reduces to the one of Sugama-2008, Eq. (21). Also note that,

for deriving the damping rate of Gao-2009, Eq. (24), one has

to neglect the second of the two terms of the damping rate

given by Sugama-2008, Eq. (22) (which means assuming that

the values of q are below a certain threshold) and at the same

time assuming the limit of large values of q (i.e., large values

of x). Due to these strong approximations, we expect the for-

mula for the damping rate of Gao-2009 to give a good qualita-

tive comparison with the results of numerical simulations, but

some divergence in the absolute values are not to be

surprising.

The previous dispersion relations, namely, Eq. (16) given

by Zonca in 1996, Eqs. (21) and (22) given by Sugama in

2006 and 2008, and Eqs. (23) and (24) given by Gao in 2009,

are considered as a reference for the comparison with all the

results of numerical simulations on GAMs with broad radial

structure, shown in Sec. III A. Separate dispersion relations,

where higher-order FLR/FOW effects are taken into account,

are discussed in Sec. III B and used for comparison with the

results of numerical simulations shown in the same section.

2. Equilibrium and definition of the simulation

For our numerical test, we choose a tokamak equilib-

rium with high aspect ratio (e ¼ a=R ¼ 0:1), with R0 ¼ 1:3
m and a¼ 0.13 m. The equilibrium magnetic field is given

by B ¼ B0R0=Rð Þ eu þ r=qR0ð Þeh
� �

. The value of the mag-

netic field on axis is B0 ¼ 1:9 T. Each simulation has a dif-

ferent q profile, flat, and each one with different value of q.

Flat temperature and density profiles are also always consid-

ered. The value of q� ¼ qs=a is chosen as q� ¼ 1=160 for all

simulations shown in Sec. III A (with qs ¼ cs=Xi being the

sound Larmor radius). This corresponds to a hydrogen

plasma with Te ¼ 228 eV. The value of the density is irrele-

vant for electrostatic simulations.

We initialize a charge density perturbation (with

Maxwellian distribution in velocity space) with only zonal

component (i.e., independent of the poloidal and toroidal

angle), and generating a scalar potential with a sine depen-

dence on the radius, of the form / q; t ¼ 0ð Þ ¼ sin kraqð Þ,
with kr ¼ 2p=a (where q ¼ r=a is the normalized minor

radius, with values in [0,1]). In GYSELA, the initial pertur-

bation of the distribution function is chosen such that

/ q; t ¼ 0ð Þ ¼ 1� cos kraqð Þ. This choice has been preferred

because the radial profile of the zonal component stays more

stable in time than for the case / q; t ¼ 0ð Þ ¼ sin kraqð Þ,
leading to a mean kr value in time closer to the initial one.

This is particularly true for large values of kr as those

explored in Sec. III B. One explanation could be that in the

case of 1� cos profile the gradients are flatter at radial

boundaries so that boundary conditions seem to have less

impact. Anyway, this raise the delicate point of confronting

global nonlinear code results with linear theory results which

are based on local approximation. With this choice of q�

and kr, we obtain a relatively low value of krqi, namely,

krqi ¼ 0:055 which corresponds to a regime where ion FOW

effects are relatively small, for moderate values of q. The

perturbation is let evolve in a linear electrostatic simulation

with adiabatic electrons. GAMs oscillations are observed,

and we measure the scalar potential and calculate frequency

and damping rate. The residual electric field corresponding

to the stationary zonal flow2 is subtracted from the signal, in

order to focus on the oscillatory dynamics of GAMs.

3. Dependence on the safety factor

For the simulations shown in this section, we have con-

sidered an analytical equilibrium with concentric circular

flux surfaces. The radial electric field is measured at the

radial position of its peak, namely, at mid-radius, q ¼ 0:5 for

initial perturbations of the type / q; t ¼ 0ð Þ ¼ sin kraqð Þ
(which are used in all simulations of ORB5 and GENE). For

simulations with initial perturbations of the type / q; t ¼ 0ð Þ
¼ 1� cos kraqð Þ (used by GYSELA), the scalar potential at

mid-radius is used instead of the electric field. The signal is

observed to oscillate in time and be damped due to Landau

damping. The frequency is measured for different
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simulations with different value of q, obtained with ORB5,

GENE, and GYSELA, and it is found to scale correctly with

the theoretical dispersion relation by Zonca-1996 [Eq. (16)],

and the explicit formula by Sugama-2006 [Eq. (21)], as

shown in Fig. 1. In particular, note that the value of the fre-

quency tends to xq!1=qxti ¼ 1:66 for large values of q, as

discussed in Sec. III A 1, following Eq. (21). Some minor dif-

ferences are found at low values of q in the results of the dis-

persion relations (due to the hypothesis of large q considered

by Sugama for the calculation of the explicit formula).

The dependence of the damping rate on q has also been

studied, for the same simulations (see Fig. 1). All codes

match well with the analytical predictions of Zonca-1996

[Eq. (16)] at low values of q (q � 1:5), where the FOW

effects are negligible. At larger values of q (q> 1.5), the

FOW effects included at the first order in the explicit formula

by Sugama-2008 [Eq. (22)] are shown to be dominant. All

codes fit well with the formula by Sugama-2008 for the values

of q smaller than 3.5. At even larger values of q (q 	 3:5), the

higher-order FOW effects become dominant, and deviations

from the formula by Sugama are observed. This regime is

studied more in detail in Sec. III B. The difference at large q

between the flux-tube version of GENE (which agrees per-

fectly with ORB5) and the global version of GENE is due to

the fact that the kr used for global GENE runs was slightly

larger. For this value of q�, the choice of krqi¼ 0.055 requires

to simulate the entire domain in minor radius, while simula-

tions of global GENE accounted only for 98% of it. This

affects only the high q, i.e., when the damping is very small

and the relative effect of kr is large. The values of damping

rates larger than ORB5 at large values of q are also observed

with GYSELA, probably because the value of kr has been

observed to evolve in time towards values which are a bit

larger than at the initial time of the simulations with

GYSELA, and this increases the averaged damping rate.

4. Dependence on the elongation

The dependence on the elongation has been studied by

loading magnetic equilibria with different elongation (and no

FIG. 1. Frequency (a) and damping rate (b), measured with ORB5 (in black

Xs), GENE global (blue crosses), GENE flux-tube (red crosses), and

GYSELA (magenta stars). The results of the explicit analytical formulas of

Sugama-2006 (Eq. (21)) and Sugama-2008 (Eq. (22)) are also shown in

green and of the dispersion relation of Zonca [Eq. (16)] in black.

(a)

(b)

FIG. 2. Frequency (a) and damping rate (b) of the radial electric field, mea-

sured with ORB5 (in black Xs), and GENE global (blue crosses). The ana-

lytical formulas of Sugama are also shown (in green) and of Gao in red.
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triangularity) calculated with the CHEASE code.52 These

simulations have been performed with ORB5 and GENE. The

safety factor has been chosen with q¼ 1.4, and we have var-

ied the elongation from e¼ 1 (circular flux surfaces) to

e¼ 1.75 (elongated plasmas). The results are shown in Fig. 2.

The frequency measured with the two codes has been

found to fit very well, falling within the error bars for the

whole scan. The fit with the analytical prediction of Gao-

2009 is also very good (with a maximum of 3% of difference

not depending on the elongation), showing the correct

decrease of the frequency with the increasing elongation.

Regarding the damping rate, a very good matching of

the two codes has also been found, showing an increase of

the damping rate with the elongation, as predicted by the

analytical theory. A quantitative fit of the damping rate with

the analytical theory has been found worse than for the fre-

quency. This is probably due to the fact that the dependence

of the dispersion relation on the safety factor q, the FOW

effects, proportional to k2
r q

2
i , and the elongation e at the

same time, forces some strong approximations to be taken

when deriving an explicit analytical formula, as discussed in

Sec. III A 1. Therefore, the analytical derivation is based on

some assumptions, like the assumption of negligible FOW

effects and the assumption of large values of q at the same

time, which is most likely at the origin for the divergences

with the results of the numerical simulations. Note that this

difference, up to 40%, of the result of the numerical simula-

tions with respect to the analytical theory is of the same

order of magnitude of what found also in the previous scan,

shown in Sec. III A 3, for the value of q¼ 1.4. This confirms

that the quantitative analytical prediction of the damping rate

is very challenging, due to the many approximations needed

in deriving explicit formulas.

B. GAMs with arbitrary radial structure

In this section, we want to investigate the linear colli-

sionless dynamics of GAMs in a regime where the FOW

effects are more important, therefore we push towards higher

values of krqi, corresponding to GAMs with finer radial

structure with respect to the ones considered in Sec. III A.

We neglect here the effect of the elongation, and we still

consider only the results obtained by the analytical theory

and numerical simulations with adiabatic electrons.

1. Analytical predictions

As krqiq
2 further increases, higher and higher order

transit resonances must be taken into account to properly

get more accurate GAM damping rates, as it was first

shown in Ref. 16, and discussed in detail by Qiu in 2009.17

The collisionless damping of GAMs for krqiq
2 !1 was

derived in Ref. 5 with all the transit resonances FOW and

FLR properly accounted for, and the dispersion was

later extended to relatively smaller q parameter region in

Ref. 17 to compare with numerical simulations.16 The dis-

persion relation of Qiu-2009 was calculated in the limit of

large values of q and moderate values of krqi, i.e.,

1=q2 � krqi � 1. It reads

x
qxti
¼ f

1=2
T 1þ 1

2q2

fS1

f 2
T

þ k̂
2

4
� fQ1

fT
þ fQ2

f 2
T

� �" #
; (25)

c
qxti
¼�

ffiffiffi
2
p

k̂
2

exp �x̂=k̂
� �
x̂5

x̂4þ fQ1

2
x̂2k̂

2� fQ2k̂
2� 2fS1

1

q2

� �

� x̂2þ sex̂k̂ þ fQ3k̂
2� x̂2k̂

2� x̂3

8

1

q2k̂
3
þ x̂4

24

1

q2k̂
4

" #
;

(26)

where x̂ ¼ x=qxti ¼ x=q; k̂ ¼ krqi; fQ1 ¼ 31=16þ 9se=4

þs2
e ; fQ2 ¼ 747=32þ 481se=32þ 35s2

e=8þ s3
e=2, and fQ3

¼ s2
e þ 5se=4þ 1. Note that, differently from the analytical

predictions described in Sec. III A, the GAM frequency has a

dependence on krqi. The krqi in Eq. (26) comes from both

FLR (J2
0 krqið Þ) and also FOW (Jp krqdð Þ, with p being inte-

gers, and krqd ’ krqiq for circulating particles. In the limit

of large values of q for a fixed k̂, then x̂ tends to a constant

with value x̂q!1 ’ f
1=2
T . In this limit, the last term in the first

squared bracket of the formula for the damping rate, Eq. (26),

and the last two terms in the second squared bracket of the

same formula, can be neglected, and the GAM damping rate

tends to a constant value. Note that Eqs. (25) and (26) can be

used for both short/long wavelength regimes. For example, in

long wavelength limit, with krqi � 1, FOW effects are still

important if q is large. So, in general, when we say, q is large

or small, it is not compared to 1, but to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=krqi

p
.

Finally, an analytic dispersion relation where the effects

of the non-circular geometry are also included has been

derived by Gao in 2010.19 We report here the formulas for x
and c where no radial derivative of the elongation is consid-

ered, for concentric flux surfaces (i.e., with no Shafranov

shift), and neglecting the effects of finite inverse aspect ratio.

It reads

x
qxti
¼ f

1=2
T

e2 þ 1

2

� ��1=2

1þ e2 þ 1

2

1

2q2

fS1

f 2
T

þ k̂
2

4e2
Q

" #
;

(27)

c
qxti
¼�

ffiffiffi
2
p

f
1=2
T

k̂
2

e2 e2þ 1

2

� ��3=2

exp � f
1=2
T

k̂

e2þ 1

2e2

� ��1=2
 !

;

(28)

where

Q ¼ fQ2

f 2
T

e2 þ 1

2

� �
� fG1

fT
e2 � fG2

fT
þ fG3 e4 þ 1ð Þ þ fG4e2

e2 e2 þ 1ð Þ

and fG1 ¼ 13� 2se � 4s2
e

� �
=16; fG2 ¼ 39þ 50se þ 20s2

e

� �
=

16; fG3 ¼ 9þ 4seð Þ=16, and fG4 ¼ 6� 8seð Þ=16. In the case

of no elongation, e¼ 1, the dispersion relation of Gao-2010

reads

x
qxti
¼ f

1=2
T 1þ 1

2q2

fS1

f 2
T

þ k̂
2

4
� fQ1

fT
þ fQ2

f 2
T

� � !
; (29)
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c
qxti
¼ �

ffiffiffi
2
p

f
1=2
T

k̂
2

exp � f
1=2
T

k̂

 !
: (30)

Note that the frequency reduces exactly to the one of Qiu-

2009. The damping rate can be derived as an approximation

of the one by Qiu-2009, in the large-q regime, and when con-

sidering only the largest terms in the squared parenthesis of

Eq. (26), i.e., respectively, x̂4 and x̂2. Some differences are

therefore expected for the damping rates of Qiu-2009 and

Gao-2010.

2. Equilibrium and definition of the simulation

We choose a tokamak equilibrium with circular flux

surfaces and high aspect ratio (e ¼ a=R ¼ 0:1), with

R0 ¼ 1:3 m; a ¼ 0:13m. Each simulation has a different q

profile, flat, and each one with different value of q. Flat tem-

perature and density profiles are considered. Different values

of q� are considered (and Ti¼Te). The value of the density

is irrelevant for electrostatic simulations. The initialization is

done in a similar way as described in Sec. III A 2, but we ini-

tialize here different simulations with different value of kr.

3. Dependence on the safety factor

A scan with q has been repeated here with ORB5,

GYSELA and GENE, similarly to the one reported in Sec.

III A 3. The value of q� here has been chosen as in Sec. III A,

i.e., q� ¼ 1=160.

Frequency and damping rates of GAMs depend on the

safety factor q (see Fig. 3). To the lowest order in krqi, the fre-

quency is well described by the limit of krqi ! 0, and the

FOW effects provide corrections which do not modify the

order of magnitude of the frequency. All codes seem to follow

the analytical prediction obtained without FOW effects at low

values of q, whereas there is a change in trend occurring

around q¼ 2, where all codes start following the analytical

predictions where the FOW effects are included in the

frequency.

For the damping rates, the trend of the dependence on q

is well described by the limit of small krqi, where first order

corrections (i.e., accounting for the 2nd harmonic resonance

vk ¼ qRxGAM=2 of the passing ions) are dominant, only at

small q (q< 3). At larger values of q (q > 3� 4), higher

order corrections (i.e., accounting for the 4th harmonic reso-

nance and higher) are necessary for estimating analytically the

GAM damping rate. Note that, in the limit of large values of

q, the damping rate tends to a constant, as predicted by the

analytical theory, Eq. (26).

As a result of this verification test, a good agreement in

the scalings measured with ORB5, GYSELA, and GENE

(both local and global) and with the theoretical prediction of

the analytical theory is found, both for the frequency and the

damping rate.

4. Dependence on the radial wave number

The dependence of the frequency and the damping rate

on the radial wave number is discussed here. As shown in

Sec. III, the frequency is well described by the limit of zero

FOW to the lowest order, and the corrections of the FOW

effects to the value of the frequency provide some modifica-

tions, up to 10%. The damping rate dependence on krqi, on

the other hand, must be considered to orders higher than the

first, when krqi > 0:1, if realistic values of q are considered

as measured in tokamaks (q> 4). Good agreement of ORB5,

GYSELA and GENE (both local and global) and the analyti-

cal theory is observed for the frequency at low values of

krqi, while at higher values of krqi, the numerical codes pre-

dict slightly lower frequencies with respect to the analytical

theory. The origin of this discrepancy is thought to be the

breaking of the regime of validity of the analytical predic-

tions, derived with the hypothesis of moderate values of krqi.

A very good agreement of all codes is observed for the

damping rate, except at low values of krqi. This is the regime

where the damping rates are very small and therefore very

difficult to measure, in some cases hidden below the noise

(especially for PIC codes). In particular, with PIC codes the

cases at very low damping rate require a very high resolution

(i.e., a large number of markers) in order for the signal to

(a)

(b)

FIG. 3. Frequency and damping rate of the radial electric field vs q, mea-

sured with ORB5 (black Xs), GENE global (blue crosses), and GENE local

(red crosses) and compared with analytical theories of Sugama-2006,

Sugama_2008, Qiu-2009, and Gao-2010.
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overcome the statistical error. Therefore, for very low values

of the damping rate, the measured numerical value is less

trustable, and the error bar becomes bigger. The comparison

of the gyrokinetic simulations with the three different analyt-

ical formulas of Sugama-2008, Qiu-2009, and Gao-2010

shows that the damping rate is better approximated by

Sugama-2008 at very low values of krqi (although this for-

mula still underestimates the damping rate at this large val-

ues of q), by Qiu-2009 at intermediate values, and by Gao-

2010 at large values (see Fig. 4).

IV. NUMERICAL SIMULATIONS WITH KINETIC
ELECTRONS

A. Effect of the finite electron mass, for radially broad
modes

In this section, the same equilibrium as in Sec. III A 2 is

adopted. The flux surfaces are circular, and the safety factor

profile is flat, with q¼ 3.5. We initialize a scalar potential per-

turbation with only zonal component, and with a

sine dependence on the radius, of the form / q; t ¼ 0ð Þ
¼ sin kraqð Þ, with kr ¼ 2p=a (corresponding to a relatively

low value of krqi). The perturbation is let evolve in a linear

electrostatic simulation with kinetic electrons. Our simulations

with ORB5 have a spatial grid of (s,h, /)¼ 64� 64� 4 and a

time step of 2 X�1
i , with 108 markers. The length of the simu-

lations is 4� 104 X�1
i , corresponding to 20 000 time steps.

The dependence of the frequency and damping rate on

the ion/electron mass ratio is depicted in Fig. 5, for simula-

tions performed with ORB5 and the global version of

GENE. We can see that for the frequency, a convergence

towards the values of the adiabatic electrons is observed

very soon for increasing mi=me, whereas for the damping

rate, the convergence is not observed. For realistic values of

mi=me in deuterium plasmas, the measured damping rate is

more than 10 times larger than the value given by the adia-

batic electrons, for the chosen value of the safety factor (q ¼ 3.5).

A good agreement of the two codes is found for both fre-

quencies (giving results within 2% of difference) and damp-

ing rates (within 25% of difference at large mass ratios).

Such a difference in the damping rate measured in simula-

tions with kinetic electrons and with adiabatic electrons is

FIG. 4. Frequency and damping rate of the radial electric field vs krqi, mea-

sured with ORB5 (black Xs), GENE global (blue crosses), GENE flux-tube

(red crosses), and GYSELA (magenta stars), and compared with analytical

theories of Sugama-2006, Sugama-2008, Qiu-2009, and Gao-2010.

FIG. 5. Dependence of the frequency (a) and damping rate (b) on the ion/

electron mass ratio, measured with ORB5 (blue crosses) and GENE (red

crosses). The values obtained with adiabatic electrons are depicted as dashed

horizontal lines. Circular flux surfaces are considered here.
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due to the effect of the resonance with the bounce motion of

barely trapped electrons.31

V. SUMMARY AND CONCLUSIONS

Zonal (i.e., axisymmetric) poloidal flows, corresponding

to zonal radial electric fields, are known to develop in toka-

mak plasmas, as the result of nonlinear interaction with tur-

bulence. They appear in the form of zero-frequency zonal

flows (ZFZFs)1–3 and oscillating zonal flows, named geode-

sic acoustic modes (GAMs).4,5,10 Their different behavior in

time results in a different efficiency in the turbulence regula-

tion. Both ZFZFs and GAMs are crucial to be understood

(linearly and then nonlinearly) for a theoretical characteriza-

tion of a turbulent plasma. In this paper, we have focused on

the linear collisionless dynamics of GAMs.

The linear collisionless theory of GAMs has been devel-

oped in different regimes and several numerical investiga-

tions have been performed and compared with the theory in

the past. Many gyrokinetic codes have also been developed

for the study of the nonlinear interaction of turbulence and

zonal structures. Nevertheless, no comprehensive linear veri-

fication and benchmark effort has been done, to test multiple

gyrokinetic codes comparing them with each other and the

different analytical theories derived in different limits.

In this paper, we have selected a list of tests which serve

for investigating the behaviour of some of the most known

gyrokinetic codes in the magnetic-confinement-fusion turbu-

lence community, especially in comparison with each other

or with analytical theory. The choice of the codes has been

made in order to give an approximative representation of the

big variety of turbulence codes existing in our community.

The chosen codes have been ORB5,32–34 GENE,35,36 and

GYSELA.37,38 These codes are based on the same basic

gyrokinetic formalism for the treatment of the ion dynamics,

which makes them equivalent in the linear electrostatic colli-

sionless regime, which is the one considered here.

Additional features can be optionally switched on in some

codes, like, for example, a non-circular geometry of the mag-

netic flux surfaces, or non-adiabatic models for the electrons.

The main basic difference of the three codes, even when cir-

cular flux surfaces are considered and the electrons are

treated as adiabatic, resides in the numerical algorithm which

is used to solve the model equations. In fact, the Lagrangian

algorithm is used for ORB5, the Eulerian algorithm for

GENE, and the Semi-Lagrangian algorithm for GYSELA.

This difference of the numerical schemes makes the detailed

cross-code comparison and verification against analytical

theory even more meaningful—the numerical result is con-

trolled not to depend on the numerical approximation of the

basic model, but only on the considered physics. The tests

have been divided into two main classes, depending on the

model used for the treatment of the electrons. In the first

class, where the electrons are treated adiabatically, analytical

dispersion relations exist in literature, and this makes not

only a cross-code benchmark but also a detailed verification

of the codes possible. On the other hand, when the electrons

are treated kinetically, no analytical theory presently exists,

and therefore a cross-code benchmark only has been

performed.

The first test with adiabatic electrons has been chosen in

a regime where all three codes can be compared, namely,

with a magnetic equilibrium with circular flux surfaces. The

frequency and damping rates of GAMs have been observed

to fit well among codes, in the limit of moderate-low values

of the safety factor and for small values of the wave-number

normalized to the ion Larmor radius (see Sec. III A 3). In the

same regime, a comparison with the analytical dispersion

relation of Zonca-1996,12 where no FOW effects are

retained, and with the explicit formulas for the frequency

and damping rate, respectively, of Sugama-200614 and

Sugama-2008,15 where FOW effects are retained to the first-

order, has also been successfully done. When introducing a

non-circular geometry of the flux surfaces, the codes ORB5

and GENE have also been benchmarked and verified against

the analytical dispersion relation of Gao-2009,18 for a scan

on the flux surface elongation. The result has been a good

agreement of the codes for both frequency and damping

rates, a quantitative agreement with the analytical theory for

the frequency and a qualitative agreement for the damping

rates (see Sec. III A 4).

When a regime with higher radial wave-numbers is con-

sidered, the ion FOW effects play a more important role. A

comparison of ORB5, GENE, and GYSELA with adiabatic

electrons, with the analytical theories of Sugama-2008, Qiu-

2009, and Gao-2010 has been made, scanning in the range

0 < krqi � 0:45 (see Sec. III B). All codes have shown a

very good comparison of the frequency with each other for

all values of krqi, and a good comparison with the analytical

theory for low values of krqi. The difference with the analyt-

ical theory, which is found for higher values of krqi, is

thought to be due to the breaking of the regime of validity of

the analytical theories, derived as expansions for small val-

ues of wave-numbers. The damping rate has given a very

good matching of all codes, especially at moderate and large

values of krqi, where the theories of Qiu-2009 and Gao-2010

have been recovered. At low values of krqi, corresponding to

low values of the damping rate, a difference among codes

has been found, due to the general difficulty to measure low

damping rates. For example, for a PIC code like ORB5, a

high resolution in number of markers is necessary to kill the

statistical noise and properly measure a very low value of

damping rate, but typically some uncertainty still remains,

unless a very big number of markers are used. It should also

be noted that in ORB5, the quasineutrality equation is a

Laplacian on the poloidal plane and global GENE solves the

quasineutrality in the toroidal direction. This might imply

that, for the same density perturbation, slightly different

potentials are obtained. This might therefore be a further rea-

son of small difference between the results of the two codes.

Benchmark tests with kinetic electrons have also been

performed, with ORB5 and GENE, in a low-krqi regime,

with circular flux surfaces, and moderate value of the safety

factor. The results of the two codes have been found to fit

very well. No analytical theory presently exists providing the

modification of the frequency and damping rate due to the

effect of the kinetic electrons; therefore, no verification has
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been possible in this regime. The scan of the frequency and

damping rate in the ion to electron mass ratio has shown that

a convergence of the frequencies with the analytical predic-

tion obtained with adiabatic electrons is found when electrons

are sufficiently light (when approaching realistic values of

mi=me for hydrogen and deuterium plasmas), whereas no con-

vergence is found for the damping rate, which stays one order

of magnitude higher than the analytical prediction obtained

with adiabatic electrons (in agreement with Ref. 31).

Detailed convergence tests have been performed with all

three codes in order to assess the numerical stability for the

considered GAM dynamics. Convergence scans have been

done for ORB5 with respect to the number of markers, which

characterizes the type of discretization of a PIC code (see

Appendix A). Analogously, the numerical description of the

simulations performed with GENE and the convergence

scans in vjj are reported in Appendix B. Finally, the descrip-

tion of the numerical parameters used for simulations with

GYSELA and convergence scans in the spatial and velocity

space are presented in Appendix C.

In conclusion, we have made a choice of three gyroki-

netic codes and tested them for the physics of linear electro-

static collisionless GAMs in different regimes, by means of

verification against analytical theory and cross-code bench-

marks. These tests have shed light on the regimes of validity

of the different analytical theories derived in the different lim-

its. In particular, we have shown that there is not one approxi-

mate analytical formula, which can be applied for all the

considered regimes. In fact, each considered formula has been

found to match the results of the numerical simulations in a

different regime of application, but to fail in other regimes.

These regimes have been properly identified here, making

their usage more sensible for the future. These tests have also

improved the trustability of the codes. In particular, we have

shown that the results of the three selected codes match very

well for all simulations performed in regimes where the damp-

ing rate is moderate or high, whereas some differences have

been found for very small values of the damping rates, where

the numerical error can strongly affect the measurement.

These tests performed on zonal structures like GAMs, and

complementary tests performed on the linear dynamics of

microturbulence modes (see, for example, Ref. 44), serve to

prepare a solid basis for a more comprehensive theoretical

understanding of the turbulent transport in tokamak plasmas,

based on the numerical simulations with the set of available

gyrokinetic codes, analytical theory, and intermediate reduced

models, which is one of the major goals of our community.
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APPENDIX A: NUMERICAL CONVERGENCE TESTS
WITH ORB5

The numerical stability of the codes is crucial to be

investigated, in order to assess the efficiency and the regime

of validity of the algorithm. A test consists in measuring the

convergence of GAM frequencies xGAM and damping rates

cGAM with different number of markers. This kind of tests

has been done for simulations with adiabatic electrons and

repeated for simulations with kinetic electrons (see Sec. II A

for a description of these two models for the electrons).

For these scans, a plasma configuration with a major

radius R0 ¼ 1:3 m and a minor radius a¼ 0.13 m was chosen

with the toroidal magnetic field on axis be B¼ 1.9 T and flat

profiles for the safety factor, with q¼ 3.5, temperature

(defined from the value of q� ¼ 1=160 ¼ 0:00625) and den-

sity profiles (with value irrelevant for the present electrostatic

simulations). Electrostatic linear simulations are evaluated

with an initial electric potential perturbation with kr ¼ 2p=a.

This configuration corresponds to the case depicted in Fig. 1

(point with q¼ 3.5), and Fig. 5 (points with mi=me ¼ 2000

and mi=me ¼ 4000).

For the simulations with adiabatic electrons, the typical

spatial grid is q; a1; a2ð Þ ¼ 64� 64� 4 and the time step is

40 X�1
i (where the ion cyclotron frequency is evaluated here

with the magnetic field on axis, i.e., at q¼ 0, and with a1 and

a2 being the two periodic coordinates, i.e., the poloidal and

toroidal angles). Simulations with 1000 time-steps are consid-

ered, with a total time length of 4� 104 X�1
i , where we

observe about 10 GAM oscillations. A scan in the number of

ion markers is performed, from 105 to 108. For kinetic elec-

trons, the typical spatial grid is q; a1; a2ð Þ ¼ 64� 64� 4, and

the time-step is 2 X�1
i . For the case with kinetic electrons,

simulations with 2� 104 time-steps are considered, a number

of ion markers of 108, and the number of electron markers is

scanned from 107 to 5� 108.

The frequency has been calculated directly by measur-

ing the averaged period of oscillation at one radial position.

To apply other techniques, like, for example, the Fourier

decomposition, it is necessary to have more oscillations that

increases significantly the calculation time of simulations.

The damping rate and its standard deviation have been found

by using the method of least squares. The results of the con-

vergence tests are given in Fig. 6, where it can be seen that
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for the case of adiabatic electrons, the frequency and the

damping rate converge well to the analytical value calculated

by using the explicit expressions of Sugama-2006 and

Sugama-2008,14,15 for increasing number of ion markers. On

the other hand, the absolute values of the damping rates for

simulations with kinetic electrons are found to stay consider-

ably higher (as described in Sec. IV), and no convergence

with the results of simulations with adiabatic electrons is

observed in the range of number of electron markers consid-

ered. The GAM frequency does not change much with the

number of markers, except for the cases with very small

number of markers. Error bars are also reported in the values

of the damping rates, to emphasize that at very low number

of markers, the Monte-Carlo error becomes comparable with

the physical signal damping.

In the simulations with kinetic electrons performed

with ORB5 and discussed in this paper, the dynamics of pass-

ing electrons is treated kinetically, and consequently high

frequency oscillations are observed on top of the lower fre-

quency GAM oscillation (see also Ref. 30). These high-

frequency oscillations correspond to the limit of kinetic

Alfv�en waves for b going to zero (electrostatic model) at

fixed temperature, also known as the xH-mode.50 These high-

frequency oscillations have been observed to create numerical

instabilities for low number of markers (below 107). For this

reason, the results of simulations with kinetic electrons and

electron markers below 107 have not been reported in Fig. 6.

Regarding the numerical parameters of the simulations of

GAMs with broad radial structure described in Sec. III A 2,

we have used a spatial grid of (Nq; Nh; N/)¼ 256� 64 � 4

and a time step of dt ¼ 100 X�1
i , with Ni ¼ 108 markers. The

length of the simulations is 4� 105 X�1
i , corresponding to

400 time steps. Regarding the simulations of GAMs with fine

radial structure described in Sec. III B 2, a typical simulation

has a spatial grid of (Nq; Nh; N/)¼ 256� 64� 4 and a time

step of 25, 50, and 100 X�1
i , with 107 and 108 markers.

APPENDIX B: NUMERICAL CONVERGENCE TESTS
WITH GENE

GENE simulations are carried out considering an initial

density perturbation with the same sinusoidal functional

form as described in Sec. III A 2. In order to match the radial

wave-number of the initial perturbation, the radial domain Lx

is adapted for each value of kr ¼ 2p=Lx. The mid-radius

location, r=a ¼ 0:5 is the reference position used to measure

all normalization quantities and define the dimensionless

machine size parameter q�. The typical resolution used in

the radial direction is one point per ion Larmor radius, with

the number of points adapted such as to have always one

grid-point located at r=a ¼ 0:5. A high spatial resolution is

used in the parallel direction, up to 96 points, which turn out

to be necessary in order to correctly converge the GAM

damping for the large q - small kr cases. In velocity space,

we consider the domain Lvjj � Ll¼6� 12, a choice that will

be justified in the following. A typical grid is nvjj � nl ¼ 256

�32 points, where the high resolution in the parallel velocity

is motivated by the need of avoiding the recurrence problem.

A detailed discussion of this issue is outside the scope of this

paper, and the interested reader is referred to, e.g., Ref. 56,

where the recurrence problem is discussed in detail. With the

aforementioned resolution, the recurrence time is longer than

the final simulated time in all cases considered here; thus,

the mode frequency and damping can be easily extracted.

Alternatively, one could have used a small hyperdiffusion in

the vjj direction obtaining the same result. However, in gen-

eral, we prefer avoiding introducing any numerical dissipa-

tion as this might impact the residual level of zonal flows

(not considered in this paper).

The properties of the GAM are evaluated by analyzing

the time traces of the flux-surface-averaged electrostatic

potential �/, measured at mid-radius. When comparing flux-

tube and global simulations, the same time interval is used.

Simulations with adiabatic electrons are run typically up to

150 R0=
ffiffiffi
2
p

vti, in order to collect sufficiently long statistics

(for the large damping cases, it suffices to run the simulation

for much shorter times). The damping rate cGAM of the GAM

is then evaluated by separately fitting maxima and minima of

the curve �/ in time. The simulated signals are analyzed by

(a)

(b)

FIG. 6. GAMs frequencies (a) and damping rates (b) obtained with ORB5

for a simulation with q¼ 3.5, q� ¼ 1=160; krqi ¼ 0:055, as in Fig. 1. The

number of markers for the ions (for simulations with adiabatic electrons,

depicted by blue stars) and for the electrons (for simulations with kinetic

electrons, depicted by red squares and diamonds) is indicated on the hori-

zontal axis. Error bars are also indicated for the values of the damping rates.
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computing the instantaneous frequency (time derivative of

the instantaneous phase) x tð Þ using the inverse Hilbert trans-

form technique.57 The GAM frequency is then evaluated by

least squares fit of x tð ÞT:
In Figure 7, we plot GAM frequency and damping for two

different values of the safety factor (2 and 4, respectively)

varying the ion velocity space domain and resolution. These

simulations have been performed with the flux-tube version of

GENE with adiabatic electrons. They have been repeated for

global simulations (results not shown here) obtaining, as

expected, the same behavior and an almost perfect agreement

with local results. We observe how the GAM frequency rapidly

converges, whereas the damping is much more sensitive to res-

olution, and a sufficiently large velocity space must be consid-

ered in order to correctly converge the simulation results.

We remark that kinetic electron runs are instead carried

out for a significantly shorter time, �30R0=
ffiffiffi
2
p

vti, as the

damping is found to be much stronger and it is therefore not

necessary to simulate longer times.

APPENDIX C: NUMERICAL CONVERGENCE TESTS
WITH GYSELA

The convergence scan proposed for GYSELA has been

performed with the same parameters as described in Sec.

III A 2. Density and temperature profiles are considered flat.

The flat safety factor is taken equal to 2 for the following

tests. Electrons are considered adiabatic. In GYSELA, due to

its full-f character, the initial condition is performed on the

distribution function Fs and consists of an equilibrium distri-

bution function Fs0 added to a perturbation dFs, namely,

Fs ¼ Fs0 þ dFs. Then, the electrostatic potential / r; h;uð Þ is

computed at time t¼ 0 by solving quasi-neutrality equation

(15). In the present test, the perturbation part dFs reads

dFs ¼ Fs0; g rð Þ with g rð Þ ¼ � 1
r kr cos krrð Þ � k2

r r sin krrð Þ
� �

where kr ¼ k þ 1ð Þp=Lr with k 2N and Lr ¼ 160qs. The

corresponding radial profile of the zonal component

/00 rð Þ � sin krrð Þ is plotted in Fig. 8 (black line) for k¼ 1

which is the value used for the following simulations.

FIG. 7. GAM frequency (left) and damping (right) for different resolutions and extension along vjj direction. The simulation parameters here are the same as in

Fig. 1. At the top, the results for q¼ 2, and at the bottom for q¼ 4. The analytic prediction of Sugama-2006 and Sugama-2008 is reported with a dashed black

line. The results are obtained with flux-tube version of GENE with adiabatic electrons.
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In GYSELA, the 5D space r; h;u; vk; l
� �

is uniformly

discretized with Nr � Nh � Nu points in the 3D real space

and Nvk � Nl points in the 2D velocity space. This mesh grid

is fixed in time with r 2 0; Lr½ 
; h 2 0; 2p½ 
; u 2 0; 2p½ 
, vk 2
�a vTi

; a vTi½ 
 and l 2 0; Ll½ 
. Due to the toroidal axisymme-

try of the test the number of toroidal points Nu is fixed to

Nu ¼ 8. A comparison (not presented here) with Nu ¼ 16

has shown really good agreement with Nu ¼ 8. Simulations

with Nu ¼ 4 would be probably close to those with Nu ¼ 8

but are not possible in the code due to parallelization con-

straint. This technical constraint could be removed.

However, simulations with so little number of points in toroi-

dal direction are not standard simulations, so choice has been

made to run with Nu ¼ 8 and to postpone the required

modification of the code for now. The maximum of thermal

velocities in parallel velocity space is fixed at a¼ 7. A

simulation with a¼ 5 has been performed (not presented here)

showing very small departure (<2%) compared with the case

a¼ 7. However, as this value could have more impact for larger

q values due to resonance position the value a¼ 7 has been pre-

ferred for the following tests. Ll is fixed to Ll ¼ 12 Ti=B0 (with

B0 ¼ 1). All simulations have been performed for a flat

safety factor profile equal to 2 and until t ¼ 50 000 X�1
i . Flat

density and temperature profiles are also considered with

se ¼ Te=T1 ¼ 1.

The parameters and results are summarized in Table I.

Comparisons are performed on the three quantities: (i) the

radial wave number krqi, (ii) the damping rate c, and (iii) fre-

quency x of the zonal component of the electrostatic poten-

tial /00. The radial wave number is computed with the

following formula:

krqi ¼ qi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNr

i¼0

�/norm ri; tð Þ � h�/normir
� �2

vuut ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNr

i¼0

d

dr
�/norm ri; tð Þ

� �2

vuut ; (C1)

with �/norm ri; tð Þ ¼ �/ ri; tð Þ=maxri
�/ ri; tð Þ. The values reported

in Table I correspond to the mean values of krqi computed at

times where log ð�/ rp; tð ÞÞ is maximum with rp being the

radial position of the maximum value of �/ rð Þ at initial time.

The damping rate is estimated by using the method of least

squares also on the maximum values of log ð�/ rp; tð ÞÞ. c val-

ues reported in Table I are computed with 6 maximums (see

red circles in Figure 9). Four first simulations (cases 1 to 4 in

Table I) have been performed for the same 5D mesh of

�536:8� 106 points Nr;Nh;Nu;Nvk ;Nl
� � ¼ 256; 64; 8;ð

128; 32Þ but varying the time step Dt from Dt ¼ 5 X�1
i to

Dt ¼ 50 X�1
i . All the other simulations except the last one

(cases 5 to 10) have been performed with DtXi ¼ 25 varying

(i) the number of points in l direction (case 5: Nl ¼ 16, case

6:Nl ¼ 8); (ii) the number of points in radial direction (case

7: Nr ¼ 128, case 8: Nr ¼ 512); (iii) the number of points in

poloidal direction (case 9: Nr � Nh ¼ 2562); and (iv) finally

the number of points in parallel velocity space (case 10:

Nvk ¼ 64). The last case (case 11) corresponds to a simula-

tion where all varying parameters have been taken to their

smaller tested value, namely, Dt ¼ 50X�1
i ; Nr ¼ 128; Nh

¼ 64, Nvk ¼ 64, and Nl ¼ 8.

Considering case 1 as the reference case, the maximum

relative error is less than 1% for krqi and x estimations and

less than 2% for c (see Table I). As conclusion all these sim-

ulations, even the coarse grained one (case 11) is fully accu-

rate. However, considering that these tests have been

performed for a small safety factor value q¼ 2 and a small

radial wave number krqi � 0:056, we could suggest to avoid

parameters where we observe a small departure from the ref-

erence case, namely, Dt ¼ 50X�1
i and Nl ¼ 8. Then, more

secure parameters for larger q values or larger krqi values

could correspond to those of case 5, namely, a mesh

Nr;Nh;Nu;Nvk ;Nl
� � ¼ 256; 64; 8; 128; 16ð Þ of 268.4� 106

points with a time step of Dt ¼ 25 X�1
i . Such a simulation

FIG. 8. Time evolution of the radial profile of the zonal component �/
obtained with GYSELA, for the initial time (black line) and 4 different times

(t ¼ 4350 X�1
i ; t ¼ 12250 X�1

i ; t ¼ 20100 X�1
i , and t ¼ 27950 X�1

i ). q is the

normalized radial position, i.e., q ¼ r � rminð Þ=Lr .

TABLE I. 11 simulations performed with GYSELA for q¼ 2 with Nu ¼ 8

by varying the number of points in r, h, vk, and l directions. The results are

compared based on the radial wave number krqi, the damping rate c, and the

frequency x of the zonal component of the electrostatic potential.

case Nr Nh Nvk Nl Dt Xi krqi cX�1
i x X�1

i

1 256 64 128 32 5. 0.05630867 0.02664329 1.81126121

2 256 64 128 32 10. 0.05630867 0.02663145 1.81126121

3 256 64 128 32 25. 0.05630868 0.02657794 1.81126121

4 256 64 128 32 50. 0.05630874 0.02653612 1.81196116

5 256 64 128 16 25. 0.05630058 0.02657711 1.81126121

6 256 64 128 8 25. 0.05601206 0.0265876 1.81126121

7 128 64 128 32 25. 0.05649958 0.0266591 1.81126121

8 512 64 128 32 25. 0.0562041 0.02655708 1.81126121

9 256 256 128 32 25. 0.05630868 0.02657654 1.81126121

10 256 64 64 32 25. 0.05630868 0.02655779 1.81196116

11 128 64 64 8 50. 0.05620426 0.02661145 1.81126121
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requires 2 h on 256 cores for 2000 time iterations compared

to the coarse grained simulation which takes around 1 h on

64 cores (1000 iterations).
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FIG. 9. On the top, Fourier transform in time of �/ r ¼ rpð Þ obtained with

GYSELA and used to compute the frequency with rp the radial position of

the maximum value of �/ rð Þ at initial time. On the bottom, time evolution of
�/ rp; tð Þ � h/00 rð Þir tð Þ used to compute the damping rate. rp is the radial

position of the maximum value of �/ rð Þ at initial time. The green points cor-

respond to the maximum values. The 6 red points correspond to the points

used for the linear interpolation (red line).

062512-16 Biancalani et al. Phys. Plasmas 24, 062512 (2017)

http://dx.doi.org/10.1063/1.862504
http://dx.doi.org/10.1103/PhysRevLett.80.724
http://dx.doi.org/10.1088/0741-3335/47/5/R01
http://dx.doi.org/10.1088/0741-3335/47/5/R01
http://dx.doi.org/10.1063/1.1691835
http://dx.doi.org/10.1209/0295-5075/83/35001
http://dx.doi.org/10.1088/0741-3335/34/13/029
http://dx.doi.org/10.1063/1.1811088
http://dx.doi.org/10.1088/1367-2630/7/1/092
http://dx.doi.org/10.1088/0741-3335/48/5/005
http://dx.doi.org/10.1103/PhysRevLett.106.065001
http://dx.doi.org/10.1103/PhysRevLett.106.065001
http://dx.doi.org/10.1088/0741-3335/58/4/045029
http://dx.doi.org/10.1088/0741-3335/38/11/011
http://dx.doi.org/10.1088/0741-3335/40/12/002
http://dx.doi.org/10.1088/0741-3335/40/12/002
http://dx.doi.org/10.1017/S0022377806004958
http://dx.doi.org/10.1017/S002237780700668X
http://dx.doi.org/10.1103/PhysRevLett.100.215001
http://dx.doi.org/10.1103/PhysRevLett.100.215001
http://dx.doi.org/10.1088/0741-3335/51/1/012001
http://dx.doi.org/10.1088/0029-5515/49/4/045014
http://dx.doi.org/10.1063/1.3481464
http://dx.doi.org/10.1063/1.872851
http://dx.doi.org/10.1063/1.874008
http://dx.doi.org/10.1063/1.874008
http://dx.doi.org/10.1063/1.2928849
http://dx.doi.org/10.1063/1.3155106
http://dx.doi.org/10.1063/1.3680633
http://dx.doi.org/10.1063/1.3680633
http://dx.doi.org/10.1016/j.jcp.2008.02.013
http://dx.doi.org/10.1063/1.4942539
http://dx.doi.org/10.1063/1.2149311
http://dx.doi.org/10.1063/1.2963085
http://dx.doi.org/10.1088/0741-3335/55/1/014015
http://dx.doi.org/10.1088/0741-3335/55/1/014015
http://dx.doi.org/10.1088/0029-5515/54/10/104004
http://dx.doi.org/10.1063/1.3447879
http://dx.doi.org/10.1016/j.cpc.2007.04.006
http://dx.doi.org/10.1088/0741-3335/53/12/124027
http://dx.doi.org/10.1017/S0022377815000574
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/10.1016/j.jcp.2011.05.034
http://dx.doi.org/10.1016/j.jcp.2006.01.023
http://dx.doi.org/10.1016/j.cpc.2016.05.007
http://dx.doi.org/10.1063/1.863121
http://dx.doi.org/10.1063/1.863762
http://dx.doi.org/10.1017/S002237780000060X
http://dx.doi.org/10.1063/1.866641
http://dx.doi.org/10.1103/RevModPhys.79.421
http://dx.doi.org/10.1063/1.4954915


45A. Brizard, J. Plasma Phys. 41, 541 (1989).
46H. Sugama, Phys. Plasmas 7, 466 (2000).
47C. K. Birsdall and A. B. Langdon, Plasma Physics via Computer

Simulations (Adam Hilger, Bristol, 1989).
48W. W. Lee, Phys. Fluids 26, 556 (1983).
49F. Palermo, E. Poli, A. Bottino, A. Biancalani, G. D. Conway, and B.

Scott, “Fast radial propagation of geodesic acoustic modes in the presence

of a temperature gradient,” Phys. Plasmas (submitted).
50W. W. Lee, J. Comput. Phys. 72, 243 (1987).
51E. Sonnendr€ucker, J. Roche, P. Bertrand, and A. Ghizzo, J. Comput. Phys.

149(2), 201–220 (1999).
52H. L€utjens, A. Bondeson, and O. Sauter, Comput. Phys. Commun. 97,

219–260 (1996).

53N. Tronko, A. Bottino, T. G€orler, E. Sonnendr€ucker, D. Told, and L.

Villard, “Verification of Gyrokinetic codes: Theoretical background and

applications,” Phys. Plasmas 24, 056115 (2017).
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